
Journal of Theoretical and Applied Information Technology
15th May 2021. Vol.99. No 9
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2144

 FRAMEWORK TO SECURE THE OAUTH 2.0 AND JSON
WEB TOKEN FOR REST API

1EHAB RUSHDY, 2WALID KHEDR, 3NIHAL SALAH
1Associate Professor of Information Technology, Department of Information Technology, Faculty of

Computers & Informatics, Zagazig University, Zagazig, Egypt
2Professor of Information Technology, Department of Information Technology, Faculty of Computers &

Informatics, Zagazig University, Zagazig, Egypt
3Post Graduate, Department of Information Technology, Faculty of Computers & Informatics, Zagazig

University, Zagazig, Egypt

E-mail: 1ehab.rushdy@gmail.com, 2khedrw@yahoo.com, 3nihal.radwan@hotmail.com

ABSTRACT

The Open Authorization (OAuth 2.0) specification defines a delegation protocol that is helpful for
conveying authorization decisions (via a token) across a network of web applications and APIs. OAuth 2.0
achieves this with the help of valid tokens issued by an authorization server which enables access to
protected resources. For Achieving statelessness, access tokens in OAuth needs that resource server request
to authorization server to get the user details related to the token and whether the token is valid or not for it
each client request. OAuth 2.0 allows safe transfer of bearer tokens, but doesn’t validate the processing
party. If a token endpoint is wrong then entire system security is in danger. JSON Web Token (JWT) is an
open standard that defines a compact and self-contained way for transmitting data between various parties
by encoding them as JSON objects which can be digitally signed or encrypted. This research proposes an
approach that combines OAuth 2.0 with JWT in REST API to allow the resource server to validate the
OAuth access token locally and only needs an interaction with the Authorization server to get a new OAuth
access token. This combination reduces the interaction with the Auth server that yields the performance
improvements. JWT has several options for using algorithms namely a symmetric algorithm HS256
(HMAC with SHA-256) and an asymmetric algorithm RS256 (RSA Signature with SHA-256).
Testing the most different cryptographic algorithms used to construct JWT for signing token are done based
on the speed of generating tokens, the size of tokens, time data transfer tokens and security of tokens
against attacks. The experimental results show the use of The HS256 has good result compare to using
RS256 for framework of evaluation the performance of proposed algorithms in terms of generating tokens,
the size of tokens and time data transfer tokens. In order to prove that proposed scheme can avoid phishing
attacks especially user credentials by taking two-factor authentication service which makes user can
guarantee the authenticity of client.

Keywords: Authentication, Authorization, OAuth 2.0, JWT, Security

1. INTRODUCTION

Application programming interfaces
(APIs) [1]created using the Representational State
Transfer (REST) protocol have become a nearly
universal standard today for connecting mobile
apps and websites with servers and third-party
systems that the service providers expose several of
services as web accessible APIs for users to build
applications or consume services. One of the key

aspects of designing an API platform is controlling
who has access to data.
An API platform should be capable of permitting
completely different levels of user access ways
wherever authorized users could get unlimited
access to secure APIs while non-authorized users
will only access APIs that are public. From the API
platform perspective, granting access to completely
different levels of users should be created as easy as
possible.

Journal of Theoretical and Applied Information Technology
15th May 2021. Vol.99. No 9
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2145

As a result, many organizations provide different
authorization strategies to access their APIs on
behalf of the user. This has created a major
requirement for a common global standard for
securing APIs. This is where OAuth2.0 stands out
among other standards.

Every API request from the client to a server
contain all the necessary information necessary to
serve the request. The server maintains neither state
nor context. To create a common API security
model, suppose all endpoints require an OAuth 2.0
Access Token issued from a common identity
provider and have the appropriate API security
token checks in place and authorize access to
protected REST APIs that OAuth 2.0 and JSON
Web Token are two of the most widely used token
frameworks or standards for authorizing access to
APIs. OAuth2.0 and JWT can be combined to gain
performance improvements and describing the most
different cryptographic algorithms used to construct
JWT for signing by comparison application of
RS256 and HS256 algorithms and prevent the
security issues attacks of JWT.

1.1 The Oauth2.0 Protocol:

OAuth2.0 [2] is an open standard for

authorization and provides a method for clients to
access server resources on behalf of a resource
owner, such as a different client or an end-user.
It also provides a way for applications to
gain limited access to a user's protected resources
without the need for the user to disclose their login
credentials to the application.
In OAuth2.0, the client requests access to resources
controlled by the resource owner and hosted by the
resource server by giving a different set of
credentials (not the resource owner’s credentials) to
access the resource. In OAuth2.0, the client will
obtain an access token from the authorization
server, which can be used to access server resources
on behalf of the resource owner. There are four
types of roles specified in OAuth2.0 [3] illustrated
in Figure 1 describes the interaction between these
roles:
1.1.1 Client
Also known as "the app". It can be an application
running on a mobile device or a web app. It is the
application requesting access to protected resources

keep on the resource server. It additionally obtains
authorization from the resource owner.

1.1.2 Resource owner:
It's referred to as a person, it is called an end-user
who is capable of authorizing access to a protected
resource or a service.

1.1.3 Resource server:
Data owned by the resource owner such like
sensitive data and it can accept and respond to
protected resource requests.

1.1.4 Authorization server:
This server supplies access tokens to the client and
it is responsible for validating (authorization
grants) and issuing the (access tokens) that give the
client application access to the end user 's data on
the resource server.

