
Journal of Theoretical and Applied Information Technology
15th April 2021. Vol.99. No 7
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1561

IMPLEMENTATION OF TEXT DATA SECURITY USING
MODULAR MULTIPLICATION BASED BLOCK CIPHER

MODIFICATION
1H KHAIR, 2MARISCHA ELVENY*, 3A M H PARDEDE, 4S RAMADANI, 5ACHMAD FAUZI

1,3,4,5STMIK Kaputama, Jl. Veteran No. 4A-9A, Binjai- Sumatera Utara, Indonesia
2Faculty of Computer Science and Information Technology, Universitas Sumatera Utara, Medan, Indonesia

E mail: 1husnul.khair@gmail.com, 2marischaelveny@usu.ac.id*, 3akimmhp@live.com,
4suci.ramadani23@gmail.com, 5fauzyrivai88@gmail.com

ABSTRACT

One implementation of the use of Information and Communication Technology (ICT) via the internet is
sending text messages via email, social media, or other means of communication. Nearly all messages sent
privately over a private network are secret messages that you don't want to share with other people, be they
text messages, voice messages, picture messages, and video messages. But in reality, confidential information
is often leaked so that confidential information can be spread to various irresponsible parties. The efforts
made by these parties are aimed at misusing the data sent by destroying, intercepting, changing the original
message according to the wishes of other parties for their own interests. This action can make confidential
information or messages visible to people who are not responsible. In overcoming this data security issue,
steps are needed to improve data security. One technique that can be used to secure data is to use the Modular
Multiplication based Block Chipper (MMB) algorithm, which is a simple method that is not too complicated
but is hidden so that the message to be sent is safe. In this research, we propose an algorithm that simplifies
the use of MMB by directly multiplying each plaintext to the key, and changing the constant C using RoL so
that the binary in constant C is doubled. The results of the implementation of this study concluded that the
encryption of the original message would be longer, and it would be more difficult for other parties to crack.

Keywords: Cryptography, MMB, Security, Text.

1. INTRODUCTION

Information and Communication Technology is
developing rapidly so that access to information
obtained is very broad. One of the dissemination of
information can be done through sending messages,
messages that can be sent through social media,
email, short messages or other media. The messages
conveyed are sometimes in the form of messages that
are confidential in nature so that not all parties can
see the message. However, along with this
development, there are also breaches or misuse in the
security of the data sent, such as by destroying,
tapping, changing the message for personal gain.
This action can make information or messages that
are confidential can be seen by people who are not
responsible. Therefore, the issue of information
security is very important in an information system
for mutual security and personal security. For that,
we need a security system that can protect
information [1].

Data security technology continues to evolve from
data encryption to data insertion. A new method of
modular multiplication based on Karatsuba-like
multiplication has been carried out by Zhen Gu et al.
The method is useful for both special modulus such
as NIST prime and general modulus based on
Montgomery's modular multiplication, which results
in an intermediate step between the multiplication of
integers required to be simplified as one simple step
[2].

Multiplication MODULAR and modular
exponent in the implementation of securing text or
data is widely used, operation in many public-key
cryptosystems (PKCs) with large modulus is done by
repeating modular multiplication [3], [4], which is a
slow and very time-consuming operation [5], as a
result of the slow and very slow operation [6]. this
time consuming, so the dependence on the output
rate of the modular multiplication and the number of
modular multiplications required led to the
performance of many PKC. A high output rate for
large integers is difficult to obtain without using

Journal of Theoretical and Applied Information Technology
15th April 2021. Vol.99. No 7
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1562

supported hardware acceleration. Montgomery's
modular multiplication is an efficient and highly
recommended method of performing high-level
hardware implementations of large modulus modular
multiplication [7], [8], [9][10], [11]. This algorithm
replaces experimental division with a series of
addition and right shift operations [12], [13]. A very
challenging follow-up study in Montgomery's
modular multiplication was the time-consuming
carry propagation of the addition of very large
operands [14], [15].

Hardware implementation of the multibit-scan-
multibit-shift technique using multiplier expansion
and MBS (limited number of shifts), as well as the
proposed modular multiplication architecture using
the modified L2R and R2L modular exponential
architectures. The results of the complexity analysis
and implementation results show that the proposed
architecture provides a significant increase in total
computation time consumption which is faster and
throughput is faster than other modular
multiplication architectures [16].

