
Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

110

A DYNAMIC ERROR BASED FAIR SCHEDULING
ALGORITHM FOR A COMPUTATIONAL GRID

1 DAPHNE LOPEZ, 2 S. V. KASMIR RAJA

1School of Computing Sciences, VIT University, Vellore, India 632006
2 Dean Research, SRM University, Kattankulathur, Chennai, India 603203

E-mail: daphnelopez@vit.ac.in , svkr@yahoo.com

ABSTRACT

Grid Computing has emerged as an important new field focusing on resource sharing. One of the most
challenging issues in Grid Computing is efficient scheduling of tasks. In this paper, we propose a new
algorithm for fair scheduling, and we compare it to other scheduling schemes such as the First Come First
Served and the Round Robin schemes for a computational grid. It aims at addressing the fairness issue by
reducing the service time error..The algorithm assigns to each task enough computational power to
complete it within its deadline. The resources that each user gets are proportional to the user’s weight or a
share. The weight or share of a user may be defined as the user’s contribution to the infrastructure or the
price he is willing to pay for services. Scheduling of tasks is based on an error called the Service time error
which fairness among users. Fairness is defined as the proportional allocation of resources to tasks as per
their demand. Simulated results and comparisons with the conventional scheduling schemes such as the
FCFS and Round Robin are presented.

Keywords: Computational Grid, Scheduling, Fairness, Proportional Allocation, Service Time Error,
Shares

1. INTRODUCTION

“Grid” computing has emerged as an important
new field, distinguished from conventional
distributed computing by its focus on large-scale
resource sharing, innovative applications, and, in
some cases, high-performance orientation.[11],[12].
The constant growth of communications, in terms
of quality and availability, is increasing the interest
on grid computing paradigm [28], by which
computing resources geographically distributed can
be logically coupled together working as a
computational unit. Various types of Grids have
been developed to support these applications and
are categorized as Computational Grids, Data Grids
and Service Grids. Computational Grid (CG)
represents a new computational framework whose
efficient use requires schedulers that allocate user’s
tasks to the grid resources in an acceptable amount
of time.

An efficient use of distributed resources is highly
dependent on the resource allocation by grid
schedulers, where user requirements and job
characteristics must be also considered. Moreover,
due to the changeability of a CG, machines and
jobs to be scheduled may vary over time, and
therefore, any grid scheduler must generate optimal

schedules at a minimal amount of time in order to
rapidly adapt itself to the changes of the grid. Major
issues that can be easily handled in conventional
computing environments become seriously
challenging problems in grids mainly because a
grid consists of multiple administrative domains
[3]. Two very crucial issues among them are
security and scheduling [8]. They have been
investigated and researched over time.

The demand for scheduling is to achieve high
performance computing [5]. The motivation of this
paper is to develop a good scheduling algorithm
that can perform effectively and efficiently in terms
of minimizing the error to achieve fairness and
reduce the cost and time. This paper proposes a fair
scheduling algorithm based on the service time
error [16]. Fair Share is a widely used queueing
algorithm for prioritorizing jobs on the basis of a
“share” [27]. The first part explains the algorithm
and secondly the simulation of the experiment with
GridSim toolkit is presented. The simulator defines
the workload of resources, the arrival time of
independent jobs, length of each job and other
parameters. Finally we compare the performance
with FCFS and Round Robin.

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

111

2. RELATED WORK

 In the past, researchers have proposed various
scheduling algorithms in a grid environment which
is a complex one. The heuristic algorithms
proposed for job scheduling in [4], [27] and [9] rely
on static environment and the expected value of
execution times. H. Casanova et al. [7] and
R.Baraglia et al. [2] proposed the heuristic
algorithms to solve the scheduling problem based
on the different static data, for example, the
execution time and system load. Unfortunately, all
information such as execution time and workload
cannot be determined in advance of dynamic grid
environments.

Scheduling algorithms dealing with preemptable
tasks have also been reported in the literature [20],
[10], [23], [14]. Enterprise [22] shows the
effectiveness of a bidding model for a decentralized
scheduling framework. Genetic algorithm methods
are presented in [26] and [18] for minimizing the
total task completion time. The algorithms model
the scheduling process as a genetic evolution and
estimate at which Grid resource a task should be
assigned for execution so that the completion time
is minimized. A survey evaluation of scheduling
algorithms is presented in [15]. Stochastic
evaluation of fair scheduling algorithms is also
presented in [13], where networking issues are
discussed. Finally, evaluation of different
scheduling mechanisms for Grid computing is also
presented in [1], such as the First Come First
Served (FCFS), the Largest Time First (LTF), the
Largest Cost First (LCF), the Largest Job First
(LJF), the Largest Machine First (LMF), 1the
Smallest Machine First (SMF), and the Minimum
Effective Execution Time (MEET). R. Buyya [6]
have proposed an economic based scheduling
technique that optimizes cost and time. A drawback
of the previously mentioned approaches is that
scheduling is performed without taking into
account fair considerations. Doulamis et al in Fair
Scheduling Algorithms in the Grids [24] have
considered the fairness issue but it is a non-
preemptive algorithm.

