
Journal of Theoretical and Applied Information Technology
15th May 2021. Vol.99. No 9
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1943

CURRENT ISSUES AND METHODS OF EVENT
PROCESSING IN SYSTEMS WITH EVENT-DRIVEN

ARCHITECTURE

1VALERII VLADIMIROVICH PETROV, 2ANNA VICTOROVNA GENNADINIK, 1,3ELENA
YUREVNA AVKSENTIEVA, 1KONSTANTIN VLADIMIROVICH BRYUKHANOV

1Faculty of Software Engineering and Computer Engineering, ITMO University, Kronverksky Pr., 49,

Saint-Petersburg, 197101, Russia
2Department of Computer Science, Hamburg University of Applied Sciences, Berliner Tor, 5, Hamburg,

20099, Germany
3Information Technology and E-Learning Department, The Herzen State Pedagogical University of Russia,

Moika Emb., 48, Saint-Petersburg, 191186, Russia

E-mail: mu_valera@mail.ru

ABSTRACT

Systems and methods of event processing are used in many large-scale research projects of European
Organization for Nuclear Research, major IT and financial corporations, IoT and many other companies for
development of event-driven architectures. Scenarios of application of methods and systems of event
processing are numerous, they become more and more popular every year, but part of the mentioned systems
is limited due to common event processing issues. Therefore, the issues occurring upon event processing
have been studied. This work analyzes the notions of event processing, event processing methods, history of
the subject field, urgent issues of event processing methods. In addition, the approaches to their solution are
proposed, differences in event processing methods are exemplified, drawbacks of the methods are
highlighted. This work analyzes the following problems, which can occur while designing event processing
system: processing of out-of-sequence events; occurrence of duplicates; collision upon event processing;
distributed fault-tolerant architecture; multi-threaded event processing; adaptive circuits of load balancing;
monitoring of event processing application. Each aforementioned problem is briefly described. Several
compromise solutions are discussed and tested with the usage of the test bench; it’s aimed at smoothing of
consequences of the application of the existing approaches. Some of the methods could lead to the
performance degradation. For research purposes were initiated Fuzzy testing for tracking the potential failures
and recoveries.

Keywords: Event Processing, Complex Event Processing, Stream Event Processing, Event Tracing

1. INTRODUCTION

Event processing is a method of tracking and
processing streams of data about events. This work
considers urgent issues of event processing in
systems with event-driven architecture and their
optimum solutions. Event processing is applied in
many fields, such as Monitoring, IoT, Security,
Payment Processing, Big Data, and others. Event
processing is applied in the fields, which require
online response to input data flow and data
processing with minimum delays.

Event processing becomes more and more popular
due to data amount increasing in geometric
sequence. These data should be processed, analyzed,

and certain regularities should be determined. This
subject is closely connected with the methods and
techniques of machine learning as well as with the
approaches to data analysis. In addition, processing
and response to events are used in design of event-
driven architecture of software.

Depending on the applied scenarios, various
problems can occur upon design and operation of
event processing systems. Respectively, various
approaches or their combination should be used to
balance these problems.

Prior to review the subject field, it would be
appropriate to define the notions of event and event
processing.

Journal of Theoretical and Applied Information Technology
15th May 2021. Vol.99. No 9
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1944

In general case, an event is everything that occurs
or is considered as occurring, for instance, financial
transaction or aircraft landing [1].

In informatics, an event (object of event,
message, array) is the object being the record for
subsequent processing by system [2], for instance,
payment entry, E-mail confirmation of aircraft
landing.

Event processing is the procedure, which
analyzes various methods of data processing
concerning events.

This procedure is subdivided into four methods of
data processing: Complex Event Processing; Stream
Event Processing; Cognitive Event Processing;
Hybrid Event Processing.

This work is an integrated study, since it includes
analysis of the subject area in the first section and
analysis of problems occurring upon design and
operation of event processing systems in the second
section.

The result of the study is the determination of
problems occurring upon design and operation of
systems with event-driven architecture and the most
optimum methods of their solution.

2. LITERATURE REVIEW

The issues of event processing are important in

modern information society with developed IT
infrastructure, which generates huge data arrays. D.
Luckham should be mentioned, since he pioneered
the field of event processing. His works [1-3]
established initial aspects for development of event
processing systems and event-driven architecture.

All the related works mentioned in this section
were selected for study by the following criteria:

 the main research interest in work should be
an issue in event processing;

 this issue should be connected to this study;
 work should include at least 3 variational

approaches for challenging the issue.
Foreign researchers concentrate their attention on

the issues of development of highly available
architecture [4-6], distributed architecture [7-9].