Research conducted by Saldamli and Koc
proposed an algorithm to for Montgomery Modular
Multiplication (MMM) in the spectral domain [17].
However, their proposed modular spectral algorithm
is derived from the serial-digit variant MMM [18],
the proposed algorithm is essentially sequential,
making it unfriendly for massively parallel
computing. McLaughlin, et al proposed a new
framework for a modified version of MMM which is
suitable to be performed in the spectral domain [19].
The new MMM version has a lower multiplication
time than the original MMM. To avoid doubling the
length of the transformation at the time of
multiplication, a cyclic convolution and a negative
convolution are used. When multiplying MMM in
the spectral domain, the FFT-based Montgomery
Product Reduction (FMPR) Algorithm is used which
is very suitable for use in parallel hardware designs
[20],[21].

In previous studies by Bos and Friedberger, as
well as Karmakar, et al., It was found that
Montgomery's reduction of specific structural primes
used in isogeny-based cryptography was not optimal
[22], [23], [24], in that study it was found that a
special modulus could be used. for the most effective
implementation. faster. In the Diffie-Hellman
(SIDH) supersingular isogeny, the prime number, p,
is of the form, p = f * 2a3b− 1, where f is a minor
number. Public key cryptographic systems are very
similar to others [25], Karmakar et al. proposes an
Efficient Finite Field Multiplication (EFFM)
algorithm, where the main plane has a special

structure that proposes two new algorithms, namely
the Enhanced EFFM (Efficient Finite Field
Multiplication) to FFM1 algorithm, which is then
upgraded from the original EFFM by reducing the
number of operands, and a very second algorithm
FFM2. differs from the original EFFM and FFM1,
and allows for a larger operand size while reducing
the number of its modulus multiplication operations.
From the two proposed algorithms, it is concluded
that it can significantly speed up computation, and
produce a better hardware architecture when
compared to the original EFFM algorithm
implementation [26].

In the development of the FFM1 and FFM2
algorithms, a mathematical transformation is applied
to reduce the number of operations in the first new
algorithm (FFM1), and better and faster results are
obtained in the second FFM2 algorithm, which is 6
times faster than before. The hardware
implementation of the FFM2 algorithm when
compared to FFM1 and EFFM is the fastest. In
addition, the FFM2 algorithm can be applied to
various modulo, with limitations on the EFFM
algorithm and the FFM1 algorithm. Also the FFM2
hardware implemented is 31% faster than the
software implementation [27].

One technique that can be used to secure data is to
use the Modular Multiplication based Block Chipper
(MMB) algorithm, a simple method that is not too
complex but the hidden message is quite safe [28].
The main advantages of a given cipher are ease of
implementation and the possibility of probabilistic
encryption. This means that text encryption will do
it differently when the keys are the same and the data
are the same. So, the encryption strength is
increased. In addition, the size of the encoded
message is difficult to predict [29].

The data security issue is the most important issue
today. Many cryptosystems are offered to secure
data, cryptosystems using public keys are the
cryptographic systems most commonly used to
secure data communications, one of which is by
using modular multiplication which is the basic
operation of common public-key cryptography
systems such as RSA, ElGamal, and Elliptic Curve
Cryptography. (ECC), Diffie-Hellman (DH) key
agreement [30]. Cryptographic systems use a public
key that is implemented as a coprocessor so that it
can speed up encryption operations and reduce
computation time or computational overhead of the
main processor [31], [32].

The solution to the problem in this study is how to
apply the Modular Multiplication Based Block

Journal of Theoretical and Applied Information Technology
15th April 2021. Vol.99. No 7
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1563

Cipher (MMB) method to protect data security in
secret text messages, so that the text files cannot be
solved by applying the Modular Multiplication
Based Block Cipher algorithm.

The purpose of this algorithm is to increase the
security of encrypted messages quickly, and cannot
be reopened and if the message is reopened, it must
be decrypted [33].

2. METHODS AND MATERIAL

Cryptography is part of the science or art of
keeping messages safe. When a message is sent from
one place to another, the contents of the message
may be intercepted by other parties who are not
entitled to know the contents of the message. To
protect the message, the message can be converted
into a code that cannot be understood by other parties
[34].

In cryptography, Modular Multiplication for a

Specific Modulus is quite often used in a special
form, for example, in the use of prime numbers,
where the modulus number is subtracted by the value
1 [35], [2]. Montgomery's modular multiplication
uses the modulus N and R, R and N is the selected
parameter, and usually, R is set to the power of 2
sequentially to simplify the operation of mod R [7].

