
Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

10

1 Sondos Bahadori, 2 Somayeh Kafi, 3 Kamran Zamani far, 4 Mohammad Reza Khayyambashi

1 Islamic Azad University Ilam Branch, Ilam Azad University, Daneshjo Bolvar, Ilam, Iran
2 Islamic Azad University Deylam Branch, Deylam Azad University, North Shariaty Street,Boshehr, Iran

3 Department of Computing, University of Isfahan, Isfahan,Iran
4 Department of Computing, University of Isfahan, Isfahan,Iran

E-mail: sondos_bahadori@ilam-iau.ac.ir, kafi@ce.sharif.edu, zamanifar@ eng.ui.ac.ir,m.r.khayyambash@
eng.ui.ac.ir

ABSTRACT

Web services are rapidly changing the landscape of software engineering. One of the most interesting
challenges introduced by web services is represented by Quality of Service (QoS) _aware composition and
late binding. This allows to bind, at run-time, a service oriented system with a set of services that, among
those providing the required features, meet some nonfunctional constraints, and optimize criteria such as
the overall cost or response time. In other words, QoS_aware composition can be modeled as an
optimization problem. We propose to adopt Genetic Algorithms to this aim. In order to increase the
performance of genetic algorithm we use Tabu search. By using Tabu search ultimately a kind of
composition is selected which is in close connection with user wants.
Keywords: Web Service Composition, Genetic Algorithm, Tabu Search

1. INTRODUCTION

Web services are autonomous software systems
identified by URIs which can be advertised,
located, and accessed through messages encoded
according to XMLbased standards (e.g., SOAP,
WSDL, and UDDI [16]) and transmitted using
Internet protocols [2]. Web services encapsulate
application functionality and information resources
and make them available through programmatic
interfaces, as opposed to the interfaces provided by
traditional Web applications which are intended for
manual interactions. In addition, since they are
intended to be discovered and used by other
applications across the Web, Web services need to
be described and understood both in terms of
functional capabilities and Quality of Service (QoS)
properties.
The emergence of Web services (e.g., for order
procurement, finance, accounting, human
resources, supply chain, and manufacturing) has
created unprecedented opportunities for
organizations to establish more agile and versatile
collaborations with other organizations. Widely
available and standardized Web services make it
possible to realize Business-to-Business

Interoperability (B2Bi) by inter-connecting Web
services provided by multiple business partners
according to some business process: a practice
known as Web Services Composition [9], [5], [1],
[8]. For example, an integrated financial
management Web service can be created by
composing more specialized Web services for
payroll, tax preparation, and cash management.
A composite service has specific functions that can
be divided into some component functions. These
component functions can be accomplished by some
component services respectively. An example of
web service composition was shown in Fig. 3 of
[15]. The dependencies among component
functions were represented with the state charts in
[14]. Some candidate services (concrete services)
with same functions and different values of QoS
attributes are discovered for every task (abstract
services). Thus, there are various composite plans
for each execution path of composite service.
Moreover, since the number of concrete services
with same functions and different values of QoS
attributes is increasing with the proliferation of web
service, the composite size should be larger and
larger. For example, in one execution path, there
are 10 component functions in this composite path,

 OPTIAL WEB SERVICE COMPOSITION USING HYBRID
GA-TABU SEARCH

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

11

and 15 candidate web services for each component
function. In this kind of composition scenario, the
composite size should be about 1510. Since web
service requesters always have both functional
requirements and global QoS requirements, it is
needed to select concrete services for a given task
to get the best composite plan and maximize user
satisfaction (here, the word ‘‘best” means that the
composite plan has the optimum QoS property
values). Web service selection with global QoS
constraints plays an important role in web service
composition [6]-[7].
The remainder of this paper is organized as follows.
After a review of the literature of QoS-aware web
services selection using QoS computation in
Section 2, searching for a solution with Genetic
Algorithms in section 3, Section 4 reports and
discusses results obtained in the simulations.
Finally, Section 5 concludes.

