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ABSTRACT 
 This paper introduces an analysis of the phenomena of stability of synchronous machines under small 
perturbations by examining the case of a single machine connected to a large system through external 
impedance, and uses robust control H∞ techniques to design stabilizer for electric power system. H∞ 
techniques that are used are H∞ -optimal controller synthesis, H∞ - mixed sensitivity controller synthesis 
and H∞- loop shaping controller synthesis. 
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1.    INTRODUCTION  
 

HE PHENOMENON of stability of synchronous 
machine has received a great deal of attention in the 
past and will receive increasing attention in the 
future . As economies in the system design are 
achieved with larger unit sizes and higher per unit 
reactance generating and transmission equipment 
designs, more emphasis and reliance is being placed 
on the controls to provide the required and the 
reliance is being placed on controls to provide the 
required compensating effects with which to offset 
the reductions in stability margins inherent from 
these trends in the equipment design [1].  

The electric power system is a complex system 
with highly non-linear dynamics. Its stability 
depends on the operating conditions of the power 
system and its configuration. Low frequency 
oscillations are a common problem in large power 
systems. Excitation control or Automatic Voltage 
Regulator (AVR) is well known as an effective 
means to improve the overall stability of the power 
system. Power System Stabilizers (PSS) are added 
to excitation systems to enhance the damping 
during low frequency oscillations. The output of the 
PSS is applied as a supplementary control signal to 
the machine voltage regulator terminal. Oscillations 
of small magnitude and low frequency often persist 
for long periods of time and in some cases can 
cause limitations on the power transfer capability.  

 
The Power System Stabilizer (PSS) is a device 

that improves the damping of generator 
electromechanical oscillations. Stabilizers have 
been employed on large generators for several 
decades, permitting utilities to improve stability-
constrained operating limits. The input signal of 
conventional PSS is filtered to provide phase lead at 
the electromechanical frequencies of interest (ie , 
0.1 Hz to 5.0 Hz). The phase lead requirement is 
site-specific, and is required to compensate for 
phase lag introduced by the closed-loop voltage 
regulator. 
The PSS conventional and the PSS control based on 
root locus and eigenvalue assignment design 
techniques have been widely used in power 
systems. Such PSS ensure optimal performance 
only at a nominal operating point and do not 
guarantee good performance over the entire range 
of the system operating conditions due to 
exogenous disturbances such as changes of load 
and fluctuations of the mechanical power. In 
practical power system networks, a priori 
information on these external disturbances is 
always in the form of a certain frequency band in 
which their energy is concentrated. Remarkable 
efforts have been devoted to design appropriate 
PSS with improved performance and robustness. 
These have led to a variety of design methods using 
optimal control [2] and adaptive control [3]. The 
shortcoming of these model-based control strategies 
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is that uncertainties cannot be considered explicitly 
in the design stage. More recently, robust control 
theory has been introduced into PSS design which 
allows control system designers to deal more 
effectively with model uncertainties [4, 5, 6 and 
7].H∞ based control approach is particularly 
appropriate for plants with unstructured uncertainty. 
In this paper, a PSS based on H∞ robust control 
techniques is introduced and results are displayed in 
time response approach for studying stability of 
electric power system under different conditions. 
 
2.   SYSTEM DESCRIPTION 
 
The power system considered in this study is modelled 
as a synchronous generator connected through a 
transmission line to infinite busbar. A simplified 
model that describing the system dynamics used in 
this study is given by the following state space 
equations [6,8]. 

x˙ = Ax(t)+B1w(t)+B2u(t)                   (1)   (1.a) 
z(t) = C1x(t) + D11w(t) + D12u(t)         (2) 
y(t) = C2x(t) + D21w(t) + D22u(t)         (3) 
where u represents the PSS output added to the 
voltage set points ∆Vref, ω is an external 
disturbance represented by the mechanical power 
∆Pm. The matrices A, B1, B2, the vector z, y and the 
state vector x are defined by 
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  (4) 