Montgomery's design efficiency can be

determined in terms of the area, time and energy
consumed. Montgomery's modular multiplication
has an iterative extension that calculates the quotient
and addition of the operands followed by the shift
operation. The authors [36], [37] propose 4: 2 and 5:
2 carry over to Montgomery's modular
multiplication architecture by doing large word
length increments and producing superior
architectural savings with a throughput rate
independent of word length at the cost of area
requirements. which is high [38], [39], [40].

In the research, Verma et al. Resulted in a

conclusion that calculating Montgomery's initial
modular multiplication word approach requires basic
operations to calculate the MSB (Most Significant
Bit) to complete a word. The proposed method
adopts the energy efficiency approach in the
literature to compute the same word by all PE'S
(processing elements) in all iterations. Comparing
the path delay of the proposed design with other
designs it has reduced the path delay, so that further
research is expected to apply the proposed design to
the FPGA. Also the binary exponential results of the

RSA and Montgomery Powering Ladder with the
proposed design will be implemented in the FPGA
[41].

Efficient Interleaved Modular Multiplication

(EIMM) is a parallel version of the standard alternate
modular multiplication algorithm, which computes
in parallel and confirms correct intermediate results
using sign detection techniques. EIMM architecture
is based on a sign detection technique that is
responsible for determining the sign of a number
represented in a number pair. EIMM calculates
modular multiplication without any pre-compute
phases or predefined sets of modulus [30]. EIMM
has more hardware area than Modified Interleaved
Modular Multiplication (MIMM), but the EIMM
architecture when compared to MIMM will be more
efficient in terms of performance and processing
time speed, so it can be conveyed that EIMM
operating time is up to 1.99x faster. from MIMM
[42], [43], [44].

In a large number of modular units, the repetitive

cycle operation results in a much more complex
multiplication modular when compared to the
addition of the subtraction modular to the structure,
therefore the MAS Optimization (Multiplication
Addition Subtraction) modular is focused on
multiplication, the multiplication of which is divided
into two types of structures namely Modular
Multiplication Add-based (AMM) and Multiply-
based Modular Multiplication (MMM) [45].

Cryptography uses an algorithm (cipher) and a

key (key). Cipher is a mathematical function used to
encrypt and decrypt data. While the key is a series of
bits needed to encrypt and decrypt. Not only relying
on its security on the confidentiality of the algorithm
but on the confidentiality of the key [46]. Which is
where in cryptography it is necessary to encrypt the
text blocks 𝐵 = 𝑞1, 𝑞2,…, 𝑞𝑛, which have n symbols
of b-bit size each with a secret key [29].

The MMB method uses a 128-bit key. The key

formation process in the MMB method is very
simple. The key that is inputted is only divided into
four (4) key sub-blocks with a length of 32 bits each.
The chat message system architecture design uses
built-in MMB cryptography. See Figure 1 [47].

Journal of Theoretical and Applied Information Technology
15th April 2021. Vol.99. No 7
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1564

Figure 1. Design of MMB Cryptographic Chat

Message Architecture

If plain text (X) or key (Y) or both are zero, then
the multiplier output is zero and a nonzero input can
result in output 216 which is also interpreted as zero.
This produces an incorrect output during the
decryption process [48], then zeros must be detected
and processed separately [49], If MMB has 7 rounds
it is still vulnerable to different attacks [50]. The
advantages of the Modular Multiplication Based
Block Cipher (MMB) Method [51]:

1. In MMB, the keys used in the encryption and
decryption process are the same. Meanwhile,
the IDEA key used in the encryption and
decryption process is not the same. The
decryption key is the reverse operation of the
encryption key

2. In MMB, the encryption and decryption
process uses the multiplication operation
modulo 232 -1 so that the level of security is
higher. Meanwhile, IDEA, the encryption and
decryption process uses the multiplication
operation modulo 216 + 1.

3. In MMB, the encryption and decryption
process is much faster than IDEA which only
consists of 2 rounds. Meanwhile, IDEA, the
encryption and decryption process is longer,
consisting of 8 rounds so it is more time
consuming.

Montgomery's [7] modular multiplication is an
efficient modular algorithm when the modulus of n
is without a specific shape. By adding a limitation to
the parameter, Walter [52] proposed MMM without
a conditional subtraction algorithm and usually a
power of 2 for computational ease.

The XOR operation stands for Exclusive OR

which consists of two (2) inputs and one (1) logical

output. The XOR gate will produce a logic output of
one (1) if all its inputs have different logical values.
If the input logic values are the same, it will give the
output logic zero (0).