2. QUALITY COMPUTATION BASED
SELECTION OF WEB SERVICES

According to Std. ISO 8402 [16] and ITU E.800
[12], QoS may include a number of non-functional
properties such as price, response time, availability
and reputation. Thus, QoS value of a composition
service can be achieved by fair computation of QoS
of every component service. In this section, some
traditional optimization techniques [3], [14], [13]
and Genetic Algorithm (GA) [9], [10], [15] are
discussed in detail.
The QoS computation based on QoS matrix is a
representative solution. In [13], web services were
ranked by means of normalizing QoS matrix.
However, it was only a local optimization
algorithm but not a global one for service selection.
Other works in the area of QoS computation
include [13]-[14], which proposed local
optimization and global planning. The local
optimization approach could not take global QoS
constraints into consideration. When the size of
composite service is very large, for example 1510,
the overhead of global planning is quite enormous.
Hereby, both had limitation to some extent.
The above ways are not able to effectively solve the
issue of web service selection with global QoS
constraints. This kind of issues is NP-hard [13].
GA is more suitable for solving these issues. But
GA can play an important role only when the
combinatorial size is very large. In [10], some
numerical simulations show that Integer
Programming outperforms GA if the combinatorial
size is small. In their opinion, GAs should be
preferred instead of Integer Programming in the

case of widely used services, such as hotel booking,
weather services or ecommerce services, etc. On
the other hand, Integer Programming is to be
preferred in the case of very specific (e.g., scientific
computation) services. Two different GAs were
proposed in [9], [15].
In [15], binary strings of chromosome were
proposed for service selection. Every gene in
chromosome represented a service candidate with
values 0 and 1. Thereby, the more the number of
service candidates or web service clusters was, the
longer chromosome was. Since only single service
candidate could be selected in each of web service
clusters, only one gene was 1 and others were 0 in
all genes of every cluster. When the number of
component services and the number of candidate
services of each component service are all very big,
the length of genome will be very long. This kind
of manner resulted in poor readability. Further, the
authors only proposed the coding manner of
chromosome for service selection with little further
consideration of the rest parts of genetic algorithm,
such as selection mechanism.

3. SEARCHING FOR A SOLUTION WITH
GENETIC ALGORITHMS

Differently from other approaches proposed in
literature, such as linear integer programming, GAs
do not impose constraints on the linearity of the
QoS composition operators (and thus of objective
function and constraints). This Permits the use of
our approach for all possible (even customized)
QoS attributes, without the need for linearization.
To let the GA search for a solution of our problem,
we first need to encode the problem with a suitable
genome. In our case, the genome is represented by
an integer array with a number of items equals to
the number of distinct abstract services composing
our service. Each item, in turn, contains an index to
the array of the concrete services matching that
abstract service. Figure 1 gives a better idea of how
the genome is made.
The crossover operator is the standard two-point
crossover, while the mutation operator randomly
selects an abstract service (i.e., a position in the
genome) and randomly replaces the corresponding
concrete service with another one among those
available.

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

12

Figure 1: Genome Encoding

The problem can now be modeled by means of a
fitness function and, eventually, some constraints.
The fitness function needs to maximize some QoS
attributes (e.g., reliability), while minimizing others
(e.g., cost). When user {Denoted, domain} specific
QoS attributes are used, the specification of the
fitness function is left to the workflow designer.

3.1. Fitness Function

 To select the best combination according with
global QoS constraints, a fitness function was
provided in [4]. The function can express end users’
favoritism concerning QoS by means of weight
factors. It ensured that the individual disobeying the
constraints can be selected proportionally into the
next generation population so as to maintain
population diversity. The following is the definition
of fitness function. Some QoS models and QoS
computation formulas for composite service were
available in [14], [9]. But, via comparison in
experiments, the optimal solution based on the QoS
computation formula in [9] is better than the one
based on [14]. Consequently, the QoS computation
formula in [9] is adopted, and an objective function
is defined in formula (1):

)(

)(

k
k

k

j
jj

wQ

wQ

f
∑

∑
×

×

= (1)

where wj, wk Є [0, 1], and wj, wk are real positive
weight factors, and represent the weight of criterion
j and k for which end users show their favoritism
concerning QoS by providing values respectively.
The sum of them is 1. Qj and Qk denote the sum of
QoS values of the individual j and k, respectively.

