
Journal of Theoretical and Applied Information Technology
31st March 2021. Vol.99. No 6
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1339

DETECTING COMMON WEB ATTACKS
BASED ON SUPERVISED MACHINE LEARNING

USING WEB LOGS

1XUAN DAU HOANG, 2TRONG HUNG NGUYEN
1Cybersecurity Lab, Posts and Telecommunications Institute of Technology, Hanoi, Vietnam

2Faculty of Information Technology and Security, Academy of People’s Security, Hanoi, Vietnam

E-mail: 1dauhx@ptit.edu.vn, 2tronghungt31@gmail.com

ABSTRACT

Web attacks, such as SQLi (SQL injection) and XSS (Cross Site Scripting) have been seen critical threats to
web applications, websites and web users. These types of web attacks can cause serious damages to web
applications, websites and web users, ranging from bypassing authentication systems, stealing sensitive
information from databases and users, to even taking the full control of server systems. To cope with web
attacks, a number of methods have been researched and applied to protect web applications, websites and
web users. Among them, the detection of web attacks is a promising approach in defensive layers to
safeguard websites and web applications. However, some methods can only detect one kind of web attacks,
while other proposals either require regular updates of detection rules, or require extensive computing
resources because they use complicated detection methods. In this paper, we propose a model for web
attack detection based on machine learning using web logs. Our model’s main aims are (1) building the
detection model automatically and without the requirement of frequent update, (2) being able to detect
common types of web attacks and (3) improving the detection rate as well as lowering down the false alarm
rates. The proposed detection model is built using inexpensive machine learning algorithms, including
SVM, decision tree and random forest. Experiments conducted on a labelled dataset and real web logs show
that the proposed model is capable of detecting common types of web attacks effectively with the highest
overall detection accuracy rate of 99.68%.

Keywords: Common Web Attacks, Web Attack Detection, SQL injection Detection, Cross Site Scripting
Detection, Machine Learning-based Web Attack Detection

1. INTRODUCTION

Web attacks, such as SQLi, XSS, CMDi
(Operating System Command injection) and Path
traversal have been considered constant and
dangerous threats to websites, web applications and
web users [1][2]. These kinds of attacks are
common because of the popularity of websites and
web applications and the availability of the web
attack tools on the Internet [3]. We name the web
attack group of SQLi, XSS, CMDi and Path
traversal (Path) as “common web attacks”. The
major cause that allows common web attacks is the
security vulnerability in the input data validation
mechanisms of web systems [1][2]. Common web
attacks can cause serious consequences to websites,
web applications and their users. These attacks can
assist attackers to bypass the web systems’
authentication mechanisms, to carry out
unauthorized modifications to web content and
databases, to extract important data from web

application databases, to steal sensitive information
of web servers and web users, and even to take the
full control of the web servers and/or the database
servers [1][2].

Among common web attacks, SQLi or SQL
injection attack is one of the most dangerous attacks
to websites and web applications. SQLi is in the
“Injection” web attack group that has been the first
position of the Top 10 OWASP web vulnerabilities
and threats for many years [1]. The main target of
SQLi attacks are the databases of websites or web
applications. Attackers usually exploit the
vulnerabilities in websites’ user input data
validation to launch SQLi attacks. Malicious SQL
code can be inserted into web URLs and web data
input forms, then they are sent to the web server
and finally executed on the database server of the
web system. Figure 1 shows an example of SQLi
attack to a web system, in which the attacker inserts
the malicious code into the input data in order to

Journal of Theoretical and Applied Information Technology
31st March 2021. Vol.99. No 6
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1340

extract the list of usernames and passwords from
the database of the web system.

Figure 1: An example Of SQLi Attacks To Extract The
List Of Usernames And Passwords From Web Database

XSS or Cross Site Scripting is another common
type of web attacks and it is different from SQLi,
where the major XSS target is the web browsers.
Malicious XSS code in the form of HTML or
JavaScript code is inserted into web pages and
finally executed on the users’ web browsers.
Attackers usually use XSS to steal sensitive and
valuable data stored in the user web browsers.
Figure 2 illustrates a typical model of XSS attack,
in which XSS code is inserted and permanently
stored in the web server and then the code is
executed on the user’s web browser when the user
visits the website.