The MMB method uses plaintext and a key with

a length of 128 bits. In this study, we propose an
algorithm that simplifies the use of MMB by directly
multiplying each plain text to the key, Presented as
below [53] :

• Convert plaintext to binary
• Convert key to binary
• XOR plaintext and key (Xi = Xi xor Ki)
• constant C using RoL:
• XOR the constant C with the result X, then

MODULUS with 232-1 (Xi = Ci * Xi mod 232-
1),

• Convert the resulting modulus to Hex,
• Convert the resulting Hex to ASCII
• Encryption= ASCII

The multiplication operation used is a

multiplication operation. While the constants used
can be detailed as follows:

• C = (2AAAAAAA) 16
• C0 = (025F1CDB) 16
• C1 = 21 * c0
• C2 = 22 * c0
• C3 = 23 * c0
• Ci =2i * c0

4. IMPLEMENTATION OF THE

ALGORITHM PROPOSED

The encryption process from the MMB method
can be seen in the following example.
Suppose it is known plaintext = ‘MAHASISWA
TEKNIK’ using the key generated above, the
encryption process is as follows:
Plaintext : MAHASISWA TEKNIK
Key : CRYPTOGRAPHY MMB
C : 2AAAAAAA
C0 : 025F1CDB = 39787739

Convert plaintext to binary presented in table 1
below :

Table 1: Convert plaintext to binary

Plain Decimal Binari
M 77 01001101
A 65 01000001
H 72 01001000
A 65 01000001

Sender

Receiver

Plaintext Encryption
Process

Description
Process

Plaintext

Journal of Theoretical and Applied Information Technology
15th April 2021. Vol.99. No 7
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1565

S 83 01010011
I 73 01001001
S 83 01010011
W 87 01010111
A 65 01000001
 32 00100000

T 84 01010100
E 69 01000101
K 75 01001011
N 78 01001110
I 73 01001001
K 75 01001011

Convert key to binary presented in table 2 below:

Table 2: Convert key to binary

Key Decimal Binari
C 67 01000011
R 82 01010010
Y 89 01011001
P 80 01010000
T 84 01010100
O 79 01001111
G 71 01000111
R 82 01010010
A 65 01000001
P 80 01010000
H 72 01001000
Y 89 01011001
 32 00100000

M 77 01001101
M 77 01001101
B 66 01000010

XOR plaintext and key (Xi = Xi xor Ki)

presented in table 3 below :

Table 3: XOR plaintext and key

Plain/Key/
Xi XOR Ki

Decimal Binari

M 77 01001101
C 67 01000011

X0 14 00001110
A 65 01000001
R 82 01010010

X1 19 00010011
H 72 01001000
Y 89 01011001

X2 17 00010001
A 65 01000001

P 80 01010000
X3 17 00010001
S 83 01010011
T 84 01010100

X4 7 00000111
I 73 01001001
O 79 01001111

X5 6 00000110
S 83 01010011
G 71 01000111

X6 20 00010100
W 87 01010111
R 82 01010010

X7 5 00000101
A 65 01000001
A 65 01000001

X8 0 00000000
 32 00100000

P 80 01010000
X9 112 01110000
T 84 01010100
H 72 01001000

X10 28 00011100
E 69 01000101
Y 89 01011001

X11 28 00011100
K 75 01001011
 32 00100000

X12 107 01101011
N 78 01001110
M 77 01001101

X13 3 00000011
I 73 01001001

M 77 01001101
X14 4 00000100

K 75 01001011
B 66 01000010

X15 9 00001001

RoL is used to manipulate data in assembly
language, this instruction will make the data bits
shift, where RoL is the instruction to shift data to the
left. In binary numbers, shifting left may mean
making the binary number 2x larger.
For example: 001 when shifted to the left becomes
010, the following is presented Calculate the
constant C using RoL:
C0 = 39787739
C1 = 79575478
C2 = 159150956
C3 = 318301912
C4 = 636603824
C5 = 1273207648

Journal of Theoretical and Applied Information Technology
15th April 2021. Vol.99. No 7
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1566

C6 = 2546415296
C7 = 5092830592
C8 = 10185661184
C9 = 20371322368
C10 = 40742644736
C11 = 81485289472
C12 = 162970578944
C13 = 325941157888
C14 = 651882315776
C15 = 1303764631552
Ci..n

XOR the constant C with the result X, then
MODULUS with 232-1 (Xi = Ci * Xi mod 232-1),
presented in table 4 below :

Table 4: XOR constant C with result X, then MODULUS

with 232-1

i
Decimal

Ci
Decimal

Xi
Ci * Xi mod

2^32-1
0 39787739 14 557028346
1 79575478 19 1511934082
2 159150956 17 2705566252
3 318301912 17 1116165209
4 636603824 7 161259473
5 1273207648 6 3344278593
6 2546415296 20 3683665675
7 5092830592 5 3989316485
8 10185661184 0 0
9 20371322368 112 960471571

