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ABSTRACT 
 

Web services are rapidly changing the landscape of software engineering. One of the most interesting 
challenges introduced by web services is represented by Quality of Service (QoS) _aware composition and 
late binding. This allows to bind, at run-time, a service oriented system with a set of services that, among 
those providing the required features, meet some nonfunctional constraints, and optimize criteria such as 
the overall cost or response time. In other words, QoS_aware composition can be modeled as an 
optimization problem. We propose to adopt Genetic Algorithms to this aim. In order to increase the 
performance of genetic algorithm we use Tabu search. By using Tabu search ultimately a kind of 
composition is selected which is in close connection with user wants. 
Keywords: Web Service Composition, Genetic Algorithm, Tabu Search 

 
1. INTRODUCTION  
 
Web services are autonomous software systems 
identified by URIs which can be advertised, 
located, and accessed through messages encoded 
according to XMLbased standards (e.g., SOAP, 
WSDL, and UDDI [16]) and transmitted using 
Internet protocols [2]. Web services encapsulate 
application functionality and information resources 
and make them available through programmatic 
interfaces, as opposed to the interfaces provided by 
traditional Web applications which are intended for 
manual interactions. In addition, since they are 
intended to be discovered and used by other 
applications across the Web, Web services need to 
be described and understood both in terms of 
functional capabilities and Quality of Service (QoS) 
properties. 
The emergence of Web services (e.g., for order 
procurement, finance, accounting, human 
resources, supply chain, and manufacturing) has 
created unprecedented opportunities for 
organizations to establish more agile and versatile 
collaborations with other organizations. Widely 
available and standardized Web services make it 
possible to realize Business-to-Business 

Interoperability (B2Bi) by inter-connecting Web 
services provided by multiple business partners 
according to some business process: a practice 
known as Web Services Composition [9], [5], [1], 
[8]. For example, an integrated financial 
management Web service can be created by 
composing more specialized Web services for 
payroll, tax preparation, and cash management. 
A composite service has specific functions that can 
be divided into some component functions. These 
component functions can be accomplished by some 
component services respectively. An example of 
web service composition was shown in Fig. 3 of 
[15]. The dependencies among component 
functions were represented with the state charts in 
[14]. Some candidate services (concrete services) 
with same functions and different values of QoS 
attributes are discovered for every task (abstract 
services). Thus, there are various composite plans 
for each execution path of composite service. 
Moreover, since the number of concrete services 
with same functions and different values of QoS 
attributes is increasing with the proliferation of web 
service, the composite size should be larger and 
larger. For example, in one execution path, there 
are 10 component functions in this composite path, 
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and 15 candidate web services for each component 
function. In this kind of composition scenario, the 
composite size should be about 1510. Since web 
service requesters always have both functional 
requirements and global QoS requirements, it is 
needed to select concrete services for a given task 
to get the best composite plan and maximize user 
satisfaction (here, the word ‘‘best” means that the 
composite plan has the optimum QoS property 
values). Web service selection with global QoS 
constraints plays an important role in web service 
composition [6]-[7]. 
The remainder of this paper is organized as follows. 
After a review of the literature of QoS-aware web 
services selection using QoS computation in 
Section 2, searching for a solution with Genetic 
Algorithms in section 3, Section 4 reports and 
discusses results obtained in the simulations. 
Finally, Section 5 concludes. 

2. QUALITY COMPUTATION BASED 
SELECTION OF WEB SERVICES 

According to Std. ISO 8402 [16] and ITU E.800 
[12], QoS may include a number of non-functional 
properties such as price, response time, availability 
and reputation. Thus, QoS value of a composition 
service can be achieved by fair computation of QoS 
of every component service. In this section, some 
traditional optimization techniques [3], [14], [13] 
and Genetic Algorithm (GA) [9], [10], [15] are 
discussed in detail. 
The QoS computation based on QoS matrix is a 
representative solution. In [13], web services were 
ranked by means of normalizing QoS matrix. 
However, it was only a local optimization 
algorithm but not a global one for service selection. 
Other works in the area of QoS computation 
include [13]-[14], which proposed local 
optimization and global planning. The local 
optimization approach could not take global QoS 
constraints into consideration. When the size of 
composite service is very large, for example 1510, 
the overhead of global planning is quite enormous. 
Hereby, both had limitation to some extent. 
The above ways are not able to effectively solve the 
issue of web service selection with global QoS 
constraints. This kind of issues is NP-hard [13].  
GA is more suitable for solving these issues. But 
GA can play an important role only when the 
combinatorial size is very large. In [10], some 
numerical simulations show that Integer 
Programming outperforms GA if the combinatorial 
size is small. In their opinion, GAs should be 
preferred instead of Integer Programming in the 