The main objective of this algorithm would be to
improve the fairness and decrease the total
completion time by minimizing the service time
error. The tasks are assigned the processors
according to the error value of each job.

3. GRID MODEL

 The grid G in our study consists of a site in each
of which a set of N computational hosts is

participating in a grid. More formally, the hosts are
represented as {N1, N2… Nr} .Let N = {N1, N2…,
Nr} denote a set of all hosts in G and each host
consists of a number of processors.
3.1. Problem Formulation

 The problem of Job Scheduling on Computational
Grids [8] basically consists of a dynamic set of T
independent tasks to be scheduled on a dynamic set
of N resources. An instance of the problem consists
of:
• A set of T independent tasks to be scheduled.
Each job has associated with it a workload (in
million of instructions). Every job must be entirely
executed in a unique machine.
• A set of M number of processors which has its
corresponding computing capacity (in mips)
A multiprocessor system of M processors and that
the computation capacity of processor j is equal to
cj units of capacity. The total computation capacity
C of the Grid G is defined as

 The earliest time a task would be started on a
processor j is defined as the maximum delay in
making a decision to assign the task to a processor j
and the time the task gets the processor exactly.

4. FAIR SCHEDULING BASED ON ERROR

 The scheduling algorithms described in the
previous section do not address the issue of
fairness. A precise definition of fairness is essential
before further discussion of fair scheduling of tasks.
The classic notion [17] of fairness in the allocation
of resource among multiple requesting entities with
equal rights to the resource but unequal demands, is
as follows.

• The resource is allocated in order of
increasing demand

• No requesting task gets a share of the
resource larger than its demand

• Requesting tasks with unsatisfied demands
get equal shares of the resources

 Tasks with a higher demand are favored against
the remaining tasks in the case of other existing
algorithms which means that such tasks are given a
higher priority than the others which leads to
starvation that increases the completion time of
tasks and no fairness is guaranteed. These issues are
addressed in the algorithm that we propose which
alllocate resources fairly to all tasks based on the

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

112

error [21]. The algorithm is oriented towards large
scale computing in which multiple processes are
taken into account.
4.1. Service Time Error Algorithm

 Proportional share scheduling for a given set of
tasks have associated weights[16] or shares, and a
proportional share scheduler should allocate
resources to each task in proportion to its respective
weight. More specifically we assume that each task
is assigned an integer share determined, for
example by the user’s contribution to the grid
infrastructure or by the price he is willing to pay for
the services he receives. The process of scheduling
is modeled in two steps as
1) the scheduler orders the tasks in a queue
2) the scheduler runs the first task in the queue for
its time quantum, which is the maximum time
interval the client is allowed to run before another
scheduling decision is made.
 As mentioned earlier the algorithm works
towards perfect fairness defined as an ideal state in
which each task has received service exactly
proportional to its weight. This algorithm is based
on an error that occurs during the service of the
request. The probability that a request has been
serviced for t units of time will terminate in the
next dt units of time. In preemptive scheduling this
applies every time a request is scheduled to run
after an interruption.
 We denote the proportional share of task A as
SA, and the time interval would be the difference of
time between its arrival t1 and the execution time
t2. The amount of service received by task A during
the time interval (t1, t2) is represented as WA (t1,
t2). If an ideal system exists wherein all tasks could
consume their resources allocation simultaneously,
then the scheduler can maintain the perfect state at
all intervals. However in a time multiplexing
environment it is not possible to be proportionally
fair at all intervals and also in the real world no
algorithm maintains perfect fairness. The idea is to
quantify how close an algorithm works towards
perfect fairness.
 A slight variation of equation 2 defines the
service time error [16] for a task A ,EA (t1, t2) is
the difference between the amount of service
allocated to the task during an interval (t1, t2) and
the amount of time that would have been allocated
under an ideal scheme that maintains perfect
fairness for all tasks over all intervals.
Mathematically service time error is represented as
 EA (t1,t2) = WA (t1,t2) – (t2-t1) SA/ΣSi (2)
 The computation of this error could be a positive
value which indicates that a task has received more
than its ideal share over an interval; a negative