 Figure 1: The OAuth 2.0 flow

1.1.5 OAuth 2.0 grant types:
An authorization grant type [4] is a credential
representing the resource owner's authorization (to
access its protected resources) used by the client to
obtain an access token. In the abstract protocol flow
above, the first four steps cover getting an
authorization grant and access token. OAuth
defines four grant types, each of which is useful in
different cases can be seen in Table 1.

Journal of Theoretical and Applied Information Technology
15th May 2021. Vol.99. No 9
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2146

Table 1: OAuth 2.0 Grant Types

Grant type Used for

Client Credentials When two machines need to talk to each other, e.g., two APIs

Authorization Code This is the flow that occurs when login to a service using Facebook, Google,
GitHub etc.

Implicit Grant Like the Authorization Code Grant Type, but user-based.

Password Grant The user's username and password are exchanged directly for the OAuth2 tokens.
which is more suitable for server apps used by a single user account. This is by
far the easiest authentication scheme to implement that this paper focuses on this
type.

1.1.6 Access token
An access token [5] is a long sequence of characters
that contains security credentials used to access
protected resources or services and to provide
authorization for API requests. Access tokens (also
referred to as bearer tokens) are passed in
authorization headers. It’s represented credentials
like username and password. Access tokens
generally have a lifetime determined by server and
once expired; a replacement token must be
generated. Some grant types enable the
authorization server to issue a refresh token that
allows the application to get a new access token
once the old one expires.

1.2 JSON Web Token

JSON Web Token (JWT) [6],[7] is an

open standard that defines a compact and self-
contained way for securely transmitting information
between parties. It is an authentication protocol for
allow encoded claims (tokens) to be transferred
between two parties (client and server) and the
token is issued upon the identification of a client.

JWT tokens are based on JSON and used in new
authentication and authorization protocols in OAuth
2.0 because of their small size, JWT tokens can be
sent via URL, HTTP POST parameters or inside the
Header HTTP, and also because of its small size it
can transmitted faster. Called independent
information because the contents of the generated
token have information from users needed, so no
need to query to database more than once. The
token can be verified and trusted because it has
been digitally signed. JWT tokens can be signed
using a secret key (HMAC algorithm) or public /
private key pair (RSA algorithm). However, API
only use the JWT concept which can be called
"jot”. JWT doesn’t depend on the specific program
language.
1.2.1 Structure of JWT
Every JWT is generated with the same structure[8].
There are three parts: The header, the payload and
the signature, separated by period character (.).
Each section (except signature) is comprised
of base64url-encoded JSON containing specific
information for that token as shown in Figure 2.

 Figure 2: Structure of JSON Web Token

 {“alg": "HS256",
"typ": "JWT" }

eyJhbGciOiJIUzUxMiJ9

{"iss": "appbackend",
"sub": "username",
"exp": 1566257813,
"iat": 1566239813}

eyJzdWIiOiJ1c2VybmFtZSIsImV4cCI6MTU2NjI1
NzgxMywiaWF0IjoxNTY2MjM5ODEzfQ

{“Base64‐encoded (Header. Payload)
"+ "key" + "Algorithm"}

2klBbHz1laoXPUVeJN-
hZaEOChgtt4tfVT6PWCZCZgks2mHNcSvRhXRtJ_E

YY2vG3TZwNjBxjPElrPl7ZT8Faw

Header

Payload

Signature

Journal of Theoretical and Applied Information Technology
15th May 2021. Vol.99. No 9
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2147

 1.2.2 Common JWT signing algorithms

There are two main ways to sign JWTs
cryptographically: using symmetric or asymmetric
keys. Both types are commonly used, and provide
the same guarantees of authenticity. Most JWTs in

the wild are just signed. The most common
algorithms are HMAC SHA-256 symmetric
algorithm and RSA-256 an asymmetric algorithm
can be seen in Table 2.

Table 2: Compression Between SHA256 and RSA256[9]

 SHA256 RSA256

Stand For HMAC with SHA-256 RSA encryption plus SHA-256
hashing

Key type Symmetrical secret key Asymmetrical Public / private key
pair RSA

Use cases That’s an algorithm which encrypts and
hashes the message (a JSON data) at the
same time using symmetrical secret key.
The same key is used for encryption and
decryption of the message.

RSA is an asymmetric encryption
algorithm, which means it operates on
a pair of keys – public and private.
Private key is used to encrypt a token,
and public one – to decipher it.

1.3 Two-Factor Authentication (2FA)

Two-factor authentication (2FA)[10] is a
second layer of security to protect
an account or system. Users must go through two
layers of security before being granted access to an
account or system. 2FA increases the safety
of online accounts by requiring two types of
information from the user, such as a password or
PIN, an email account, an ATM card or fingerprint,
before the user can log in. The first factor is the
password; the second factor is the additional item.