End users usually assert their function requirements
as well as global constraints, e.g. Cost < 60, Time <
150. The individual whose QoS violates the
constraints will be rejected in [9]. However, this
approach belongs to absolute rejection. It influences
population diversity seriously and always results in
a local optimal solution. The individual disobeying
the constraints should be selected proportionally
into the next generation population on a basis of a
certain technique. The most common method is
penalty technique for constrained optimization
problems. Hereby, a fitness function with penalty
character is defined in formula (2):

2

1
)()(∑

=
−

∆
−=

n

j jMinjMax

j

RR

P
fgFit λ (2)

Where RjMax, RjMin are the maximum value and the
minimal value of the no.j quality constraint
respectively, n is the number of quality constraints,
k is a parameter used to adjust the scale of penalty
value. Pj represents the calculation value of a Qi or
some Qis. The following formula (3) is the
definition of ∆Pj:

⎪
⎪
⎩

⎪⎪
⎨

⎧

<−

≤≤

>−

=∆

jMinjjMax

jMax

jMaxjjMaxj

j

RifPR

Rif

RifRP

P

j

jjMin

P

PR 0

P

 (3)

3.2. Enhanced Initial Population Policy

During evolution, initial population is the
predecessor of all successor populations. If all
chromosomes in the initial population have very
high fitness, the probability for child chromosomes
to have high fitness will be high and global optimal
solution will be possibly obtained and convergence
time will be probably shortened. It is also possible
to avoid prematurity situation. Therefore, it is the
basis to obtain better convergence. It has an
important influence on the final convergence.
Hence, an optimized initial population can
effectively overcome slow convergence. On the
basis of the above, the value of every gene in the
initial chromosome will be selected in order that
every initial chromosome has high fitness.
Meanwhile, every path should have its
chromosomes in the initial population so as to have
the ability to search every path and obtain the
global optimal solution. The following is the
proposed policy.

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

13

The value of every task in every chromosome is set
according to a local optimized method. The value
of every task is QoS value of selected candidate
service. The larger QoS value of a candidate service
is, the larger the probability to be selected is. The
QoS model in [14] is used to calculate QoS value of
every candidate service. The probability of one
candidate to be selected is the result of its QoS
value divided by the sum of QoS values of all
candidates of same task. The ‘‘roulette wheel
selection” is the mechanism to select candidates of
every task. The chromosome will have high QoS
value after every task has high QoS value. So, the
chromosome will have high fitness. The result is
that every chromosome has so high fitness value
that entire population has very high fitness value.
From the above, the special initial population
becomes the basis to get higher fitness during the
later evolution.

3.3. Hybrid Genetic Algorithm–Tabu Search
Approach for Optimizing

Tabu search is a "higher level" heuristic procedure
for solving optimization problems, designed to
guide other methods (or their component processes)
to escape the trap of local optimality. Tabu search
has obtained optimal and near optimal solutions to
a wide variety of classical and practical problems in
applications ranging from scheduling to
telecommunications and from character recognition
to neural networks. It uses flexible structures
memory (to permit search information to be
exploited more thoroughly than by rigid memory
systems or memory less systems), conditions for
strategically constraining and freeing the search
process (embodied in Tabu restrictions and
aspiration criteria), and memory functions of
varying time spans for intensifying and diversifying
the search (reinforcing attributes historically found
good and driving the search into new regions).Tabu
search can be integrated with genetic algorithm and
it has the ability to start with a simple
implementation that can be upgraded over time to
incorporate more advanced or specialized elements.
 Using Tabu search, search space of genetic
algorithm is increased. In this problem, after using
crossover and mutation operator in each iteration of
evolution, the chromosome with best fitness is
selected as Tabu and added to Tabu list.
Chromosomes in Tabu list have an aspiration time.
In each iteration, aspiration time is decreased. If the
value of aspiration time of each chromosome in
Tabu list becomes zero, it is deleted from this list
and added to aspiration list. After finding Tabu,
chromosomes in current population that are similar

to Tabu are replaced with the chromosome in
aspiration list. If aspiration list was empty this
chromosome replaced with chromosomes in last
population with smallest fitness value. Using this
replace, diversity of population increase. And
genetic algorithm can search more space.
Therefore, genetic algorithm survives from the trap
of local optimality.
Hitherto, some important elements in the GA for
QoS-driven web services selection have been
proposed. Here, the structure of the GA is available
in sequence as Fig. 2.

Figure 2: Hybrid GA_Tabu search flowchart

4. Comparing Hybrid GA_Tabu Search With
GA

As a case study for comparison, we considered a
workflow containing 7,10,15,20 distinct abstract
services. For each abstract service, we considered 5
available concrete services. Then, we compared the
performance of GAs and hybrid GA–Tabu search
as follows: For both approach we compared the
fitness of best chromosome for 200 times running
of these approaches. In Fig. 3, population size was
200, crossover probability was 0.7, and mutation
probability was 0.1. These two approaches were
implemented in .net.
Both approaches were executed 200 times, and then
the average values were computed.