value indicates that a task have received less than
what it deserves and a zero value indicates that it
has received its ideal share. The main objective of
the algorithm is to minimize the error and reduce
the completion time of the tasks.
 The input consists of T number of tasks
submitted to Grid G consisting of N number of
computation nodes and each node having M
multiple processors.
 A queue is created for each node and the tasks
are placed in the queue for execution. Each task is
assigned a weight depending on various factors
depending on the infrastructure.The tasks are
ordered in the decreasing order of their weights.
Initially when the processors are free the first task
in the queue is assigned to the processor for the first
time quantum that is fixed by the grid
infrastructure. The service time error is calculated
for the current task in execution denoted by Ec, the
task that is in the head of the queue which is
denoted by Ef and also for the job that is the second
task in the queue represented as En
 To determine as to which job will be given the
next time quantum depends on the error value if the
error is positive then it has been given enough of
resources so it is moved to the end of the queue.
The error values of the first job and the second job
in the queue are compared and the job that has a
lower error value gets the resource for the next time
quantum. This process repeats until there are no
more jobs in the queue for that node.
Input: A set of tasks T, a set N computation node
with multiple processors
Output: A schedule of T onto N
1 Create a set Q of N queues
2. qsize = |T| / |N|
3 for each queue, qi in Q
4.. Remove qsize tasks in T and enqueue them to qi
5. While there are tasks in the queues do
6.Assign weights to the tasks
7. Arrange the tasks in decreasing order of their
weights
8. The first task in queue is executed initially for
the required time quantum to the node that is
available
9. Calculate the service time error Ec for the current
job
10. If the Ec > 0 move the job to the end of the
queue then calculate the error value of the first job
in the queue Ef and the next job in the queue then
11. If En >= Ef 6
12. j = first job of the queue
13. else
14. j = next job in the queue
15. end if /* jobs are assigned to the free nodes*/
16. else

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

113

17. j= current job in the queue
18. end if
19. end while
20. end for
Fig.1Pseudocode for Service Time Error Algorithm

4.2. Objective Evaluation

 The tasks arrival is modeled as an application of
a queuing system [19]. Modelling each queue it can
be shown that the average length of the queue

 (3)
The average waiting time is given by

 (4)
The Task Completion Time is given by

 (5)
Another criterion would be to minimize the error
using root mean square

 (6)
subject to the contraints
 Wn+1=f (t1n,t2n)
 Sn+1=g (t1n,t2n)
 t2n ≥ t1n
 m
 ∑Sn=a(const.)
 n=1

 m ≥ 2
 t1n,t2n ≥ 0
 As the primary function of a scheduler is to
select a client to execute when the resource is
available. A key benefit of this algorithm is that it
can select a task to execute in O(1) time.

5. EXPERIMENTAL RESULTS

 The proposed algorithm is simulated using
GridSim toolkit [25] which provides the
implementation of a grid infrastructure as depicted
in Fig 2. Section 5.1 gives a brief description about
the scheduler architecture as adopted by the
simulator. It allows the basic functionality to create
common entities such as computation resources,
users, processing elements of varying capacity.

5.1. Scheduler Architecture

 Fig 2 depicts an architecture adopted in the
GridSim [25] infrastructure. When the simulator
starts, Grid Resource Entities sends an event to GIS
entities for registration. Hence, GIS entities return a
list of registered resources and their details to
Metascheduler. Therefore, Grid Client Entities
submit the jobs and its details such as arrival time,
releasing time, length of job and the request of
resources configuration, properties, etc, to Meta-
scheduler. The Meta-scheduler responds with
dynamic information such as resources workload,
available resources, capability, and the other
properties. With each computation node is
associated a local queue where the jobs are placed
for execution.

5.2. Simulated Results

 In this section, the proposed scheduling
scheme is simulated against 1) a large set of tasks
2) a large and varying number of processors. Table
1 and Table 2 shows the Grid Resource
Infrastructure and different workloads respectively.
The simulations were performed with the above
mentioned infrastructure and the workload. The
same set of data is tested for FCFS, Round Robin
and rhe proposed Service Time Error algorithm. Fig
2 The performance is compared in terms of the
average cost, Task completion time, Error values
and the results are shown in Table 3. Fig 2 and Fig
3 depict the results in terms of task completion time
and the error values.

Table 1 The Grid Resources Attributes

Parameters Values Notations
Total Number
of Resources

10-20 Machines

Speed 200-400 Million Instructions
per Second

Number of
Processors

5-6 Processing Elements

Table 2 Workload Attributes

Parameters Values Notations
Total number of
jobs

100 –
2000

Length of a job 1,000 –
5,000

Million
Instructions (MI)

Number of
processors
Required

5-6 Million Instruction
Per second(MIPS)

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

114

Table 3

Comparison of performance in terms of Average Cost, Task Completion Time, Maximum and Minimum
Error Value for FCFS, Round Robin and the Service Time Error.