Proletarskii A.V., Berezkin D.V., Gapanyuk
Yu.E., Kozlov I.A., Popov A.Yu., Samarev R.S.,
Terekhov V.I. paid attention to the methods of
situational analysis and visualization of data flows
[10, 11], J. Lang and Z. Capík analyzed forecasting
on the basis of hybrid methods upon processing of
complex events [12, 13].

The issues of data balancing in event processing
systems were discussed by N. Zacheilas, N.
Zygouras, N. Panagiotou, V. Kalogeraki, and D.
Gunopulos, M. A. U. Nasir, G. F. Morales, D.

Garcia-Soriano, N. Kourtellis, M. Serafini:
balancing of high data amount upon distributed
stream processing [14], load balancing for
mechanisms of distributed stream data processing
[15].

Monitoring of event processing systems was
discussed by M. R.N. Mendes, P. Bizarro, P.
Marques: studying performance of event processing
systems [16], measuring of performance of systems
of complex event processing [17, 18].

Current issues in CEP were also discussed by I.
Flourisa et al. [19], ordering in event processing
systems was discussed by M. Li et al. [20], parallel
complex event processing was discussed by M.
Hirzel [21].

The hypothesis of this research is that a
combination of the event processing approaches may
lead not only to the increased performance of the
system but to the degradation of the whole it and to
increase the time to recovery it. Worth noting that
most of the problems with the event processing
system can be avoided at the phase the pre-
architectural design.

An event processing system with event-driven
architecture was considered as the object of research,
methods of event processing were considered as the
subject of research to provide high availability, load
balancing, monitoring, correct event processing,
event processing with minimum delays.

3. MATERIALS AND METHODS

This work was based on practical experience,
multi-year research, and registered patents in the
following fields: Complex event processing; Stream
event processing [22, 23]; Cognitive event
processing [24-27].

The mentioned above patterns were chosen as a
reference because it contains:

 Complex Event Processing;
 Multi-Worker Processing;
 Integrations with external systems.

These criteria are extremely important, because
the modern event processing system consists at least
2 mentioned criteria.

It was proved on practical and scientific level in
[3, 5, 25, 28], that application of event processing
system could solve various problems of big data
processing with minimum delays, i.e. in online
mode.

A portion of the considered methods was verified
using test bench. Notifications from various
monitoring systems were used as event with their
subsequent processing by system. The overall

Journal of Theoretical and Applied Information Technology
15th May 2021. Vol.99. No 9
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1945

processing pipeline have included the 4 following
layers:

 Normalization;
 Enrichment;
 Correlation;
 Presentation.

For test purposes, all events have been tagged
with the appropriate worker name and timestamp to
track the event processing performance. Also, were
performed a Fuzzy testing for the all pipeline to
imitate the potential failure and recovery.

4. RESULTS

This work is aimed at the determination of

problems occurring upon the design and operation of
systems with event-driven architecture and the
methods of their solution.

Approaches to complex event processing were
developed in Stanford University from 1989 to 1995
in order to analyze event-driven simulation of
distributed systems.

These investigations started from development of
new language Rapide, which was intended for
simulation of events in distributed systems
controlled by events.

Complex event processing (CEP) is the method
of tracing and processing of data stream from
numerous sources of events in order to identify the
most significant events or their combination and
making decisions in real time [2].

At the same time, the main features of CEP are
highlighted: events in distributed systems can occur
independently on each other; they can occur both
simultaneously and at different time; occurrence of
one event can result in occurrence of another event.

Event stream processing (ESP) is the processing
of events arranged in time and continuously
supplemented by new data [2].

The ESP can be exemplified as follows: payment
processing; detection of fraudulent activity;
detection of abnormalities; metrics processing.

ESP is usually applied, when the application
scenario requires for processing of data points
distributed along the time scale. The order and
distribution of data along the time scale allow to
analyze trends, to search for similar and repeated
events, thus enabling highlighting of a data stratum
important for final user.

Both approaches, CEP and ESP, are required for
efficient solution to different problems.

Their difference is as follows: if it is required to
analyze data stream online, then ESP is more
suitable for such problem. However, if it is required

to process event cloud, then CEP is more suitable
[29].

The main difference of event flow from cloud is
that the event flow is arranged in time (for instance,
quotation of securities market). In the cloud, events
are generated due to operation of numerous systems
in various components of information systems. The
event cloud can contain several event streams. Event
stream is a peculiar type of cloud.

Cognitive event processing is the method of
event processing, which uses cognitive approaches
to expat potentials of CEP systems, this method is
based on cognitive calculations [30].

Cognitive calculations are comprised of forecasts
of certain events or event groups using methods and
models of machine learning [30].

Machine learning models which are used for
cognitive event processing: Decision tree; Bayesian
classification; Neural networks; Genetic
programming; Support vector machines; Symbolic
regression.

Decision tree is one of the basic techniques. It
contains simple rules, which can be expressed in
natural language. This method is the most suitable
for forecasts by repeated data.