10 40742644736 28 2627719433
11 81485289472 28 960471571
12 162970578944 107 284729308
13 325941157888 3 2865897699
14 651882315776 4 484115039
15 1303764631552 9 31034028

Convert the resulting modulus to Hex, presented

in table 5 below :

Table 5: Convert the resulting modulus to Hex

X
Ci * Xi mod

2^32-1
Convert to Hex

X0 557028346 213393FA
X1 1511934082 5A1E4882
X2 2705566252 A143AA2C
X3 1116165209 42875459
X4 161259473 99C9FD1
X5 3344278593 C755A441
X6 3683665675 DB90470B
X7 3989316485 EDC82385

X8 0 0
X9 960471571 393FA213

X10 2627719433 9C9FD109
X11 960471571 393FA213
X12 284729308 10F89FDC

X13

2865897699
AAD220E3

X14 484115039 1CDB025F
X15 31034028 1D98AAC

Chipertext :
213393FA5A1E4882A143AA2C4287545999C9F
D1C755A441DB90470BEDC823850393FA2139C
9FD109393FA21310F89FDCAAD220E31CDB02
5F1D98AAC

Convert the resulting Hex to ASCII, presented in
table 6 below :

Table 6: Convert Hex to ASCII

X Decimal Hex ASCII
X0 557028346 213393FA !3ú
X1 1511934082 5A1E4882 ZH
X2 2705566252 A143AA2C ¡Cª,
X3 1116165209 42875459 BTY
X4 161259473 99C9FD1 Éý
X5 3344278593 C755A441 ÇU¤A
X6 3683665675 DB90470B ÛG
X7 3989316485 EDC82385 íÈ#
X8 0 0 0
X9 960471571 393FA213 9?¢

X10 2627719433 9C9FD109 Ñ
X11 960471571 393FA213 9?¢
X12 284729308 10F89FDC øÜ
 X13 2865897699 AAD220E3 ªÒ ã
X14 484115039 1CDB025F Û_
X15 31034028 1D98AAC ª

So the encryption results of the proposed

algorithm are:
!3úZH¡Cª,BTYÉýÇU¤AÛGíÈ#09?¢Ñ9?¢øÜªÒ ãÛª

The next is proving the description process, from
the encrypted text, convert the resulting Hex to
ASCII, presented in table 7 below :

Table 7: Convert ASCII to Hex and then to Decimal

X ASCII Hex Decimal

X0 !3ú 213393FA 557028346
X1 ZH 5A1E4882 1511934082
X2 ¡Cª, A143AA2C 2705566252

Journal of Theoretical and Applied Information Technology
15th April 2021. Vol.99. No 7
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1567

X3 BTY 42875459 1116165209
X4 Éý 99C9FD1 161259473
X5 ÇU¤A C755A441 3344278593
X6 ÛG DB90470B 3683665675
X7 íÈ# EDC82385 3989316485
X8 0 0 0
X9 9?¢ 393FA213 960471571

X10 Ñ 9C9FD109 2627719433
X11 9?¢ 393FA213 960471571
X12 øÜ 10F89FDC 284729308

X13

ªÒ ã
AAD220E3

2865897699

X14 Û_ 1CDB025F 484115039
X15 ª 1D98AAC 31034028

Convert key to binary presented in table 8 below:
Table 8: Convert key to binary

Key Decimal Binari

C 67 01000011
R 82 01010010
Y 89 01011001
P 80 01010000
T 84 01010100
O 79 01001111
G 71 01000111
R 82 01010010
A 65 01000001
P 80 01010000
H 72 01001000
Y 89 01011001
 32 00100000

M 77 01001101
M 77 01001101
B 66 01000010

The next one in the final result of the description

process will be generated, presented in table 9
below:

Table 9: Convert binary to plaintext

Decimal Binari Plain
77 01001101 M
65 01000001 A
72 01001000 H
65 01000001 A
83 01010011 S
73 01001001 I
83 01010011 S
87 01010111 W
65 01000001 A
32 00100000
84 01010100 T

69 01000101 E
75 01001011 K
78 01001110 N
73 01001001 I
75 01001011 K

So the encryption results of the proposed

algorithm are:
MAHASISWA TEKNIK

5. CONCLUSIONS

From the implementation of the algorithm
proposed for data security carried out in this study,
the following conclusions can be drawn:

1. The encryption process on plaintext can be
done faster.

2. Keywords and key lengths are made dynamic
according to the length of the plaintext, so
that it makes the XOR or Modulus process
easier.