2. RELATED WORK

 Various performed researches and
manufactured models have been proposed for
Security Analysis of OAuth 2.0. Several works
have been done regarding the OAuth security and
its application in constrained environments.
The work [11] explained scenarios of OAuth 2.0
Protocol with example for establishing identity
management standards across services, provides an
alternative to sharing our usernames and passwords,
and exposing ourselves to attacks on our online
data and identities.
The work [12] focuses on security vulnerabilities of
the OAuth 2.0 protocol that proposed an attacker
model to perform systematic analysis of the root
causes of common attacks like replay attacks,
impersonation attacks and forced login CSRF
attacks.
The work [13] this work provided an additional
layer of protection against CSRF attacks for OAuth
2.0 services and proposed a new practical technique

used to mitigate CSRF attacks against both OAuth
2.0 and OpenID Connect.
The work [14] proposed a scheme based on OAuth
2.0 and JSON Web Token for securing existing
health care services in the IOT cloud platform.
The work [15] provided the stateless and compact
feature of JWT for authentication and access
authorizations for cloud users.

3. PROBLEM STATEMENT

 OAuth2.0 provides Resource Owner
Password Credentials Grant is used when the
application exchanges the user’s username and
password for an access token. This grant type is
appropriate for clients capable of getting the
resource owner’s credentials (username and
password, typically using an interactive form) and
eliminates the need for the OAuth2 client to store
the resource owner’s credentials for future use.
Workflow [16] of Resource Owner Password
Credentials Grant as shown Figure 3 :
1. Resource Owner/User launches the Client

App to access the its own protected resource in
the Resource Server.

2. The Client App shows login form for the user to
enter their credentials into the App.

3. The user provides the client application its
credentials that are the resource owner’s user
name and password.

4. The client application requests to the
authorization server by including the credentials
received from the user and either the client
credentials or a client assertion.

Journal of Theoretical and Applied Information Technology
15th May 2021. Vol.99. No 9
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2148

5. The authorization server validates both the
client identifier and secret, determines whether
or not it's authorized for making this request,
and validates that the resource owner credentials
and other parameters are supplied and if valid,
issues an access token in the response. This is
described in successful authorization ,if the
request failed or is invalid for any reason, then
the authorization server returns an error
response.

6. Thereafter, the authorization sever sends back
response with access token.

7. The OAuth client makes a REST API call to the
resource server using the access token to access
the protected resource.

8. The resource server receives a request and
access token from the client application. After
sending any data/details/resources, the resource
server validates access token and if access token
is not valid, the resource server returns an error.

9. Repeat steps 7 and 8 until the access token
expires and the resource server sends a response
to authorization server to check whether or not
the access token is valid.

10. The client application receives a response from
the resource server and shows protected
resource to the user.

11. The end-user can see and get access the
protected resources from the client application.

In addition to OAuth 2.0 also relies completely on
SSL (Secure Sockets Layer)/TLS (Transport Layer
Security). SSL/TLS [17] provides end-to-end
security, i.e. it allows safe transfer of bearer tokens,
but the resource server asks the authorization server

for the user details related to the token and whether
the token is valid or not on each client request.
Once unauthorized authorization server is
deauthorized in all resource servers because
resource servers are depending on the authorization
server to check validity on every request. Before
OAuth2 or JWT the Resource server would need to
go to the Authorization server to validate the token
and get a lot of information regarding the user
(resource owner). That type of bearer token can't be
validated by the resource server without direct
communication with an authorization server.

One way to create self-encoded tokens is to
create a JSON-serialized representation of all the
data that included in the token, and sign the
resulting string with a key known only to server.
One potential attack against OAuth servers is a
phishing attack that most people are familiar with
consist of fake login pages hosted on attacker-
controlled web servers. This is where an attacker
makes a web page that looks identical to the
service’s authorization page, which typically
contain username and password fields that it will be
possible for attackers to steal username and
password of user.

In order to avoid original password being
stolen and users can be protected from phishing
their username and password, so using Two-factor
authentication service, the added security step that
requires user enter a code sent to phone SMS or
email, has traditionally worked to keep usernames
and passwords safe from phishing attacks.

Journal of Theoretical and Applied Information Technology
15th May 2021. Vol.99. No 9
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2149

Figure 3: Workflow of Resource Owner Password Credentials

4. PROPOSED SCHEME

 This section proposes scheme that
combines OAuth 2.0 with JWT in REST API to
ensure the integrity of the exchanged messages, the
authentication of the sender and the non-
repudiation as illustrated in Figure 4.
The procedure of proposed scheme is as follow:

1. Resource owner enters username and password
via a client.

2. Client login by sending credentials to the
authorization server.

3. The authorization server send request to two-

factor authentication service.
4. The two-factor authentication send a security

code by e-mail or SMS.
5. User send received code to the authorization

server.
6. The authorization server will generate a JWT

containing user details, permissions and data
on the authentication request after successfully
authenticating the client.

7. Client stores the JWT for a limited amount of
time, depending on the expiration specified by
authorization server then client sends the stored
JWT in an Authorization header for each
request to the resource server.

Journal of Theoretical and Applied Information Technology
15th May 2021. Vol.99. No 9
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2150

8. For every request, the resource server takes the
JWT from the authorization header and it
validates the JWT, decrypt the JWT, and parsing
its contents. Based on this data only, and again
without looking up further details in the

database or contacting the authorization server,
it can accept or reject the client request.

9. If the token is valid, the resource server allows
the client access to the protected resources.

There are many types of signatures for JWT. In this research: HS256 and RS256 are used. Therefore,
two proposed schemes are presented; the first scheme proposes deploying JWT using SHA-256 while
RSA-256 is used with the second scheme.