Neural networks are one of the methods
characterized by universal functions of
approximation due to capability to compare input
and output data. They can be subdivided into various
methods of learning, network topology, etc.
Successful scenarios of neural networks imply
forecasts not of precise values but of definite
differential vector (for instance, price increase or
drop).

Genetic programming involves attempt to present
operation of genetic algorithms during evolution.
This is the process of population selection, when
more adapted generations have more chances for
reproduction. In this case, the fitness function is used
for population improvement.

Support vector machine is a field of machine
learning, which is the most suitable for classification
as well as for forecast of linear and nonlinear data.

Hybrid event processing (HEP) is the method of
event processing, combining peculiarities of other
methods of event processing [13]. Such method of
event processing is intended for complex geo-
distributed systems with adaptive load balancing; it
is applied when certain scenarios cannot be
implemented using one of the methods of event
processing. As a rule, development of event
processing system starts from definition of the event
model structure.

Event model structure

Journal of Theoretical and Applied Information Technology
15th May 2021. Vol.99. No 9
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1946

A single established definition of event model
structure is unavailable, most authors interpret this
term in different ways. In [6] the structure is
described as a tuple e=<s,t>, where e is the
considered event, s is its attributes, t is the list of time
marks.

When the event model structure is defined, it is
required to determine how the events will be selected
from event stream/cloud and what model will be
used for detection of events.

At this step, the model could face the following
problems: event order in the stream was violated;
duplicates exist in the event stream.

There are several methods to solve the problem
with out of order events:

Creation of special buffer: buffer stores all input
events until definite condition preset by user is
satisfied. Then the buffer content is sorted in terms
of definite key and redirected for further processing.
The main drawback of this approach is that when the
number of events increases, the buffer increases
accordingly, thus, the delays of event processing will
also increase. The K-slack algorithm can also be
applied. The key concept of this method is that event
processing can be delayed by maximum of K time
units with subsequent sorting by time mark. This
method can be efficiently applied in the case of
insignificant network delays. In the case of
significant delays, the buffer will be deallocated also
with delays.

Another approach is development of logics, when
such events could be neglected. As a rule, such
approach is very limited in terms of scenarios of its
use, moreover, it could significantly complicate the
other logics of operation of event processing system
and lead to increase in expenses for maintenance of
such system as well as to increase in the number of
errors due to general complexity of the system.

The problem of existence of duplicates in the
event stream can be solved using the following
methods of event processing:

The simplest possible method is ID generation by
several fields [31, 32], including timestamp of the
event. Herewith, the deduplication would require for
presence of all events in one place. Therefore, it
would be reasonable to direct and to filter event

stream from one source which generates the events
in order to facilitate operation of the deduplication
and to provide opportunity for further distributed
architecture design. The main drawback of this
method is that in the case of large stream of input
events, the buffer could be overfilled. All depends on
scenarios of use, amount of input events, and
possibility of existence of duplicates in the system.

As a rule, the following thresholds are set for
buffer cleaning from events: in terms of number of
events in the buffer; of time; of ratio of occupied to
free memory.

During operation of event processing system, it
was revealed that collisions could occur. Collisions
upon event processing can occur in the case of: data
replication; use of multi-threaded processing.

Collisions upon data replication can be caused by
different reasons: asynchronous replication; delay in
data delivery.

Collisions upon asynchronous replication can
occur in the case of simultaneous access to one and
the same object at one and the same time. Such
collision can be resolved by blocking or optimistic
concurrency. In the case of blocking, the object is
blocked until termination of the previous operation.
In the case of optimistic concurrency, the record is
read with fixation of number of object version and
subsequent verification is performed upon
recording: whether the object version has changed.
Delays in data delivery could occur upon network
unavailability, loss of packages, failure of packages.
They can be avoided by decreasing the distance
between objects as well as by minimization of
number of network devices connecting server group.
In the case of multi-threaded event processing,
collisions are possible when different streams
process and update simultaneously the event, which
was stored in the state of event processing system.
This problem can be smoothed by means of the
following approach: all events from one essence can
be processed only in the frames of one stream. The
disadvantage of this approach is as follows: in the
case of high stream of events, the approach will be
inefficient due to artificially limited parallelism
(Figure 1).

Journal of Theoretical and Applied Information Technology
15th May 2021. Vol.99. No 9
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1947

Figure 1: Performance of Multi-Threaded vs Single-Threaded Approach

Distributed and fault tolerant architecture of event

processing system can be developed using the
following main and general recovery methods after
failure: Precise Recovery; Rollback recovery; Gap
recovery.

Precise recovery nearly ideally hides
consequences of fault, including possible delays
upon data processing. This method is suitable for
applications, which require the same event stream as
before the fault. That is, complete identity and
idempotence are guaranteed.