B1=[ 0   1/M   0     0]T,B2=[0   0  0  KA/TA]T 
Z=[∆Pe    ∆ω    ∆Vt  ]T,       y=∆Pe 
 x = [ ∆δ  ∆ω  ∆Eq’  ∆Efd]T 

. 

where δ, ω, E'q, EFD, Pe and Vt are respectively the 
torque angle, the angular velocity the internal 
machine voltage, the excitation voltage, power 
output and generator terminal voltage. T'do is the 
open-circuit transient time constant, ∆ represents a 
small deviation around the operation point The 
operating conditions for the above systems are 
completely defined by the values of the real (P) and 
reactive (Q) powers at the generator terminals and 
the transmission line impedance Xe. A detailed 
block diagram of the power system (open loop) is 
shown in Fig. 1. 

 
        Fig. 1 block diagram for open loop 

 
We note that the constants Ki (i = 1,..., 6) are un-
certain and depend upon the network parameters, 
the quiescent operating conditions and the infinite 
bus voltage[8]. 

 
3.     ROBUST CONTROL 
 
Feedback control is well understood for large classes of 
nonlinear systems with single inputs. For general 
multi-input nonlinear systems, however, feedback 
control and especially robustness issues are still 
research topics, the urgency of which has been 
rendered more acute by the recent development of 
machines with challenging nonlinear dynamics. The 
basis for control design and stability analysis is a 
dynamical model that captures prominent features of 
the system under consideration. To account for un-
noticeable and unknown aspects of the real system in 
the mathematical model, one often uses the notion of 
uncertainty. Uncertainty denotes any obscure 
element in the dynamics of the real system. Possible 
uncertainties include unknown parameters, unknown 
functions, disturbances, and un modeled dynamics. In 
general uncertainties can be either stochastic or 
deterministic and control design and performance 
analysis must be done accordingly. Uncertainties can 
also be classified as either “structured” or 
“unstructured” [9]. 
Structured Uncertainty represents parametric 
variation in the plant dynamics, for example: 

• Uncertainties in certain entries of state-
space matrices (A, B, C, D). 
• Uncertainties in specific poles and/or zeros 
of the plant transfer function 
• Uncertainties in specific loop gains/phases. 

Unstructured uncertainty may be used to represent 
frequency-dependent elements such as actuator 
saturations and un modeled structural modes in the 
high frequency range or plant disturbances in the 
low frequency range. 
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The challenge in robust multi-variable feedback 
control system design is to synthesize a control law 
which maintains system response and error signals 
to within pre-specified tolerances despite the effects 
of uncertainty on the system. Depending on the 
nature of the uncertainties, different designs can be 
used to achieve effective control. 
With the birth of robust control in the late seventies 
though, H∞ proved to be superior in terms of their 
robustness [10, 11]. 
The linear quadratic regulator, Kalman filter, and 
linear quadratic gaussian problems these 
(optimization problems) can be alternatively posed 
using the system H∞ -norm as a cost function. The 
H∞ -norm is the worst-case gain of the system and 
therefore provides a good match to engineering 
specifications, which are typically given in terms of 
bounds on errors and controls [11].The terms H∞ 
norm and H∞ control are not terms which convey a 
lot of engineering significance. H∞ is considered a 
design method which aims to minimize the peak(s) 
of one or more selected transfer functions. The H∞ 
norm of a stable scalar transfer function F(s) is the 
peak value of )( ωjf as a function of frequency, 
that is  

        )(max)( ω
ω

jfsF
∆

=                         (5) 

Strictly speaking, “max” (the maximum value) 
should be replace by “sup” (supremum, the least 
upper bound) because the maximum may only be 
approached as ∞→ω  and may therefore not 
actually be achieved. The symbol ∞  comes from 
the fact that the maximum magnitude over 
frequency may be written as 

pP

P
dJFjf

1
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⎠

⎞
⎜⎜
⎝

⎛
= ∫

∞

∞−
∞→

ωωω
ω

 (6) 

Essentially, by raising |F| to an infinite power, we 
pick out its peak value. H∞ is the set of transfer 
functions with bounded H∞-norm, which is the set 
of stable and proper transfer functions [12]. 
 