Figure 4: Combination OAuth and JWT in REST API

4.1 The HS256 JWT Digital Signature:

The HS256 digital signature is based on is
cryptographic hashing function to produce a
signature to take the Header, the Payload and add
also a secret key, and then hash everything
together, in Figure 6 illustrated generating and
verifying JWT with SHA-256 where only the
authentication server and the resource server know
the secret key.
This step of proposed scheme are as follows:

1. The user sends request to the authorization
server asking for authentication using
credentials (username and password) that
BCryptPasswordEncoder in Spring Security
[18] is used for hashing algorithm to encode and

hash a password and put it into a database, for
perform a login authentication will hash the
password and compare it with the hashed password
from database.

2. 2. The Client then sends a request to the
authorization server end point of with following
parameters: The grant type parameter should be
set to password.
ClientID and client secret: This is the unique
identification of the client. These two are required
if the server has made client authentication
mandatory that the Client App obtained during
registration.
Scope: For which the Client is requesting
authorization. These are space delimited list of
scope string; for example – profile, email, location
etc.

 Username and Password: The resource
owner’s username and password.

Journal of Theoretical and Applied Information Technology
15th May 2021. Vol.99. No 9
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2151

3. If credentials exist in the database, the
authorization server validates the user name and
password and will call Two-factor
authentication service to generate a security
code for user.

4. The Two-factor authentication service receives
the request from authorization server then it will
generate a security code and send it to end user
by email or SMS that code will be expire in two
minutes.

5. User will get the Two-factor authentication form
to enter code that can help prevent unauthorized

access user’ account by third party and protect
against numerous other types of phishing threats.

6. User inputs received code and commits to callback
URL.

7. The authorization server will verify user
credentials and validate the security code retrieved
previously then will generate and sign JWT with
secret key that the secret key is stored on
authorization server which will be received during
login and then used to set the token as shown in
Figure 5.

 Figure 5: Content of the JWT Token

8. The authorization server returns JWT containing
the user’s information in the response body as
shown in Fig. 7 that JWT in response is stored
locally on the client system, it should be set on
each request via JavaScript on client-side and the
user is allowed inside the application. The access
token is only valid for 5 minutes and refresh
tokens can also expire but are rather long-lived.

 Otherwise, the operation in this step may be
acknowledged with one of the following errors as
shown in Table 3:

 Table 3: Operation return errors

Response
Code

Response Body Description

400 Bad
Request

{"error”:
consent_required"}

The user or
administrator
hasn’t granted
(or has revoked)
their consent to
be impersonated
by the app.

400 Bad
Request

{"error”:
invalid_grant"}

The JWT token
was valid, but
some of the
claims were not.

9. The client needs both an access token (which it
was obtained in the previous step), and base
URI that is unique to the user on whose behalf
client is making the API call.

 Request syntax: GET https://oauth/API

Authorization: Bearer
ISSUED_ACCESS_TOKEN

Header
{
“alg": "HS256",
 "typ": "JWT"
}

Base64 URL Encode
eyJhbGciOiJIUzUxMiJ9

Base64 URL Encode
eyJzdWIiOiJ1c2VybmFtZSIsImV4c
CI6MTU2NjI1NzgxMywiaWF0Ijox

NTY2MjM5ODEzfQ

Payload
{"iss":"oauthserver",
"aud":"http://service/api/oauth
2/token":
 "sub":" oauthserver ",
"exp": 1566257813,
"iat": 1566239813
"jti":"655333vc654":
 }

Signature
Header.Payload

SHA-256 sign with secret key

2klBbHz1laoXPUVeJN-
hZaEOChgtt4tfVT6PWCZCZgks2mHNc
SvRhXRtJ_EYY2vG3TZwNjBxjPElrPl7

ZT8Faw

Journal of Theoretical and Applied Information Technology
15th May 2021. Vol.99. No 9
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2152

Otherwise, the operation in this step may be
acknowledged with one of the following errors
as shown in Table 4:

 Table 4: operation return errors

Response
Code

Response Body Description

401
Unauthorized

{"ErrorCode”:
"invalid_request"}

Response
returned for
requests that
do not
contain a
proper bearer
token.

401
Unauthorized

{"error”:"AccessToken
expired"}

The JWT
was expired.
 it then
refreshes it's
token by
submitting
the refresh
token to a
specified end

10. The resource server validates for authenticity
of the incoming valid JWT in the
Authorization header Since the resource
server knows the secret key, the resource
server can perform the same signature
algorithm as in Step 7 on the JWT.

A. The resource server takes the original
Base64url-encoded Header and original
Base64url-encoded Payload segments
(Base64url-encoded Header + "." +
Base64url-encoded Payload), and hash them
with SHA-256.

B. The resource server uses SHA-256 secret key
to encrypt.
The resource server can then verify that the
generated signature obtained from its own
hashing operation matches the signature on the
JWT itself (it matches the JWT signature created
by the authentication server).
If the generated signature match, then that means
the JWT is valid which indicates that the API call
is coming from an authentic source.

 Otherwise, if the signatures don’t match, then it
means that the received JWT is invalid, and the
request must be rejected which may be an
indicator of a potential attack on the application.

11. If the token is valid, the resource server sends
resources back to client.

 Using the access token to make any
authenticated API calls as long as the token is
valid (it's not expired). When the access token
expires, use the refresh token to generate a new
one from the authorization server to keep the
user's login status and not use to make an
authenticated API call.

 This mean that the user basically has 5 minutes
to use the JWT before it expires. Once it expires,
user will use current refresh token to try and get a
new JWT.