3. The length of the text that has been encrypted
becomes longer, so that it may be more
difficult to solve.

ACKNOWLEDGMENT

We express our deepest gratitude to the

Directorate of Research and Community Service
(DRPM), Directorate General of Research and
Development Strengthening Ministry of Research,
Technology and Higher Education for funding
support in the form of a Beginner Lecturer Research
(PDP) grant for the 2020 fiscal year. We also express
our gratitude to STMIK Kaputama and Universitas
Sumatera Utara for support in the implementation of
this research activity.

REFRENCES:

[1] A. M. H. Pardede, H. Manurung, and D. Filina,

“Algoritma Vigenere Cipher Dan Hill Cipher
Dalam Aplikasi Keamanan Data Pada File
DOKUMEN,” JTIK (Jurnal Tek. Inform.
Kaputama), vol. 1, no. 1, pp. 26–33, 2017.

[2] Z. Gu and S. Li, “A Novel Method of Modular
Multiplication Based on Karatsuba-like
Multiplication,” 2020, doi:
10.1109/ARITH48897.2020.00014.

[3] F. Gandino, F. Lamberti, G. Paravati, J. C.
Bajard, and P. Montuschi, “An algorithmic and
architectural study on montgomery

Journal of Theoretical and Applied Information Technology
15th April 2021. Vol.99. No 7
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1568

exponentiation in RNS,” IEEE Trans.
Comput., 2012, doi: 10.1109/TC.2012.84.

[4] N. Nedjah, L. M. Mourelle, M. Santana, and S.
Raposo, “Massively parallel modular
exponentiation method and its implementation
in software and hardware for high-
performance cryptographic systems,” IET
Comput. Digit. Tech., 2012, doi: 10.1049/iet-
cdt.2011.0074.

[5] G. D. Sutter, J. P. Deschamps, and J. L. Imana,
“Modular multiplication and exponentiation
architectures for fast RSA cryptosystem based
on digit serial computation,” IEEE Trans. Ind.
Electron., 2011, doi:
10.1109/TIE.2010.2080653.

[6] X. Huang and W. Wang, “A Novel and
Efficient Design for an RSA Cryptosystem
with a Very Large Key Size,” IEEE Trans.
Circuits Syst. II Express Briefs, 2015, doi:
10.1109/TCSII.2015.2458033.

[7] P. L. Montgomery, “Modular Multiplication
Without Trial Division,” Math. Comput., 1985,
doi: 10.2307/2007970.

[8] A. Rezai and P. Keshavarzi, “A New CMM-
NAF Modular Exponentiation Algorithm by
using a New Modular Multiplication
Algorithm,” Trends Appl. Sci. Res., 2012, doi:
10.3923/tasr.2012.240.247.

[9] S. Talapatra, H. Rahaman, and J. Mathew,
“Low complexity digit serial systolic
montgomery multipliers for special class of
GF(2m),” IEEE Trans. Very Large Scale
Integr. Syst., 2010, doi:
10.1109/TVLSI.2009.2016753.

[10] Y. Y. Zhang, Z. Li, L. Yang, and S. W. Zhang,
“An efficient CSA architecture for
montgomery modular multiplication,”
Microprocess. Microsyst., 2007, doi:
10.1016/j.micpro.2006.12.003.

[11] H. R. Ahmadi and A. Afzali-Kusha, “A low-
power and low-energy flexible GF(p) elliptic-
curve cryptography processor,” J. Zhejiang
Univ. Sci. C, 2010, doi:
10.1631/jzus.C0910660.

[12] S. R. Kuang, J. P. Wang, K. C. Chang, and H.
W. Hsu, “Energy-efficient high-throughput
montgomery modular multipliers for RSA
cryptosystems,” IEEE Trans. Very Large Scale
Integr. Syst., 2013, doi:
10.1109/TVLSI.2012.2227846.

[13] A. Rezai and P. Keshavarzi, “High-
performance implementation approach of
elliptic curve cryptosystem for wireless
network applications,” 2011, doi:
10.1109/CECNET.2011.5768248.

[14] A. Miyamoto, N. Homma, T. Aoki, and A.
Satoh, “Systematic design of RSA processors
based on high-radix montgomery multipliers,”
IEEE Trans. Very Large Scale Integr. Syst.,
2011, doi: 10.1109/TVLSI.2010.2049037.