3-a .    h∞ optimal controller problem 
formulation: 

 
Fig.2     block diagram 

Given a proper continuous time linear time-
invariant plant P mapping exogenous inputs w 
and control inputs u to controlled outputs z and 
measured outputs y. That is 

 
and given some dynamic output feedback law 
 u = K(s) y and with the partitioning 

 

the closed-loop transfer function from disturbance 
ω to controlled output z is : 

 

The overall control objective is to minimize the H∞ 
norm of the transfer function from w to z. This is 
done by finding a controller K which, based on the 
information in y, generates a control signal u which 
counteracts the influence of w on z, thereby 
minimizing the closed-loop norm from w to z. 
In practice, we calculate the suboptimal rather than 
optimal solution. The sub-optimal H∞ control 
problem of parameter γ consists of finding a 
controller K(s) such that: 
- The closed-loop system is internally stable. 
- The H∞ norm of F(P, K) (the maximum gain from 
w to z) is strictly less than γ, where γ is some 
prescribed performance level . 
It might be noticed here that the term “suboptimal” 
is used rather than “optimal”. The reason for that is 
that it is often not necessary and sometimes even 
undesirable to design an optimal controller. A 
suboptimal controller may also have nice properties 
(e.g., lower bandwidth) over the optimal ones. 
However, knowing the achievable optimal 
(minimum) H∞-norm may be useful theoretically 
since it sets a limit on what can be achieved. 
 
3-b.   h∞ mixed sensitivity controller: 
Mixed sensitivity H∞ design approach does not 
necessarily look for an optimum solution but rather 
looks for a solution which satisfies many 
requirements or specifications at once. Shaping the 
sensitivity function  (S = (J + GX)-1) along with one 
or more other closed-loop transfer functions such as 
KS or the complementary sensitivity function (T = I 
— S) provides a direct and effective way of 
achieving multi-variable loop shaping. 
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Fig.3 depicts block diagram for mixed sensitivity 
controller: 

 
Fig.3 mixed sensitivity controller 

 
In the problem formulation, disturbance attenuation 
specifications, stability margin specifications as 
well as other specifications can be combined into a 
single infinity norm specification of the form: 

 
and this is usually called the mixed-sensitivity cost 
function which is to be minimized. 
Where G is the open loop system, W1, W2 and W3 
are weighting functions 
 
weighting function selection [13]: 

Selection of the weighting function is very 
important in design. Fortunately, the relation 
between the open loop frequency domain and time 
domain performance is well understood. Typically, 
we select weights W1 and W2 such that the open 
loop has the following conflict properties: 

1. Achieving good performance tracking and 
good disturbance rejection require large open 
loop gain normally at a low frequency range. 

2. Achieve good robust stability and sensor noise 
rejection requires a small open loop gain 
normally at a high frequency range. 

 
3-c.   H∞ loop shaping controller: 

H∞ loop-shaping control, proposed by McFarlane 
and Glover [14], is an efficient way to design a 
robust controller and has been applied to a variety 
of control problems. Uncertainties in this approach 
are modeled as co prime factor uncertainty. This 
uncertainty model does not represent actual 
physical uncertainty, which, in fact, is unknown. 

This approach requires only a desired open loop 
shape in the frequency domain. Two weighting 
functions, W1 (pre-compensator) and W2 (post-
compensator), are specified to shape original plant 
G so that the desired open loop shape is achieved. 
Fig. 4 shows a block diagram for H∞ loop-shaping 
control. 

 
Fig.4  H∞ loop-shaping control 

 In this approach, the shaped plant is formulated as 
a normalized co prime factor that separates plant Gs 
into normalized nominator Ns and denominator Ms 
factors. In any plant model G, the shaped plant Gs 
is formulated as [14].  