 Since the refresh token has been revoked, this
operation will fail and user will be forced to login
again.

Journal of Theoretical and Applied Information Technology
15th May 2021. Vol.99. No 9
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2153

Figure 6: JWT Authentication Workflow with HS256 and RS256

4.2 The RS256 JWT Digital Signature:

 In the second signature type RS256,
an asymmetric signature is generated with two
keys standard 256 bit Public/Private keypair
that private key is used to sign the JWT and a
different public key is used to verify the
signature.
Unlike symmetric algorithms, RS256 offers
confirmation that OAuth is the signer of a JWT
since OAuth is the only party with the private
key.
In this type of signature:
1. There is separation between the ability to

create valid JWT and the ability to validate
JWT.

2. The authentication server is only
responsible for creating valid JWT.

3. The resource server is only responsible for
validation JWT.

 In RS256 algorithm two keys are generated
instead of one:
There is a first key called private key but this time
it will be owned only by the issuer, used only to
sign JWT, but it can’t be used to validate them and
can be kept in a confidential location, only known
to the issuer of the JWT. There is a second key
called the public key, which is used by the
resource server only to validate JWT, but it can’t
be used to sign new JWTs.

 The authorization server authenticates the client,
generates JWT and signs it using the private key.
Any incoming requests will be then verified using
the public key as shown below Figure 6.

1. The user makes a login request.

Journal of Theoretical and Applied Information Technology
15th May 2021. Vol.99. No 9
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2154

2. The Client then sends a request to the
authorization server end point of with
following parameters:
The grant type parameter should be set to
password.
ClientID and client secret: This is the
unique identification of the client. These
two are required if the server has made
client authentication mandatory that the
Client App obtained during registration.
Scope: For which the Client is requesting
authorization. These are space delimited list
of scope string; for example – profile,
email, location etc.
 Username and Password: The resource
owner’s username and password.

3. If credentials exist in the database, the
authorization server validates the user name
and password and will call Two-factor
authentication service to generate a security
code for user.

4. The Two-factor authentication service
receives the request from authorization
server then it will generate a security code
and send it to end user by email or SMS
that code will be expire in two minutes.

5. User will get the Two-factor authentication
form to enter code that can help prevent
unauthorized access user’ account by third
party and protect against numerous other
types of phishing threats.

6. User inputs received code and commits to
callback URL.

7. The authorization server verifies if the user
is legit and generates JWT and signs it
using the private key then responds with
JWT containing the identity of the user.

8. The JWT in response is sent to client that
JWT is stored on Client side: Local Storage
for the user’s browser.

9. The user sends JWT to resource server.
10. The resource server first verifies if the

request contains the JWT (responds with an
error if not passed). The JWT is then
verified using the public key. To verify the
signature:

A. The resource server checks
RS256 Signatures that take the header
and the payload, and hash everything
with SHA-256.

B. Decrypt the signature using the public
key, and obtain the signature hash.

C. The resource server compares the signature
hash with the hash that he calculated based
on the Header and the Payload.

If the calculated signature does not match the
original Signature included with the JWT, the
token is considered invalid, and the request
must be rejected.

11. The resource server allows the client access
to the protected resources.

 5. ATTACKS ON JWT

JWTs are encrypted or signed tokens that
can be used to store claims on browsers and mobile
clients. These claims can easily be verified by
receivers through shared secrets or public keys. The
JWTs specification allow for custom private claims,
making JWTs a good tool for exchanging any sort
of validated or encrypted data that can easily be
encoded as JSON. JWTs have their own pitfalls and
common attacks.

In this section proposes about the token

attacks, and later how to prevent them. JWT tokens
are stored on the frontend and the backend and are
frequently sent over the network (depending on the
session flow). As such, they are vulnerable to
several types of attacks.

5.1 Cross Site Scripting (XSS) attacks:
 Cross site scripting [19] [20] is the
method where the attacker injects malicious script
into trusted website application running on the
victim’s browser and attempt to inject JavaScript
through form inputs. The injected code reads and
transmits auth JWT tokens and cookies to the
attacker. Local Storage can be read just as easily
from the same injected code, so if the
authentication data was stored in local storage, it
could be easily grabbed. Web Storage (local
Storage/session Storage) is accessible through
JavaScript on the same domain. This means that
any JavaScript running on application will have
access to web storage, and because of this can be
vulnerable to (XSS) attacks can be executed on the
sessions that do not need any authentication.

5.2 Cross-site request forgery attack
 Cross Site Request Forgery
(CSRF/XSRF) [19] is one of the most popular
ways of exploiting a server. It attacks the server by
forcing the client to perform an unwanted action
and this attack is not used to steal auth JWT tokens
and attempts to trick users into performing an
action using an existing session of a different

Journal of Theoretical and Applied Information Technology
15th May 2021. Vol.99. No 9
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2155

website. Since cookies with JWT are sent by the
browser client by default, an attacker might trick
user into clicking on a malicious link and
submitting an authenticated request to client app.
The CSRF is executed when the session is
authenticated and the user or the browser is trusted
by the website as shown Figure7.