Rollback recovery: in the case of this recovery
method, duplicates can occur, the initial order of
events can be changed, as well occurrence of delays
upon event processing. For complete recovery, the
state of recovery is used, which can cause the
aforementioned problems.

Gap recovery is one of the most unreliable
recovery methods intended for applications which
operate exclusively with the latest data; in this case,
removal of old data is acceptable for reduced time of
recovery and execution of program code.

High accessibility of event processing system is
provided by the following methods: Active/standby
architecture of workers (Service Worker);
Passive/standby architecture of workers; Hybrid
architecture.

In Active/standby architecture, two or more
copies of the node responsible for data processing
operate independently on each other at different
actual servers. When one of the nodes fails, the other
will not be affected, data replication between the two

nodes takes place by multi-plexing, which in its turn
can invoke occurrence of duplicates.

In Passive/standby architecture, the main node
periodically copies state (state is a set of events
required for further data processing and it is
available locally for each worker in the system) to
passive node by means of messages of reference
point, and the recovery takes place on the failed
node.

Upon state copying, the following problems can
occur: further forwarding of data from queue;
uncertainty concerning the data to be included in
messages of reference point; non-unique initiation of
reference point messages.

These problems are classic upon synchronization
by means of reference points.

In addition, when Active/standby and
Passive/standby approaches are used for high
accessibility, the following problems can appear:
unavailability of a worker; overload of a worker.

These problems occur as a result of: network
issues; excessive use of CPU/IO; wavelike peak
loads.

Partially these problems can be eliminated by
adaptive load balancing.

As a rule, most systems of event processing
support at least one of the aforementioned methods.

The advantage of Active/standby architecture in
comparison with Passive/standby architecture is that
the system is recovered faster, however, additional
load upon replication is introduced (Figure 2).

Journal of Theoretical and Applied Information Technology
15th May 2021. Vol.99. No 9
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1948

Figure 2: Time to Recovery for Active/Backup and Passive/Standby Architectures

Adaptive circuits of load balancing
The event processing systems are characterized by

the problem of complete and homogeneous
distribution of load across all nodes responsible for
event processing. First of all, it should be
determined, for which system of event processing
the load balancing will be used. The systems can be
subdivided into two types: with state and without
state.

The problem of adaptive balancing can be
smoothed using mechanisms on provision of
dynamic distribution of load. This problem is related
to NP complex problems; in particular, this is a
classic problem of scheduling theory.

There are definite amounts of similar units, which
can process events, and it is required to uniformly
distribute the load across these units in order to
minimize certain performance metrics.

In particular, adaptive circuits of load balancing
can be subdivided into the following methods: Load
balancing on the basis of node capacity; Load
balancing on the basis of data stream.

A drawback of the adaptive dynamic balancing of
load is that under such conditions, it is extremely

difficult to recover event stream if it was confused.
Moreover, it is extremely difficult to avoid possible
duplicates generated by one and the same object
because there are no guarantees that the next
message will be delivered to the same node, which
processed the initial message and not the duplicate.
In addition, upon existence of messages of different
size in the stream, the adaptive load balancing will
be complicated because tracing of all nodes, which
process events in distributed system, is a very
difficult task.

Load in event processing system can be balanced
by round-robin mechanism. During operation of
round-robin mechanism, a new message is
forwarded to each next processor, this is performed
in cycle. This mechanism is highly suitable to
balance load in event processing system without
state. Another important problem in adaptive load
balancing is the problem of nonuniformly distributed
events from the object in total data set. This problem
was smoothed by means of algorithm of double
selection (Figure 3) [14].

Journal of Theoretical and Applied Information Technology
15th May 2021. Vol.99. No 9
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1949

Figure 3: Average Delay for Balancing Approaches

Monitoring of event processing application is

comprised of three main methods of monitoring:
Sampling and processing of metrics of event
processing system; Active validations; Tracing.

In order to trace the performances of event
processing applications, the following metrics are
usually acquired:
 total capacity (number of processed events

per unit time);
 partial capacity (per each rule/set/group of

rules);
 memory consumption by operations

working with buffer;
 delays in event processing;
 synchronization of state (upon highly

available architecture).
The aforementioned metrics are collected by

monitoring agent or forwarded directly to
monitoring system: for their subsequent processing
and triggering in the case of problems in event
processing system. Active validations are required to
measure average delays, which can occur upon event
processing, as well as for passing of all pipeline of
the event processing system. This is especially
important at high number of integrations with all
possible event sources. As a rule, these validations
are initiated by certain interval or threshold. If one of
validations fails, then, prior to notification about the
problem to user, it would be reasonable to be sure
that this is not a network or another failure. This can
be verified by sending similar validation several
times from the same system.