[15] G. Sassaw, C. J. Jiménez, and M. Valencia,
“High radix implementation of Montgomery
multipliers with CSA,” 2010, doi:
10.1109/ICM.2010.5696148.

[16] A. Rezai and P. Keshavarzi, “High-
Throughput Modular Multiplication and
Exponentiation Algorithms Using Multibit-
Scan-Multibit-Shift Technique,” IEEE Trans.
Very Large Scale Integr. Syst., 2015, doi:
10.1109/TVLSI.2014.2355854.

[17] G. Saldamli and Ç. K. Koç, “Spectral modular
exponentiation,” 2007, doi:
10.1109/ARITH.2007.34.

[18] Ç. K. Koç, T. Acar, and B. S. Kaliski,
“Analyzing and comparing montgomery
multiplication algorithms,” IEEE Micro. 1996,
doi: 10.1109/40.502403.

[19] P. B. McLaughlin, “New frameworks for
Montgomery’s modular multiplication
method,” Math. Comput., 2003, doi:
10.1090/s0025-5718-03-01543-6.

[20] D. D. Chen, G. X. Yao, R. C. C. Cheung, D.
Pao, and Ç. K. Koç, “Parameter Space for the
Architecture of FFT-Based Montgomery
Modular Multiplication,” IEEE Trans.
Comput., 2016, doi:
10.1109/TC.2015.2417553.

[21] W. Dai, D. D. Chen, R. C. C. Cheung, and Ç.
K. Koç, “Area-Time Efficient Architecture of
FFT-Based Montgomery Multiplication,”
IEEE Trans. Comput., 2017, doi:
10.1109/TC.2016.2601334.

[22] J. W. Bos and S. Friedberger, “Fast Arithmetic
Modulo 2x py ± 1,” 2017, doi:
10.1109/ARITH.2017.15.

[23] J. W. Bos and S. J. Friedberger, “Arithmetic
Considerations for Isogeny-Based
Cryptography,” IEEE Trans. Comput., 2019,
doi: 10.1109/TC.2018.2851238.

[24] J. W. Bos and S. J. Friedberger, “Faster
modular arithmetic for isogeny-based crypto
on embedded devices,” J. Cryptogr. Eng.,
2020, doi: 10.1007/s13389-019-00214-6.

[25] A. Karmakar, S. S. Roy, F. Vercauteren, and I.
Verbauwhede, “Efficient finite field
multiplication for isogeny based post quantum
cryptography,” 2017, doi: 10.1007/978-3-319-
55227-9_14.

[26] C. Liu, J. Ni, W. Liu, Z. Liu, and M. O’Neill,
“Design and Optimization of Modular

Journal of Theoretical and Applied Information Technology
15th April 2021. Vol.99. No 7
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1569

Multiplication for SIDH,” 2018, doi:
10.1109/ISCAS.2018.8351082.

[27] W. Liu, J. Ni, Z. Liu, C. Liu, and M. O’Neill,
“Optimized Modular Multiplication for
Supersingular Isogeny Diffie-Hellman,” IEEE
Trans. Comput., 2019, doi:
10.1109/TC.2019.2899847.

[28] F. Dewandaru and C. Rahmad, “Aplikasi
Keamanan Data Menggunakan Metode Mmb
Dan Lsb,” J. Inform. Polinema, 2016.

[29] S. Krendelev, N. Zbitnev, D. Shishlyannikov,
and D. Gridin, “Block cipher based on modular
arithmetic and methods of information
compression,” 2017, doi: 10.1088/1742-
6596/913/1/012009.

[30] M. A. Nassar and L. A. A. El-Sayed, “Efficient
interleaved modular multiplication based on
sign detection,” 2016, doi:
10.1109/AICCSA.2015.7507088.

[31] A. M. Abdel Fattah, A. M. Bahaa El-Din, and
H. M. A. Fahmy, “Efficient implementation of
modular multiplication on FPGAs based on
sign detection,” 2009, doi:
10.1109/IDT.2009.5404160.

[32] M. Knežević, F. Vercauteren, and I.
Verbauwhede, “Faster interleaved modular
multiplication based on Barrett and
Montgomery reduction methods,” IEEE Trans.
Comput., 2010, doi: 10.1109/TC.2010.93.

[33] A. M. H. Pardede et al., “Application of
Message Security Application Using Vigenere
Cipher Algorithm Utilizing One Time Pad
(OTP) Algorithm as a Key Generator,” 2019,
doi: 10.1088/1742-6596/1363/1/012080.