Figure 7: CSRF attack workflow

6. EXPERIMENTAL RESULTS AND

DISCUSSION

 Framework Implementation is done by
integration OAuth with JWT. Implementations are
performed by JAVA and MySQL server that is
used as the database and configured with Spring
Security OAuth2 [21] and the front-end is created
with HTML, jQuery ,JavaScript and ajax and using
Bootstrap and perform Form validation. The main
program of the project is run in web application,
web server and back-end API server (including
Authentication Server and Resource Server), we
treat web browser as OAuth Client and users must
authorize the device or browser to access their
resource on the resource server, as well as using
ajax-request in JavaScript to obtain a JWT from
authorization server and connect with REST API
and, we build a two-factor authentication service as
Authentication methods before granting access.

6.1 Performance Evaluation
In this framework, the performance

evaluation of the algorithm SHA-256 and RSA-256
is based on terms of:

 The security of tokens to prevent the
security issues attacks.

 The time to generate the token.
 The size of the token generated.
 Time of token data transfer from the client

request to the resource server until the
token response is received by the client.

The performance evaluation of the two algorithms
is tested on JWT with experiment 10 times the
process against number of users.
6.1.1 Security of tokens against attacks
Framework Implementation is done by making
OAuth with JWT to prevent the security issues
attacks in the parameter testing the security of
tokens. Common attacks using JWTs have been
discussed. All of these attacks can be successfully
prevented by following these mitigations.
6.1.1.1 Preventing XSS attacks
JWT stored in local Storage passed Authentication
Bearer header can help but is always still
susceptible to XSS attacks. JWT is accessible via
JavaScript and can be passed with any request. The
proposed approach is to store the JWT in an HTTP
Only cookie to prevent JavaScript access to the
token. This can be prevented fairly easily by using
HTTP Only or Secure cookies to store auth tokens.
That way, in case of XSS, the JWT token can't be
read by the malicious script. it is better to store
JWT in cookies than in local storage or in a
JavaScript variable.
6.1.1.2 Preventing CSRF attacks
Using Cross-Origin Resource Sharing (CORS)
[22] to secure user data that CORS handles this
vulnerability well, and disallows the retrieval and
inspection of data from another Origin, CORS will
prevent the third-party JavaScript from reading
private data , and will fail AJAX requests with
security errors. CORS is an important consideration
for using developing browser applications with
JavaScript because most requests to resources are
sent to an external domain (including
Authentication Server and Resource Server) for a
web service API, a main web application gathered
the information from these servers.

In the Proposed of approach as shown Figure 8
checking the Origin header this happens when end-
user execute AJAX cross domain request using
jQuery Ajax interface, Fetch API, or plain
XMLHttpRequest is as follow:

Journal of Theoretical and Applied Information Technology
15th May 2021. Vol.99. No 9
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2156

1. The Victim user is logged the legitimate
website.

2. The Victim Web Browser visits
AttackerWebSite.com.

3. AttackerWebSite.com provides a malicious
script that instructs the Victim Browser to make
a request that includes cookies to server. The
Origin of this malicious code is “https://
AttackerWebSite.com”.

4. The Victim Browser submits the request that
includes its legitimatewebsite.com session
cookies.

5. legitimatewebsite.com responds with private
data. The Origin of this response is
“https:// legitimatewebsite.com”.
These are the headers that the server sends back
in its response:

a. Access-Control-Allow-Origin:
<origin>: This is used to specify the
origin allowed to access the resource on
the server. It’s possible to specify that
only requests from a specific origin are
allowed – Access-Control-Allow-Origin:
https:// legitimatewebsite.com

b. Access-Control-Max-Age:
<seconds>: This indicates the duration

for which the response of a preflight
request can be cached.

c. Access-Control-Allow-Methods:
This indicates the methods that allowed
when attempting to access a resource.

d. Access-Control-Allow-Headers:
This indicates the HTTP headers can be
used in a request.

6. The Victim Browser receives the response and
examines the CORS headers to see if
legitimatewebsite.com indicates code from the
origin “https://AttackerWebSite.com” is
permitted to read the response.

7. If the CORS response headers from
legitimatewebsite.com permit cross-origin
communication to the origin
https://AttackerWebSite.com, the Victim Browser
will give the malicious script access to the
response contents containing private data and
responds by returning the requested resource. If
the cross-origin communication is not allowed by
the response headers, the browser will enforce and
block the Malicious Script from reading response
content.

Figure 8: CORS process flow

6.1.1.3 Preventing Man in the middle attacks
Proposed scheme uses HTTPS to protect against
this type of attack and secure cookies throughout
application that Man in The Middle attack is

Journal of Theoretical and Applied Information Technology
15th May 2021. Vol.99. No 9
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2157

possible if unencrypted data is sent and a malicious
attacker intercepts the requests sent from a client or
response sent from a server. This can be prevented
if the channel is encrypted. These have been
resolved to prevent man-in-the-middle type of
attacks, meaning it will never be possible to decode
HTTPS traffic by getting a copy of it. The End-user
on the client host wants to make a secure
transaction to authorization server. An attacker host
is connected to the same network as the client and
will manipulate HTTPS traffic between the client

host and server host but the data sent by the client-
authorization server side encrypted and packet send
is sent through secure channel and then its integrity
is maintained.
6.1.1.4 Comparison vulnerability and protection
of XSS and CSRF attack for JWT’s Storage
Security
In this section compares vulnerability and
protection of XSS and CSRF attack for storing the
JWT on the cookies or on the web storage as shown
in Table 5:

Table 5: JWT’s Storage Security

 XSS XSS Protection

CSRF CSRF Protection

JWT in
Web storage

 Vulnerable

 Ensure use HTTPS

 Add X-Frame-options
header to every response,
and set it to Deny

 X-XSS-Protection to 1
 X-Content-Type-

Options →no sniff

 Not
vulnerable

JWT Cookie

 Vulnerable

 Set the HTTP only flag

 Secure cookie

 Ensure use HTTPS

 Vulnerable

 CSRF
mitigation
with a cross
origin request
(CORS)

When implemented correctly it can represent a secure solution API and a reduced server load, as some part
of data can be retrieved from the token’s payload without extra DB hits.