In addition, active validations can assist upon
detection of faults of certain nodes or a part of event
processing system. In general case, the active
validations should be governed by most rules for
correct tracing of the system indicators.

A problem can occur upon operation of active
validations in event processing system: in the case
when scenarios of applications do not assume
occurrence of additional delays upon event
processing. Any active validation introduces minor
additional load and delay upon event processing,
which can be critical. In this case, it is possible to
decrease the number of validations, the number of
pipelines which should be traced, the number of
rules passed by an event generated by active
validation.

Another method of monitoring is tracing. Tracing
is one of the most recent and popular monitoring
methods of distributed applications. It is required for
visual presentation of sequence and time of
transaction, with which service and at which step the
relation was generated. Using the tracing services, it
is possible to plot the map of interrelations of all
services, which is especially useful in the case of
failures of certain nodes. Distributed tracing is
universal and can be applied to trace transactions in
various programming environments and languages.
This universality is applied for decompression of
application into the operation environment.

Two main types of tracing are available:
Whitebox; Blackbox.

In addition, two main approaches are available for
organization of tracing system: Agents, Libraries.

Journal of Theoretical and Applied Information Technology
15th May 2021. Vol.99. No 9
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1950

Figure 4: Average Performance Degradation with Different Monitoring Approaches

Both these approaches are used in various

scenarios. The approach based on library assumes
that the developer would write instrument code using
API library for context propagating, which will be
used for tracing of transactions. Exactly this type of
tracing supports the combined use of numerous
programming languages and heterogeneous
architecture of application.

The agents are used based on external process or
processes which instrument code during execution.
There are two types of agents for tracing:
 code implementation into service to create

trace using certain set of functions;
 implementation of in-process agent, which

is imported into the execution environment for
tracing of certain user defined actions of the system.

The difficulties, which can occur upon the use of
tracing tools, are as follows:
 high amount of integrations for tracing

should be implemented into original code and
application architecture at initial step;
 possible decrease in performance by

several per cent due to the use of tracing tools;
 maintenance, updating, and supplemental

implementation of mechanisms for tracing
organization into new system functionality (Figure
4).

5. DISCUSSION

Numerous difficulties exist upon design and

operation of event processing systems. They can be
classified as follows:

 those related with application
architecture;

 those related with peculiarities of event
processing;

 those related with application
performance.

Nearly each solution to the problems of event
processing is compromise. Thus, it is required to
consider for a scenario of use of such system,
available resources and limitations, which could
occur upon application of methods hiding such
difficulties. This study is aimed at general discussion
of these problems without being bound to specific
scenarios of use. Furthermore, in this study were
tested few compromise options. Such as:

 deduplication (by generated ID);
 APM (tracing);
 Multi-threaded event processing with

state (optimistic concurrency).
On the other hand, a few monitoring approaches

were tested. The results you could find in Figure 4.
All compromise solutions that were mentioned in
this research were also approbation in practice.

A part of the selected methods for designing the
event processing system also could lead to
degradation of the performance, see Fig. 1, Fig. 2,
Fig. 3. The limitation of this research based on the
data which has been used in event processing
system. It’s a monitoring data from the application,
hosts, network devices, e.g. So, it means that a part
of the mentioned compromise options may be
applicable for the event processing applied to the
monitoring.

Were proposed a new method to process the data,
it has a compromise usage, the approach might be
inefficient due to artificially limited parallelism.

This study could be compared with the following
research [6]. It was conducted to analyze the
platforms and approaches to process the events. This

Journal of Theoretical and Applied Information Technology
15th May 2021. Vol.99. No 9
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1951

research is rich with details of query processing, load
balancing algorithms (without adaptive schemas,
which were researched in current paper), distributed
monitoring capabilities, elastic query planning in
cloud platforms. In this research was also discussed
parallel CEP without multi-threaded event
processing. In addition, a few deduplication schemas
could be found in [33], worth to notice, that there is
not discussed the presence or absence of the state
(which is highly required for some of deduplication
strategies). Some of mentioned approaches were also
used in the following patents – [24-27]. Mostly, they
are about designing appropriate event processing
systems.

The paper about the parallelization and elasticity
in event processing [5], has a great overview of the
most mechanisms that might be used in stream
processing platforms to parallel your computations
with considering the usage of state. Furthermore,
there was also discussed the data computation on the
different workers/subset of workers (grid, cluster,
cloud, etc.). Somehow it neglects the optimistic
concurrency approach which is a key thing in high-
performance computation in event processing
system with the state.

Current research has a lack of the Artificial
Intelligence usage, which is partially covered by [12,
29, 33-39]. In the current research the working
models of these methods were discussed.