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

14

Average Value of Fitness Algorithm

0.94710825 Proposed approach
0.789092379 SGA(standard GA)

1 best fitness

Average Value of Fitness Algorithm

0.900964 Proposed approach
0.737892 SGA(standard GA)

1 best fitness

Average Value of Fitness Algorithm

11.60794 Proposed approach
9.55836 SGA(standard GA)

Average Value of Fitness Algorithm

10.9129 Proposed approach
8.745199 SGA(standard GA)

Figure 3: Evolution of fitness parameters

The lesson learned from our experimentation is
basically that, using hybrid GA–Tabu search the
composition with better fitness can be found. And
global constraints are considered. So the selected
composition is in close connection with user wants.

5. CONCLUSIONS

This paper proposed a hybrid GA–Tabu search
approach for QoS_aware service composition, i.e.,
to determine a set of concrete services to be bound
to abstract services contained in a composition to
meet a set of constraints and to optimize fitness
criterions on QoS attributes. Compared with GA,
this approach increase diversity of population and
cause more space of search domain is searched and
escaped the trap of local optimality. Using this
approach the composition with better fitness value
is found.

REFERENCES:

[1] G. Alonso, F. Casati, H. Kuno, and V.

Machiraju, “Web Services”, In Springer Verlag,
2002.

[2] “Web Services Architecture Requirements
Working Group”, http://www.w3.org/TR/wsa-
reqs, 2004.

[3] F. Casati , and M.-C. Shan, “Dynamic and
Adaptive Composition of E-Services”, In
Information Systems, vol. 26, no. 3, May, 2001,
pp. 143- 162.

[4] Z. Cheng-Wen, S. Sen, C. Jun-Liang, “Efficient
population diversity handling genetic algorithm
for QoSaware web service selection”, In ICCS
(International Conference on Computational
Science), England, 2006, Part IV, LNCS 3994,
Springer-Verlag, Berlin, pp. 104–111.

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

15

[5] B. Benatallah , M. Dumas , Q.Z. Sheng , and
A.H. Ngu , “Declarative Composition and Peer-
to-Peer Provisioning of Dynamic Web
Services”, In Proc. Int’l Conf. Data Eng.
(ICDE) , Feb, 2002, pp. 297-308.

[6] D.A Menasce´, “QoS issues in web services”, In
IEEE Internet Computing 6 (6) 72–75, 2002.

[7] D.A. Menasce´, Composing web services: a
QoS view, In IEEE Internet Computing 8 (6)
88–90, 2004.

[8] B. Medjahed, A. Bouguettaya, and A.K.
Elmagarmid, “Composing Web Services on the
Semantic Web”, In the VLDB J., vol. 12, no. 4,
2003, pp. 333-351.

[9] G. Canfora, M. Di Penta, R. Esposito, M.L.
Villani, “A lightweight approach for QoS–
aware service composition”, Proceedings of the
2nd International Conference on Service
Oriented Computing (ICSOC’04), New York,
USA,pp. 36–47, 2004.

[10] G. Canfora, M. Di Penta, R. Esposito, et al.,
“An approach for QoS-aware service
composition based on genetic algorithms”, In
Genetic and Evolutionary Computation
Conference (GECCO), vol. 1, Washington DC,
USA, pp.1069–1075, 2005.

[11] ISO 8402, “Quality management and quality
assurance –vocabulary”, 1994.

[12] ITU-T Recommendation E.800, “Terms and
definitions related to quality of service and
network performance including dependability”,
1994.

[13] M. Srinivas, L.M. Patnaik, “Genetic algorithm:
a survey”, In IEEE Computer 27 (6) 17–26,
1994.

[14] Z. Liang-Zhao , B. Boualem , et al.,2004 .
QoS-aware middleware for web services
composition”, In IEEE Transactions on
Software Engineering 30 (5) 311–327.

[15] Z. Liang-Jie , L.Bing, C. Tian , et al, “On
demand web services-based business process
composition”, In IEEE International
Conference on System, Man, and Cybernetics
(SMC’03), Washington, USA, pp. 4057–4064,
2003.

[16] F. Curbera, et al., “Unraveling the Web
Services: An Introduction to SOAP, WSDL, and
UDDI”, In IEEE Internet Computing, vol. 6, no.
2, Mar./Apr, 2002.