6.1.2 Practical experiments
Testing is done with Postman[23] who has a
function as application used for testing the REST
API that was created. There are two the process
carried out at Postman namely POST and GET:

1. Post to send parameters in the form of a
username and a valid password to generate
JWT.

2. This JWT as a key to gain access to make the
next request.

3. The GET process is done with enter the key or
JWT that what was obtained in the post process
to obtain data.

4. When make requests, generally JWT are sent at
HTTP header.

5. The default key for carrying JWT is
"Authorization". Usually by default the JWT
will always be updated after the HTTP request
is made, and can be accessed in the response
header.

6. Display the results of the application of HMAC
SHA-256 and RSA-256.

6.1.2.1 Generate token time
The first test is to generate a token process and in
Table 6 experiments are presented and the results of
the test context as shown Figure 9.

Journal of Theoretical and Applied Information Technology
15th May 2021. Vol.99. No 9
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2158

 Table 6. Generate token processing time

Testing Signing Algorithm
RSA-256 (Generate

token processing
time)

Signing Algorithm
SHA-256 (Generate

token processing
time)

1 211 253

2 468 240

3 356 245

4 231 254

5 153 257

6 245 229

7 255 224

8 204 258

9 206 239

10 196 251

AVG 252.5 245

Figure 9: Evaluation performance of time process
generating for tokens using RSA-256 and SHA-256

Algorithms

6.1.2.2 Token size
The second test is JWT Token size process and in
Table 7 experiments are presented and the results of
the test context as shown Figure 10.
The size of the token depends on adding claims in
JWT, each request to the server must involve the
JWT along with it.

 Table 7. Token size

Testing Signing Algorithm
RSA-256 (bytes)

Signing Algorithm
SHA-256
((bytes)

1 2460 1960
2 2450 1770
3 2420 2250
4 2400 2250
5 2410 1740
6 2410 2250
7 2410 2250
8 2410 1740
9 2420 1740
10 1740 1290

AVG 2353 1924

Figure 10: Evaluation of tokens size using

RSA-256 and SHA-256 algorithms.

6.1.2.3 Time of token data transfer
Testing time transferring token data from client to
resource server can be seen in Table 8 and Figure
11

Table 8. Time of token data transfer

Testing Signing
Algorithm

RSA-256 (ms)

Signing
Algorithm
SHA-256

(ms)
1 170 40
2 122 46
3 106 96
4 120 102
5 134 64
6 137 106
7 70 87

Journal of Theoretical and Applied Information Technology
15th May 2021. Vol.99. No 9
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2159

8 42 74
9 126 96
10 79 55

 AVG 110.6 76.6

Figure 11: Evaluation performance time of token data
transfer using RSA-256 and SHA-256 algorithms.

6.2 Performance evaluation of the proposed
scheme OAuth2.0 with JWT and OAuth2.0
without JWT

In this section compares evaluation of the
proposed scheme OAuth2.0 with JWT and
OAuth2.0 according with parameters testing
average the time to generate the token, the time data

transfer speed of the token and the size of the token
generated from the client request to the server can
be seen in Table 9.
Evaluation the performance of the token generating
time (table 6 and figure 9) that the SHA-256
algorithm to an average score of 245 ms, there is an
increase of 2.97 % when compared to RS256.
According token size (table 7 and figure 10) SHA-
256 produces 1924 bytes token size when compared
to RS256 increased by 18.23 %. Test results (table
8 and figure 11) in SHA-256 token transfers
received an average score of 76.6 ms, while an
increase of 30.74 % in RS256.
In OAuth2.0 without JWT the resource server asks
the authorization server for the user details related
to the token and whether the token is valid or not on
each client request that data token transfer received
an average score of 112 ms, compared with
proposed scheme OAuth2.0 JWT (Algorithm SHA-
256) take less time with average 76.6 ms and
(AlgorithmRSA-256) with average 110.6 ms.
The overall results show that the experimental
results show the use of the SHA-256 has better
performance than RS256 for generating tokens, the
size of tokens and time of token data transfer.

Table 9: Comparison the proposed scheme Stateless OAuth2 using OAUTH2 + JWT and OAuth2.0 without JWT

Parameters OAuth2.0 without

JWT

Proposed scheme OAuth2.0 with JWT
(AlgorithmRSA-256)

Proposed scheme OAuth2.0 with
JWT (Algorithm SHA-256)

Generate token time 733.8 ms 252.5ms 245 ms

Token size 483 bytes 2353 bytes 1924 bytes

Data token transfer 122 ms 110.6 ms

76.6 ms

6.3 Preventing User Credentials Phishing Attack

 Countermeasures for protection against
phishing user credentials, proposes solution applies
two-factor authentication service that is considered
against various phishing attempts and to ensure
only authorized user allow to access the application
by verify the user identity before any accesses grant
to the user for the protected services as follow:

a) The user enters the username and password
and after validation, user is prompted for the
2-factor authentication code in the next form
to increase the assurance that a correct user
has been authorized to access a secure system.

b) A Security code was dynamically generated in
Two-factor authentication service and sent to
user by email or SMS so it was difficult to
phish the User Credentials.

c) The Authorization server accepts the request
and validates the username and password first

Journal of Theoretical and Applied Information Technology
15th May 2021. Vol.99. No 9
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2160

and then the 2-factor security code entered by
the user that received by e-mail or SMS.