AI enables to process a bulk of data in real-time.
Through this, AI provides meaningful insights that
can solve recurring issues in systems with event-
driven architecture. Businesses can gain a great
number of benefits by using artificial intelligence.
For instance, businesses can identify inconsistencies
in their operations and anomalies in their patterns to
re-strategize their processes. Not just this, but
through the in-depth analysis provided by artificial
intelligence, businesses can also determine the root
cause of problems that they are facing. Using
explorative and predictive data analysis, businesses
can minimize risks and maximize the effectiveness
of their business decision-making process. With this,
businesses can not only capitalize on short-term
opportunities but also boost profits and revenues in
the long-run.

This study can be used for analysis of event
processing in systems with event-driven architecture
aiming at development of new efficient methods. It
is comprised of review of subject area; discussion of
important problems with approaches to their
solution; scenarios of use; limitations, which could
occur upon event processing; methods of monitoring
of operation of event processing system. It also
includes the approbation of compromise options.

It should be mentioned that the work analyzes
classical problems occurring more often upon design
and operation of such systems.

6. CONCLUSION

On the basis of the study, it is possible to conclude

that the important issues of Event processing in
systems with event-driven architecture which should
be solved are as follows:

 processing of out-of-sequence events;
 occurrence of duplicates;
 collisions upon event processing;
 distributed fault-tolerant architecture;
 multi-threaded event processing;
 adaptive circuits of load balancing;
 monitoring of event processing

application.
Trend for use of systems and methods of event

processing is being increased every year due to
increase in data amount generated by various
applications, sensors, IoT devices, systems, etc.
Urgent problems of the methods of event processing
were revealed due to this study.

Each method was briefly described, several
compromise solutions were considered and tested
(see above, plots of bench testing). The hypothesis
of the research has been conducted. Prior to initiation
of development and operation of the event
processing system, it is necessary to define scenarios
of application, the essence of the event, what type of
processing is required, what type of highly available
architecture and monitoring will be used for system
operation.

In addition, it would be reasonable to preset
certain limitations for the system, because depending
on the selected method, certain compromises should
be applied related with solution to any problems
upon event processing.

A part of the selected methods also could lead to
degradation of the performance, see Fig. 1, Fig. 2,
Fig. 3.

 The considered problems are important because
up till now there is no complete and steady solution
to the problems considered in this study.

Further study could be devoted to more detailed
consideration of certain problems exemplified by
visual verification using actual data.

Important to consider, that the use of artificial
intelligence (AI) methods in event processing is seen
as a very promising direction for future research.

Journal of Theoretical and Applied Information Technology
15th May 2021. Vol.99. No 9
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1952

REFRENCES:

[1] D. Luckham, “Event Processing for Business:

Organizing the Real-Time Enterprise”, John
Wiley & Sons, Hoboken, New Jersey, 2011.

[2] D. Luckham, “The power of events: An
introduction to complex event processing in
distributed enterprise systems”, Springer,
Berlin, Heidelberg, 2008, doi: 10.1007/978-3-
540-88808-6-2.

[3] D. Luckham, “The Power of Events: An
Introduction to Complex Event Processing in
Distributed Enterprise Systems”, Addison-
Wesley Professional, Boston, MA, 2002.

[4] Z. Zhang, Y. Gu, F. Ye, H. Yang, M. Kim, H.
Lei, and Z. Liu, “A Hybrid Approach to High
Availability in Stream Processing Systems”,
2010 IEEE 30th International Conference on
Distributed Computing Systems, 2010, pp. 138-
148, doi: 10.1109/ICDCS.2010.81.

[5] H. Röger, and R. Mayer, “A Comprehensive
Survey on Parallelization and Elasticity in
Stream Processing”, ACM Comput. Surv., Vol.
52, No. 2, 2019, pp. 1-37, doi:
10.1145/3303849.

[6] N.P. Schultz-Møller, M. Migliavacca, and P.
Pietzuch, “Distributed complex event
processing with query rewriting”, Proceedings
of the Third ACM International Conference on
Distributed Event-Based Systems - DEBS ’09,
2009, p. 1, doi: 10.1145/1619258.1619264.

[7] J.-H. Hwang, M. Balazinska, A. Rasin, U.
Cetintemel, M. Stonebraker, and S. Zdonik,
“High-Availability Algorithms for Distributed
Stream Processing”, 21st International
Conference on Data Engineering (ICDE’05),
2005, pp. 779-790, doi: 10.1109/ICDE.2005.72.

[8] S. Jayasekara, S. Kannangara, T.
Dahanayakage, I. Ranawaka, S. Perera, and V.
Nanayakkara, “Wihidum: Distributed complex
event processing”, J. Parallel Distrib. Comput.,
Vol. 79-80, 2015, pp. 42-51, doi:
10.1016/j.jpdc.2015.03.002.

[9] G. Soundararajan, K. Voruganti, L.
Bairavasundaram, and V. Mathur, “Distributed
event processing method and architecture”,
US8898289B1, 2014.