 

 
Where A,B,C,D represent plant Gs in the state-
space, form ε≤∆∆

SS MN , , Ns and Ms are 

nominator and denominator normalized co prime 
factors. ∆Ns and ∆Ms are uncertainty transfer 
functions in nominator and denominator factors. ε 
is an uncertainty boundary, called a stability 
margin. To obtain these normalized co prime 
factors, the following equation is applied [15]: 

 
Where 

 and 
matrix  0≥Z  is the unique positive definite 
solution to the algebraic Riccati equation 

 
Where  
Once the desired loop shape is achieved, the H∞-
norm of the transfer function from disturbances w 
to states z is subjected to be minimized over all 
stabilizing controllers K. 
 
4.      RESULTS 
The following figures depict the step response for 
system under study and at different operating points 
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with different transmission lines impedance (xe), 
where weighting functions that are chosen to ensure 
satisfactory performance of the closed loop system 
at high frequencies are: 

[ ].2
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The following figure depicts frequency response for 
weighting functions. 
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Fig.5 

It is noted that weighting function intersected near 
frequency 30 rad/sec . 
4-a.    Result of system without stabilizer: 
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Fig.6 ∆ω at P=0.05 p.u.  and Q=-0.225 p.u. 
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Fig.7 ∆ω at P=1 p.u.  and Q=0.015 p.u. 
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Fig.8 ∆ω at P=1.25 p.u.  and Q=0.3 p.u.,xe=0.997 p.u. 

From previous figures, it can be conclude that 
system at open loop only stable at light load (fig.6) 
and unstable for normal and heavy loading (fig.7, 8) 
respectively.  
4- b.    Result of H∞ optimal controller: 
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fig.9 ∆ω at P=0.05 p.u.  and Q=-0.225 p.u. 
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Fig.10 ∆ω at P=1 p.u.  and Q=0.015 p.u. 
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Fig.11 ∆ω at P=1.25 p.u.  and Q=0.3 p.u., xe=0.997 p.u. 
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Fig.12 ∆ω at P=1.25 p.u.  and Q=0.3 p.u., xe=0. 7 p.u. 
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Fig.13 ∆ω at P=1.25 p.u. and Q=0.3 p.u., xe=0. 45 p.u. 
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Fig.14 ∆ω at P=1.25 p.u.  and Q=0.3 p.u., xe=0. 2 p.u. 

4-c.    Result of  H∞ mixed sensitivity  controller : 
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Fig.15  ∆ω at P=0.05 p.u.  and Q=-0.225 p.u. 
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Fig.16 ∆ω at P=1 p.u.  and Q=0.015 p.u. 
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Fig.17 ∆ω at P=1.25 p.u.  and Q=0.3 p.u., xe=0.997 p.u. 
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Fig.18 ∆ω at P=1.25 p.u.  and Q=0.3 p.u., xe=0. 7 p.u. 
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Fig.19 ∆ω at P=1.25 p.u.  and Q=0.3 p.u., xe=0. 45 p.u. 
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Fig.20 ∆ω at P=1.25 p.u.  and Q=0.3 p.u., xe=0. 2 p.u. 

4-d.     Result of H∞ loop shaping controller: 
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Fig.21  ∆ω at P=0.05 p.u.  and Q=-0.225 p.u. 
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Fig.22 ∆ω at P=1 p.u.   and Q=0.015 p.u. 
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Fig.23 ∆ω at P=1.25 p.u.  and Q=0.3 p.u., xe=0.997 p.u. 
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Fig.24 ∆ω at P=1.25 p.u.  and Q=0.3 p.u., xe=0. 7 p.u. 
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Fig.25∆ω at P=1.25 p.u.  and Q=0.3 p.u., xe=0. 45 p.u. 
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Fig.26 ∆ω at P=1.25 p.u. and Q=0.3 p.u., xe=0. 2 p.u. 