case of widely used services, such as hotel booking, 
weather services or ecommerce services, etc. On 
the other hand, Integer Programming is to be 
preferred in the case of very specific (e.g., scientific 
computation) services. Two different GAs were 
proposed in [9], [15].  
In [15], binary strings of chromosome were 
proposed for service selection. Every gene in 
chromosome represented a service candidate with 
values 0 and 1. Thereby, the more the number of 
service candidates or web service clusters was, the 
longer chromosome was. Since only single service 
candidate could be selected in each of web service 
clusters, only one gene was 1 and others were 0 in 
all genes of every cluster. When the number of 
component services and the number of candidate 
services of each component service are all very big, 
the length of genome will be very long. This kind 
of manner resulted in poor readability. Further, the 
authors only proposed the coding manner of 
chromosome for service selection with little further 
consideration of the rest parts of genetic algorithm, 
such as selection mechanism. 

3. SEARCHING FOR A SOLUTION WITH 
GENETIC ALGORITHMS  

Differently from other approaches proposed in 
literature, such as linear integer programming, GAs 
do not impose constraints on the linearity of the 
QoS composition operators (and thus of objective 
function and constraints). This Permits the use of 
our approach for all possible (even customized) 
QoS attributes, without the need for linearization.  
To let the GA search for a solution of our problem, 
we first need to encode the problem with a suitable 
genome. In our case, the genome is represented by 
an integer array with a number of items equals to 
the number of distinct abstract services composing 
our service. Each item, in turn, contains an index to 
the array of the concrete services matching that 
abstract service. Figure 1 gives a better idea of how 
the genome is made. 
The crossover operator is the standard two-point 
crossover, while the mutation operator randomly 
selects an abstract service (i.e., a position in the 
genome) and randomly replaces the corresponding 
concrete service with another one among those 
available. 
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Figure 1: Genome Encoding 

 
 
The problem can now be modeled by means of a 
fitness function and, eventually, some constraints. 
The fitness function needs to maximize some QoS 
attributes (e.g., reliability), while minimizing others 
(e.g., cost). When user {Denoted, domain} specific 
QoS attributes are used, the specification of the 
fitness function is left to the workflow designer. 

3.1. Fitness Function 

 To select the best combination according with 
global QoS constraints, a fitness function was 
provided in [4]. The function can express end users’ 
favoritism concerning QoS by means of weight 
factors. It ensured that the individual disobeying the 
constraints can be selected proportionally into the 
next generation population so as to maintain 
population diversity. The following is the definition 
of fitness function. Some QoS models and QoS 
computation formulas for composite service were 
available in [14], [9]. But, via comparison in 
experiments, the optimal solution based on the QoS 
computation formula in [9] is better than the one 
based on [14]. Consequently, the QoS computation 
formula in [9] is adopted, and an objective function 
is defined in formula (1): 
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where wj, wk Є [0, 1], and wj, wk are real positive 
weight factors, and represent the weight of criterion 
j and k for which end users show their favoritism 
concerning QoS by providing values respectively. 
The sum of them is 1. Qj and Qk denote the sum of 
QoS values of the individual j and k, respectively. 

End users usually assert their function requirements 
as well as global constraints, e.g. Cost < 60, Time < 
150. The individual whose QoS violates the 
constraints will be rejected in [9]. However, this 
approach belongs to absolute rejection. It influences 
population diversity seriously and always results in 
a local optimal solution. The individual disobeying 
the constraints should be selected proportionally 
into the next generation population on a basis of a 
certain technique. The most common method is 
penalty technique for constrained optimization 
problems. Hereby, a fitness function with penalty 
character is defined in formula (2): 
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Where RjMax, RjMin are the maximum value and the 
minimal value of the no.j quality constraint 
respectively, n is the number of quality constraints, 
k is a parameter used to adjust the scale of penalty 
value. Pj represents the calculation value of a Qi or 
some Qis. The following formula (3) is the 
definition of ∆Pj: 
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3.2. Enhanced Initial Population Policy 

During evolution, initial population is the 
predecessor of all successor populations. If all 
chromosomes in the initial population have very 
high fitness, the probability for child chromosomes 
to have high fitness will be high and global optimal 
solution will be possibly obtained and convergence 
time will be probably shortened. It is also possible 
to avoid prematurity situation. Therefore, it is the 
basis to obtain better convergence. It has an 
important influence on the final convergence. 
Hence, an optimized initial population can 
effectively overcome slow convergence. On the 
basis of the above, the value of every gene in the 
initial chromosome will be selected in order that 
every initial chromosome has high fitness. 
Meanwhile, every path should have its 
chromosomes in the initial population so as to have 
the ability to search every path and obtain the 
global optimal solution. The following is the 
proposed policy. 