Number of Tasks 100

Parameters Average Cost Completion Time Min Error Max Error
FCFS 236232.0 9321 -1.20000 0.899999
Round Robin 210345.2 8102 -0.79999 0.83333
Error Based 210345.2 6766 -0.5 0.5

Number of Tasks 1000

Parameters Average Cost Completion Time Min Error Max Error
FCFS 420452.9 8251.93 -5.46000 6.941818
Round Robin 355897.6 6169.05 -4.56765 5.636500
Error Based 311192.8 5509.62 -3.27989 3.970909

In all experiments the arrival model described in
Section 4.2 is adopted. For a minimal set of tasks
all the algorithms efficiently schedule the tasks but
as the number of tasks increase Service Time Error
algorithm yields the best performance and Round
Robin the next highest. On the contrary FCFS
shows the worst performance.

6. CONCLUSIONS

 In this paper we have proposed a scheduling
algorithm for the Grid environment that could be
used to implement scheduling in a fair way. This
algorithm has proved to outperform the results in
terms of Cost, completion time and the error. In
particular, the algorithm allocates the tasks to the
available processors so that no requesting task gets
a share of the resource larger than its demand and
requesting tasks with unsatisfied demands get equal
shares of the resources. It also guarantees that all
tasks are considered for execution. This algorithm
can be integrated in the existing Grid computing
systems to improve the task allocation performance.

7. REFERENCES

[1] I. Ahmad, Y.-K. Kwok, M.-Y. Wu, and K. Li,
 “Experimental Performance Evaluation of Job
 Scheduling and Processor Allocation
 Algorithms for Grid Computing on
 Metacomputers,” Proc. IEEE 18th Int’l Parallel
 and Distributed Processing Symp. (IPDPS ’04)
 , pp 170-177, 2004.
[2] R. Baraglia, R. Ferrini, and P. Ritrovato, “A

 static mapping heuristics to map parallel
 applications to heterogeneous computing
 systems”, Research articles. Concurrency and
 Computation : Practice and Experience,
 17(13):1579–1605, 2005.
[3] F. Berman, A. Chien, K. Cooper, J. Dongarra, I.
 Foster, D. Gannon, L. Johnsson, K. Kennedy,
 C. Kesselman, J. Mellor-Crummey, D. Reed, L.
 Torczon, and R. Wolski, “The GrADS Project:
 Software Support for High-Level Grid
 Application Development,” Int’l J. High
 Performance Computing Applications, vol. 15,
 no. 4, pp. 327- 344, Winter, 2001.
[4] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni,
 M. Maheswaran, A. I.Reuther, J. P. Robertson,
 M. D. Theys, B. Yao, D. Hensgen and
 R.F.Freund (2001), “A Comparison of Eleven
 Static Heuristics for Mapping a Class of
 Independent Tasks onto Heterogeneous
 Distributed Computing Systems” , Journal of
 Parallel and Distributed Computing.
 Vol.61(6): Pages 810-837.
[5] R. Buyya, D. Abramson, and J. Giddy,
 “Nimrod/G : An Architecture for a Resource
 Management and Scheduling System in a
 Global Computational Grid,” Proc. Fourth Int’l
 Conf. High Performance Computing in Asia-
 Pacific Region, 2000
[6] R. Buyya, Economic - based Distributed
 Resource Management and Scheduling for Grid
 Computing, PhD Thesis, Monash University,
 Melbourne, Australia, April 12, 2002.
[7] H. Casanova, A. Legrand, D. Zagorodnov and
 F. Berman, “Heuristics for scheduling parameter