These results are obtained by using MATLAB, 
Robust Control Toolbox functions [16]. 
4-e.  Transfer function results: 
Transfer function of the system has very important 
role for studying the stability of the any system by 
obtaining characteristics equation for the system. 
The transfer function of the system under study 
without stabilizers has 4th order, but when adding 
H∞ optimal controller, H∞ mixed sensitivity 
controller, and H∞ loop shaping controller to 
system, the order of transfer function of the system 
with controllers will be 11th, 11th, and 15th 
respectively and the parameters of the system will 
be changed by changing the loading conditions. 
Example form results of transfer function for 
system with and without controllers at heavy load 
(P=1.25 p.u. ,  Q=0.3 p.u., and  Xe=0.997): 
 
Ttansfer function for original model without any 
controller: ( 4th order) : 
 
    1000 s^3 + 253.9 s^2 - 7795 s + 3061 
   --------------------------------------------                 
      s^4 + 20.25 s^3 + 131.9 s^2 - 152.8 s – 2134 
 
Transfer function by  using H∞  mixed sensitivity 
syntheses   (  11th order) : 

 
2.055e004 s^7 + 1.282e007 s^6 + 2.996e008 s^5 + 
2.717e009 s^4 + 7.895e009 s^3 + 1.184e009 s^2   + 
2.144e005 s - 2.607e-008 
---------------------------------------------------------  
s^11 + 1256 s^10 + 4.285e005 s^9 + 2.184e007 s^8 
+ 5.347e008 s^7 + 7.709e009 s^6 + 6.971e010 s^5 
+ 3.952e011 s^4 + 1.332e012 s^3 + 2.377e012 s^2 
+ 1.678e012 s + 6.766e009 
 
 
 
 
Transfer function by using H∞  syntheses 

 (  11th order) : 
2.054e004 s^7 + 1.282e007 s^6 + 3.009e008 s^5 + 
2.75e009 s^4 + 8.186e009 s^3 + 1.994e009 s^2 + 
3.649e005 s + 4.728e-009 
--------------------------------------------------------- 
      s^11 + 1256 s^10 + 4.285e005 s^9 + 2.184e007 
s^8 + 5.347e008 s^7 + 7.709e009 s^6 + 6.971e010 
s^5+ 3.951e011 s^4 + 1.332e012 s^3 + 2.378e012 
s^2 + 1.678e012 s + 6.766e009 
 
Transfer function for all system after using loop 
shaping synthes  (  15th order ) : 
 
   6.468e004 s^13 + 7.988e008 s^12 + 3.306e012 
s^11 + 4.652e015 s^10 + 2.862e017 s^9 + 
7.076e018 s^8  + 9.117e019 s^7 + 6.579e020 s^6 + 
2.624e021 s^5 +  
5.278e021 s^4 + 4.315e021 s^3   + 7.963e020 s^2 + 
1.941e017 s + 4.74e004 
--------------------------------------------------------- 
      s^15 + 1.646e004 s^14 + 1.019e008 s^13 + 
2.826e011 s^12 + 3.022e014 s^11 + 2.123e016 
s^10   + 6.416e017 s^9 + 1.075e019 s^8 + 
1.077e020 s^7 + 6.549e020 s^6 + 2.375e021 s^5  + 
4.72e021 s^4 + 4.189e021 s^3 + 7.963e020 s^2 + 
1.941e017 s 
 - 1.517e005               
                                      
5.    CONCLUSION 
In this paper the design and evaluation of power 
system stabilizers based H∞ techniques has been 
considered. The simulation results presented 
demonstrate the effectiveness of these control 
techniques to improve the stability and transient 
response of power systems under a variety of 
operating conditions. The robustness of the 
controller has been evaluated with respect to model 
uncertainties of the power system. H∞ techniques 
which were used are : H∞ optimal controller, H∞ 
mixed sensitivity controller, and H∞  loop shaping  
controller. From the simulation results that were 
obtained it was clear that H∞ optimal controller 
gave the best results between them, it gave faster 
damping, with less overshooting, also it is noted 
that the order of the transfer function of the system 
is increased by adding controllers. 
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