Journal of Theoretical and Applied Information Technology 

© 2005 - 2009 JATIT. All rights reserved.                                                                      
 

www.jatit.org 

 
13 
 

The value of every task in every chromosome is set 
according to a local optimized method. The value 
of every task is QoS value of selected candidate 
service. The larger QoS value of a candidate service 
is, the larger the probability to be selected is. The 
QoS model in [14] is used to calculate QoS value of 
every candidate service. The probability of one 
candidate to be selected is the result of its QoS 
value divided by the sum of QoS values of all 
candidates of same task. The ‘‘roulette wheel 
selection” is the mechanism to select candidates of 
every task. The chromosome will have high QoS 
value after every task has high QoS value. So, the 
chromosome will have high fitness. The result is 
that every chromosome has so high fitness value 
that entire population has very high fitness value. 
From the above, the special initial population 
becomes the basis to get higher fitness during the 
later evolution. 

3.3.  Hybrid Genetic Algorithm–Tabu Search 
Approach for Optimizing 

Tabu search is a "higher level" heuristic procedure 
for solving optimization problems, designed to 
guide other methods (or their component processes) 
to escape the trap of local optimality. Tabu search 
has obtained optimal and near optimal solutions to 
a wide variety of classical and practical problems in 
applications ranging from scheduling to 
telecommunications and from character recognition 
to neural networks. It uses flexible structures 
memory (to permit search information to be 
exploited more thoroughly than by rigid memory 
systems or memory less systems), conditions for 
strategically constraining and freeing the search 
process (embodied in Tabu restrictions and 
aspiration criteria), and memory functions of 
varying time spans for intensifying and diversifying 
the search (reinforcing attributes historically found 
good and driving the search into new regions).Tabu 
search can be integrated with genetic algorithm and 
it has the ability to start with a simple 
implementation that can be upgraded over time to 
incorporate more advanced or specialized elements. 
 Using Tabu search, search space of genetic 
algorithm is increased. In this problem, after using 
crossover and mutation operator in each iteration of 
evolution, the chromosome with best fitness is 
selected as Tabu and added to Tabu list. 
Chromosomes in Tabu list have an aspiration time. 
In each iteration, aspiration time is decreased. If the 
value of aspiration time of each chromosome in 
Tabu list becomes zero, it is deleted from this list 
and added to aspiration list. After finding Tabu, 
chromosomes in current population that are similar 

to Tabu are replaced with the chromosome in 
aspiration list. If aspiration list was empty this 
chromosome replaced with chromosomes in last 
population with smallest fitness value. Using this 
replace, diversity of population increase. And 
genetic algorithm can search more space. 
Therefore, genetic algorithm survives from the trap 
of local optimality. 
Hitherto, some important elements in the GA for 
QoS-driven web services selection have been 
proposed. Here, the structure of the GA is available 
in sequence as Fig. 2. 
 

 
Figure 2: Hybrid GA_Tabu search flowchart 

4. Comparing Hybrid GA_Tabu Search With 
GA  

As a case study for comparison, we considered a 
workflow containing 7,10,15,20 distinct abstract 
services. For each abstract service, we considered 5 
available concrete services. Then, we compared the 
performance of GAs and hybrid GA–Tabu search 
as follows: For both approach we compared the 
fitness of best chromosome for 200 times running 
of these approaches. In Fig. 3, population size was 
200, crossover probability was 0.7, and mutation 
probability was 0.1. These two approaches were 
implemented in .net. 
Both approaches were executed 200 times, and then 
the average values were computed. 
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Average Value of Fitness Algorithm 

0.94710825 Proposed approach 
0.789092379 SGA( standard GA) 

1 best fitness 

 
Average Value of Fitness Algorithm 

0.900964 Proposed approach 
0.737892 SGA( standard GA) 

1 best fitness 

 
Average Value of Fitness Algorithm 

11.60794 Proposed approach 
9.55836 SGA( standard GA) 

 
 
 

 
Average Value of Fitness Algorithm 

10.9129 Proposed approach 
8.745199 SGA( standard GA) 

 
Figure 3: Evolution of fitness parameters 

 
The lesson learned from our experimentation is 
basically that, using hybrid GA–Tabu search the 
composition with better fitness can be found. And 
global constraints are considered. So the selected 
composition is in close connection with user wants. 
  
5.  CONCLUSIONS 
 
This paper proposed a hybrid GA–Tabu search 
approach for QoS_aware service composition, i.e., 
to determine a set of concrete services to be bound 
to abstract services contained in a composition to 
meet a set of constraints and to optimize fitness 
criterions on QoS attributes. Compared with GA, 
this approach increase diversity of population and 
cause more space of search domain is searched and 
escaped the trap of local optimality. Using this 
approach the composition with better fitness value 
is found.  
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