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

115

 sweep applications in Grid environments”, in
 Heterogeneous Computing Worksho p 2000,
 IEEE Computer Society Press, 2000, pp. 349–
 363.
[8] K. Czajkowski, I. Foster, and C. Kesselman.
 Resource co-allocation in computational grids”.
 In Proceedings of the The Eighth IEEE
 International Symposium on High Performance
 Distributed Computing. IEEE Computer
 Society Washington, DC, USA, 1999.
[9] H. Dail, H. Casanova, and F. Berman, “A
 Decoupled Scheduling Approach for the
 GrADS Environment” Proc. Conf.
 Supercomputing (SC’02), Nov. 2002.
[10] X. Deng, N. Gu, T. Brecht, and K.-C. Lu,
 “Preemptive Scheduling of Parallel Jobs on
 Multiprocessors,” SIAM J. Computing, vol.
 30, no. 1, pp. 145-160, 2000.
[11] I. Foster and C. Kesselman. “The Grid –
 Blueprint for a New Computing
 Infrastructure”. Morgan Kaufmann Publishers,
 1998.
[12] I. Foster, C. Kesselman, and S. Tuecke, “The
 Anatomy of the Grid: Enabling Scalable
 Virtual Organizations,” Int’l J.
 Supercomputer Applications, vol. 15, no. 3,
 2001.
[13] M. Hawa, “Stochastic Evaluation of Fair
 Scheduling with Applications to Quality- of -
 Service in Broadband Wireless Access
 Networks,” PhD dissertation, Univ. of
 Kansas, Aug. 2003.
[14] L.E.Jackson and G.N. Rouskas,
 “Deterministic Preemptive Scheduling of Real
 Time Tasks,” Computer, vol. 35, no. 5, pp.
 72- 79, May 2002
[15] R. Jain, A Survey of Scheduling Methods
. Nokia Research Center, Sept. 1997.
[16] Jason Nieh Chris Vaill, Hua Zhong, “Virtual
 - Time Round Robin: An O(1) Proportional
 Share Scheduler”, Proc . of the 2001 Usenix
 Technical Annual Technical Conference,
 Boston, USA, 2001
 [17] S. Keshav, An Engineering Approach to
 Computer Networks Reading Mass:
 Addison- Wesley, 1997
 [18] S. Kim and J.B. Weissman, “ A Genetic
 Algorithm Based Approach for Scheduling
 Decomposable Data Grid Applications,”
 Proc. Int’lConf. Parallel Processing
 (ICPP ’04), pp. 406- 413, 2004.
[19] L.Kleinrock and Arnne Nilsson, “On Optimal
 Scheduling Algorithms fo a Time Shared
 Systems” , Journal of the Assocla Uon for

 Computing Machinery, Vol 28, No 3.
July 1981, pp 477-486

[20] J.Y-T. Leung and M.L. Merrill, “A Note on
 Preemptive, S cheduling of Periodic, Real-
 Time Tasks,” Information Processing Letters,
 pp. 115- 118, Nov. 1980.
[21] D.Lopez and Rasika, “A Service Time Error
 Algorithm for a Computational Grid”,
 Proc. Int’l conf.
[22] T. W. Malone, R. E. Fikes, K. R. Grant and
 M. T. Howard “ Enterprise : A Market - Like
 Task Scheduler for Distributed
 Computing Environments”, The Ecology of
 Computation, B. A. Huberman,ed.,pp. 177-205,
 1988
[23] G. Manimaran and C.S.R. Murthy , “ An
 Efficient Dynamic Scheduling Algorithm for
 Multiprocessor Real -Time Systems,” IEEE
 Trans. Paralleland Distributed Systems, vol. 9
 no. 3, pp. 312- 319, Mar. 1998.
[24] Nikolaos D. Doulamis, Anastasios
 D. Doulamis, “Fair Scheduling Algorithms
 In Grid”,” IEEE Trans. Parallel and
 Distributed Systems, vol. 18, no. 11, Nov2007.
[25] Rajkumar . Buyya and M. Murshed, “GridSim:
 A toolkit for the modeling and simulation of
 distributed resource management and
 scheduling for Grid Computing”, The Journal
 of Concurrency and Computation: Practice
 and Experience (CCPE), 14:1175-1220,
 2002.
[26] D.P. Spooner, S.A. Jarvis, J. Cao, S. Saini, and
 G.R.Nudd, “Local Grid Scheduling Techniques
 Using Performance Prediction,” IEE Proc.
 Computers and Digital Techniques, vol. 150,
 no. 2, pp. 87-96, Mar. 2003
[27] Stephen D. Kleban Scott H. Clearwater “ Fair
 Share on High Performance Computing
 Systems: What Does Fair Really Mean?”
 Proceedings of the 3rd IEEE/
 ACM International Symposium on
 Cluster Computing and the Grid (CCGRID.03)
[28] H. Topcuoglu, S. Hariri, and M. Wu,
 “Performance- effective and low - complexity
 task scheduling for heterogeneous computing.
 IEEE transactions on Parallel and Distributed
 Systems 13,(3): 260-274, March 2002.
 Middleware for Grid Computing”

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

116

9. FIGURES

Fig 2: The Scheduler Architecture Adopted From The Gridsim Infrastructure

Fig 3: Comparison Based On Error Values

Fig 4 : Comparison Based On The Task Completion Time