7. CONCLUSION AND FUTURE SCOPE

 In this research, using OAuth 2.0 and JWT
is proposed to achieve stateless and gain
performance improvement. The statistic results of
this research have been presented about the
comparison of token-based authentication
performance using JWT with algorithms SHA-256
and RS256 and performance evaluation of
OAuth2.0 without JWT.

 Analysis of security token attack have
been presented and prevented these types of attacks
on JWT such as XSS attacks and CSRF attacks. In
order to avoid original password being stolen, two-
factor authentication service is also introduced by
verifying the user identity before any accesses grant
for the protected services by sending a security
code to user’s e-mail or SMS.

When store JWT tokens in cookies, the
size limit of a cookie or URL may be quickly
exceeded that depends on the app’s architecture and
especially data that is stored in the token. There
may be access tokens and refresh tokens for
accessing users and getting the refresh token is a bit
more complicated. We will implement other pattern
to secure store JWT.so, it is the future scope to
apply this proposed scheme in such a scenario.

REFERENCES:

[1] Fielding, R.T. and R.N. Taylor, Principled

design of the modern Web architecture. ACM
Transactions on Internet Technology (TOIT),
2002. 2(2): p. 115-150.

[2] D. Hardt, E. The OAuth 2.0 Authorization
Framework. October 2012; Available from:
https://tools.ietf.org/html/rfc6749.

[3] Torroglosa-García, E., et al., Integration of the
OAuth and Web Service family security
standards. Computer networks, 2013. 57(10):
p. 2233-2249.

[4] auth0. OAuth 2.0 Authorization Framework.
Available from:
https://auth0.com/docs/protocols/oauth2.

[5] Hardt, D., The OAuth 2.0 authorization
framework. 2012, RFC 6749, October.

[6] Peyrott, S., The JWT Handbook. Seattle, WA,
United States, 2016.

[7] Bradley, J. JSON Web Token (JWT). May
2015; Available from:
https://tools.ietf.org/html/rfc7519.

[8] Auth0. Introduction to JSON Web Tokens.
Available from: https://jwt.io/introduction/.

[9] connect2id:. JOSE / JWT cryptographic
algorithm. Available from:
https://connect2id.com/products/nimbus-jose-
jwt/algorithm-selection-guide.

[10] KENTON, W. Two-Factor Authentication.
May 9, 2019; Available from:
https://www.investopedia.com/terms/t/twofacto
r-authentication-2fa.asp.

[11] Leiba, B., Oauth web authorization protocol.
IEEE Internet Computing, 2012. 16(1): p. 74-
77.

[12] Yang, F. and S. Manoharan. A security
analysis of the OAuth protocol. in 2013 IEEE
Pacific Rim Conference on Communications,
Computers and Signal Processing (PACRIM).
2013. IEEE.

[13] Li, W., C.J. Mitchell, and T. Chen. Mitigating
CSRF attacks on OAuth 2.0 systems. in 2018
16th Annual Conference on Privacy, Security
and Trust (PST). 2018. IEEE.

[14] Solapurkar, P. Building secure healthcare
services using OAuth 2.0 and JSON web token
in IOT cloud scenario. in 2016 2nd
International Conference on Contemporary
Computing and Informatics (IC3I). 2016.
IEEE.

[15] Ethelbert, O., et al. A JSON token-based
authentication and access management schema
for Cloud SaaS applications. 2017 IEEE 5th
International Conference on Future Internet of
Things and Cloud (FiCloud) 2017; 47-53].

[16] Spyna, L. Implicit Grant Flow. 2018;
Available from: https://itnext.io/an-oauth-2-0-
introduction-for-beginners-6e386b19f7a9.

[17] Dierks, T. and E. Rescorla, The transport layer
security (TLS) protocol version 1.2. 2008.

[18] Ottinger, J.B. and A. Lombardi, Spring
Security, in Beginning Spring 5. 2019,
Springer. p. 313-343.

[19] Wichers, D., Owasp top-10 2013. OWASP
Foundation, February, 2013.

[20] Guo, X., S. Jin, and Y. Zhang. XSS
vulnerability detection using optimized attack
vector repertory. in 2015 International
Conference on Cyber-Enabled Distributed
Computing and Knowledge Discovery. 2015.
IEEE.

[21] Alex, B., et al., Spring Security Reference.
URL https://docs. spring. io/spring-

Journal of Theoretical and Applied Information Technology
15th May 2021. Vol.99. No 9
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2161

security/site/docs/current/reference/htmlsingle/.
[utoljára megtekintve: 2017. 04. 21.], 2004.

[22] Sharing, W.C.C.-O.R. Cross-Origin Resource
Sharing. 16 January 2014; Available from:
https://www.w3.org/TR/cors/.

[23] Postman-tutorial. postman-tutorial. March
2020; Available from:
https://www.guru99.com/postman-
tutorial.html.