[10] P. Figueiras, H. Antunes, G. Guerreiro, R.
Costa, and R. Jardim-Gonçalves, “Visualisation
and Detection of Road Traffic Events Using
Complex Event Processing”, Proceedings of the
ASME 2018 International Mechanical
Engineering Congress and Exposition. Volume

2: Advanced Manufacturing, Pittsburgh,
Pennsylvania, USA. November 9-15, 2018, doi:
10.1115/IMECE2018-87909.

[11] A.V. Proletarskii, D.V. Berezkin, Yu.E.
Gapanyuk, I.A. Kozlov, A.Yu. Popov, R.S.
Samarev, and V.I. Terekhov, “Methods of
Situation Analysis and Graphical Visualisation
of Big Data Streams,” Her. Bauman Moscow
State Tech. Univ. Ser. Instrum. Eng., Vol. 2, No.
119, 2018, doi: 10.18698/0236-3933-2018-2-
98-103.

[12] J. Lang, and Z. Capik, “Prediction based on
hybrid method in complex event processing”,
2014 IEEE 12th International Symposium on
Applied Machine Intelligence and Informatics
(SAMI), 2014, pp. 315-320, doi:
10.1109/SAMI.2014.6822430.

[13] Y. Ozawa, T. Koyanagi, M. Abe, and L. Zeng,
“A Hybrid Event-Processing Architecture based
on the Model-driven Approach for High
Performance Monitoring”, 2007 IEEE Congress
on Services (Services 2007), 2007, pp. 324-331,
doi: 10.1109/SERVICES.2007.6.

[14] L. Chen, O. Villa, S. Krishnamoorthy, and G. R.
Gao, “Dynamic load balancing on single- and
multi-GPU systems”, 2010 IEEE International
Symposium on Parallel & Distributed
Processing (IPDPS), 2010, pp. 1-12, doi:
10.1109/IPDPS.2010.5470413.

[15] M.A.U. Nasir, G. De Francisci Morales, D.
Garcia-Soriano, N. Kourtellis, and M. Serafini,
“The power of both choices: Practical load
balancing for distributed stream processing
engines”, 2015 IEEE 31st International
Conference on Data Engineering, 2015, pp.
137-148, doi: 10.1109/ICDE.2015.7113279.

[16] M.R.N. Mendes, P. Bizarro, and P. Marques, “A
Performance Study of Event Processing
Systems”, Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in
Bioinformatics), 2009, pp. 221-236.

[17] T. Grabs, and M. Lu, “Measuring Performance
of Complex Event Processing Systems”, The
Third TPC Technology conference on Topics in
Performance Evaluation, Measurement and
Characterization, 2011, pp. 83-96, doi:
10.1007/978-3-642-32627-1_6.

[18] M.R.N. Mendes, P. Bizarro, and P. Marques,
“Benchmarking event processing systems”,
Proceedings of the first joint WOSP/SIPEW
international conference on Performance
engineering - WOSP/SIPEW ’10, 2010, p. 259,
doi: 10.1145/1712605.1712652.

Journal of Theoretical and Applied Information Technology
15th May 2021. Vol.99. No 9
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1953

[19] I. Flourisa, N. Giatrakos, A. Deligiannakis, M.
Garofalakis, M. Kamp, and M. Mock, “Issues in
Complex Event Processing: Status and
Prospects in the Big Data Era”, Journal of
Systems and Software, Vol. 127, 2016, pp. 217-
236.

[20] M. Li, M. Liu, L. Ding, E.A. Rundensteiner, and
M. Mani, “Event Stream Processing with Out-
of-Order Data Arrival”, Proc. 27th Int. Conf. on
Distributed Computing Systems Workshops,
2007, pp. 67-74.

[21] M. Hirzel, “Partition and compose: parallel
complex event processing”, Proc. 6th ACM Int.
Conf. on Distributed Event-Based Systems
(DEBS ‘12), 2012.

[22] R.S. Samarev, “Survey of streaming processing
field”, Trudy ISP RAN/Proc. ISP RAS, Vol. 29,
No. 1, 2017.

[23] L. Neumeyer, B. Robbins, A. Nair, and A.
Kesari, “S4: distributed stream computing
platform”, Proc. IEEE Int. Conf. on Data
Mining Workshops, 2010.

[24] S. Nielsen, C. Curtis, and F. Jeffrey, “Systems
and methods for complex event processing of
vehicle information and image information
relating to a vehicle”, U.S. Patent No.
8,560,164.

[25] S. Nielsen, C. Curtis, and F. Jeffrey, “Systems
and methods for complex event processing
based on a hierarchical arrangement of complex
event processing engines”, U.S. Patent No.
8,463,487, 2013.