[34] M. M. Amin, “IMAGE STEGANOGRAPHY
DENGAN METODE LEAST SIGNIFICANT
BIT (LSB),” CSRID (Computer Sci. Res. Its
Dev. Journal), 2016, doi:
10.22303/csrid.6.1.2014.53-64.

[35] P. D. Gallagher and C. Romine, “FIPS PUB
186-4 Digital Signature Standard (DSS),”
Encycl. Cryptogr. Secur., 2013.

[36] C. McIvor, M. McLoone, J. V. McCanny, A.
Daly, and W. Marnane, “Fast montgomery
modular multiplication and RSA
cryptographic processor architectures,” 2003,
doi: 10.1109/acssc.2003.1291939.

[37] C. Mclvor, M. McLoone, and J. V. McCanny,
“Modified Montgomery modular
multiplication and RSA exponentiation
techniques,” IEE Proc. Comput. Digit. Tech.,
2004, doi: 10.1049/ip-cdt:20040791.

[38] H. Thapliyal, A. Ramasahayam, V. R. Kotha,
K. Gottimukkula, and M. B. Srinivas,
“Modified montgomery modular

multiplication using 4:2 Compressor and CSA
adder,” 2006, doi: 10.1109/DELTA.2006.70.

[39] B. Hanindhito, N. Ahmadi, H. Hogantara, A. I.
Arrahmah, and T. Adiono, “FPGA
implementation of modified serial
montgomery modular multiplication for 2048-
bit RSA cryptosystems,” 2015, doi:
10.1109/ISITIA.2015.7219964.

[40] R. Verma, M. Dutta, and R. Vig, “FPGA
implementation of RSA based on carry save
Montgomery modular multiplication,” 2016,
doi: 10.1109/ICCTICT.2016.7514561.

[41] R. Verma, M. Dutta, and R. Vig, “Early-word-
based montgomery modular multiplication
algorithm,” 2015, doi:
10.1109/SPIN.2015.7095268.

[42] J. W. Bos, P. L. Montgomery, D. Shumow, and
G. M. Zaverucha, “Montgomery multiplication
using vector instructions,” 2014, doi:
10.1007/978-3-662-43414-7_24.

[43] P. Giorgi, L. Imbert, and T. Izard, “Parallel
modular multiplication on multi-core
processors,” 2013, doi:
10.1109/ARITH.2013.20.

[44] P. Wang, Z. Liu, L. Wang, and N. Gao, “High
radix montgomery modular multiplier on
modern FPGA,” 2013, doi:
10.1109/TrustCom.2013.180.

[45] J. Li, Z. Dai, W. Li, S. Yi, and S. Zhou,
“Research and design of add-based length-
scalable dual-field modular multiplication-
addition-subtraction,” 2017, doi:
10.1109/ICAM.2017.8242136.

[46] I. A. Ilyas, “Kriptografi,” Kriptografi fFle
Menggunakan Metod. AES Dual Password,
2014, doi: 10.1046/j.1364-3703.2000.00031.x.

[47] T. Wu, S. Li, and L. Liu, “Fast RSA decryption
through high-radix scalable Montgomery
modular multipliers,” Sci. China Inf. Sci., vol.
58, no. 6, pp. 1–16, Jun. 2015, doi:
10.1007/s11432-014-5215-4.

[48] S. Elagooz, N. Hamdy, K. Shehata, and M.
Helmy, “Design and implementation of high
and low modulo (216 + 1) multiplier used in
idea algorithm on FPGA,” 2003, doi:
10.1109/NRSC.2003.1217343.

[49] K. Palutla and P. Gundabathina,
“Implementation of High Speed Modulo (2 +1)
Multiplier for IDEA Cipher,” Procedia
Comput. Sci., 2020, doi:
10.1016/j.procs.2020.04.216.

[50] K. Jia, J. Chen, M. Wang, and X. Wang,
“Practical attack on the full MMB block
cipher,” 2012, doi: 10.1007/978-3-642-28496-
0_11.

Journal of Theoretical and Applied Information Technology
15th April 2021. Vol.99. No 7
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1570

[51] D. Ariyus, “Pengantar Ilmu Kriptografi Teori,
Analisis dan Implementasi.,” Journal of
Chemical Information and Modeling. 2008,
doi: 10.1017/CBO9781107415324.004.

[52] C. D. Walter, “Montgomery exponentiation
needs no final subtractions,” Electron. Lett.,
1999, doi: 10.1049/el:19991230.

[53] R. Munir, “Pengantar Ilmu Kriptografi,”
Penerbit Andi, 2008, doi:
10.1017/CBO9781107415324.004.