[26] A.C. Biazetti, A.B. Darney, E.J. Dobner, M.
Feridun, K.L. Gajda, T. Gschwind, M. Moser,
B.D. Pate, and M.E. Phelps, “Processing
multiple heterogeneous event types in a
complex event processing engine,” U.S. Patent
No. 8,589,949, 2013.

[27] P.-C. Chen, J. Huang, and C.-H. Hsu, “Method
and system for complex event processing”, U.S.
Patent No. 7,457,728, 2008.

[28] A. Hartanto, F. Farikhin, and S. Suryono, “Real-
time vehicles velocity monitoring and
crossroads evaluation using rule-based RESTful
maps API service”, J. Phys. Conf. Ser., Vol.
1524, 2020, p. 012016, doi: 10.1088/1742-
6596/1524/1/012016.

[29] D. Luckham, “What’s the Difference Between
ESP and CEP?”, Real Time Intelligence &
Complex Event Processing, 2020,
https://complexevents.com/2020/06/15/whats-
the-difference-between-esp-and-cep-2/

[30] J. Yang, M. Ma, P. Wang, and L. Liu, “From
Complex Event Processing to Cognitive Event
Processing: Approaches, Challenges, and
Opportunities”, 2015 IEEE 12th Intl Conf on
Ubiquitous Intelligence and Computing and
2015 IEEE 12th Intl Conf on Autonomic and
Trusted Computing and 2015 IEEE 15th Intl
Conf on Scalable Computing and
Communications and Its Associated Workshops
(UIC-ATC-ScalCom), 2015, pp. 1432-1438,
doi: 10.1109/UIC-ATC-ScalCom-CBDCom-
IoP.2015.258.

[31] Snowplow Team, “Dealing with duplicate event
IDs”, Snowplow, 2015,
https://snowplowanalytics.com/blog/2015/08/1
9/dealing-with-duplicate-event-ids/

[32] K. Gunia, “Event Sourcing Projections Patterns:
Deduplication Strategies”, Domain Centric,
2019, https://domaincentric.net/blog/event-
sourcing-projection-patterns-deduplication-
strategies

[33]A. Artikis, G. Paliouras, F. Portet, and A.
Skarlatidis, “Logic-Based Representation,
Reasoning and Machine Learning for Event
Recognition”, DEBS '10: Proceedings of the
Fourth ACM International Conference on
Distributed Event-Based Systems, July 12-15,
2010, Cambridge, UK, doi:
10.1145/1827418.1827471

[34] A.Y. Sun, Z. Zhong, H. Jeong, and Q. Yang,
"Building complex event processing capability
for intelligent environmental monitoring",
Environmental Modelling & Software, Vol.
116, 2019, pp. 1-6, doi:
10.1016/j.envsoft.2019.02.015.

[35] C. Mayer, R. Mayer, and M. Abdo,
“StreamLearner: Distributed Incremental
Machine Learning on Event Streams: Grand
Challenge”, DEBS '17: Proceedings of the 11th
ACM International Conference on Distributed
and Event-based Systems, June 2017, pp. 298-
303, doi: 10.1145/3093742.3095103.

 [36] N. Mehdiyev, J. Krumeich, D. Enke, D. Werth,
and P. Loos, “Determination of Rule Patterns in
Complex Event Processing Using Machine
Learning Techniques”, Procedia Computer
Science, Vol. 61, 2015, pp. 395-401, doi:
10.1016/j.procs.2015.09.168.

[37] C. Dousson, and P. Le Maigat, “Chronicle
Recognition Improvement Using Temporal
Focusing and Hierarchization”, IJCAI 2007,
Proceedings of the 20th International Joint
Conference on Artificial Intelligence,
Hyderabad, India, January 6-12, 2007, pp. 324-

Journal of Theoretical and Applied Information Technology
15th May 2021. Vol.99. No 9
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1954

329.
[38] C. Cabanillas, A. Curik, C. Di Ciccio, M.

Gutjahr, J. Mendling, J. Prescher, and J.
Simecka, “Combining Event Processing and
Support Vector Machines for Automated Flight
Diversion Predictions”, Proceedings on Inter-
Organizational Process Modeling and Event
Processing in Business Process Management,
Vienna, Austria, 2014, pp. 45-49.

[39] L. J. Fülöp, G. Tóth, La. Vidács, Á. Beszédes,
H. Demeter, and L. Farkas, “Predictive
Complex Event Processing: a Conceptual
Framework for Combining Complex Event
Processing and Predictive Analytics”, BCI '12:
Proceedings of the Fifth Balkan Conference in
Informatics, September 2012, pp. 26-31, doi:
10.1145/2371316.2371323.

[40] P. Vincent, “Event processing at the large
hadron collider”, TIBCO Software Inc., 2011,
https://www.tibco.com/blog/2011/11/20/event-
processing-at-the-large-hadron-collider/