Figure 2: A Model Of XSS Attacks

CMDi or command injection is in the same
“Injection” web attack group with SQLi attack.
Instead of using malicious SQL code, the malicious
operating system commands are inserted and
executed on the server. CMDi attacks can allow
attackers to execute dangerous commands, such as
deleting sensitive files or folders on the web server
system.

The last type of common web attacks is path
traversal. This type of web attacks exploits the

vulnerability in the validation of the input path
strings of files or folders. The attacks allow the
attackers to download the content of sensitive files
of the servers. Figure 3 presents an example of path
traversal attacks, in which the content of the
system’s password file (/etc/passwd) is retrieved
and displayed on the web browser window.

Figure 3: An Example Of Path Traversal Attacks

Due to the danger of common web attacks,
several countermeasures have been researched and
applied into practice to detect and prevent these
attacks to protect websites, web applications and
web users. Generally, there are 3 defensive
approaches for these attacks, including (1) validate
all data inputs, (2) reduce the attacking surfaces and
(3) use “defense in depth” strategy [1][2].
Specifically, approach (1) requires all input data to
web applications to be checked thoroughly using a
set of input filters and only legitimate inputs are
passed to next steps for processing. On the other
hand, approach (2) requires dividing a web
application into several parts and then applies
suitable access controls to limit user accesses. For
approach (3), several defensive measures are
deployed in consecutive layers to protect websites,
web applications and web users.

This paper proposes a model to detect common
web attacks based on supervised machine learning
methods using web logs, which belongs to
approach (3). We attempt to use supervised
machine learning methods to construct detection
models in order to eliminate the manual
construction and update of detection rules and/or
signatures, as well as to increase the detection rate
and to lower the false alarm rates. Based on
experimental results, we select the machine learning
method that gives the best overall detection
performance to build the model for the web attack
detection on real web logs. On the other hand, web
logs generated by the web server for each hosted
website by default are used as the major input to the
detection model.

Journal of Theoretical and Applied Information Technology
31st March 2021. Vol.99. No 6
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1341

The remaining of our paper is structured as
follows: Section 2 describes previous closely
related works; Section 3 presents our proposed web
attack detection model and its main processing
steps; Section 4 shows experiments and results on a
labelled dataset and a dataset of real web logs.
Section 5 is the paper’s conclusion.

2. RELATED WORKS

As mentioned in Section 1, a number of solutions
of the three approaches have been researched and
deployed into practice to defend again common
web attacks [2]. In this section, we analyze some
proposals for web attack detection, which are
closely related to our work, including those in the
following groups: the input data filter-based group,
the anomaly-based group and the machine learning-
based group.

Proposals in the input data filter-based group use
sets of rules, or signatures, or techniques to filter
and validate the input data in order to detect and
prevent web attacks. Typical proposals in this group
include OWASP Core Rule Set [5], SQLGuard [6],
SQLCheck [7], SQL-IDS [8] and XSS-GUARD [9].
Core Rule Set is a set of rules developed by the
OWASP project for detecting various types of web
attacks in OWASP top 10 [1] with low false alarm
rate. It can be used in ModSecurity [10] that is a
web application firewall module attached to Apache
web server. Core Rule Set is well-supported by
OWASP and the web security community.
However, it may be a difficulty to use Core Rule
Set in some other web application firewalls or to
integrate with other web servers, such as Microsoft
Internet Information Services.

SQLGuard [6] and SQLCheck [7] are very
similar because they both use the validation of
syntax trees of SQL commands to detect SQLi
attacks. Therefore, we only do a review on
SQLGuard. SQLGuard is a SQLi detection and
prevention system based on the validation of the
syntax tree of the SQL command. SQLGuard
constructs and compares the SQL command’s
syntax tree before inserting user input data and its
syntax tree after inserting user input data.
SQLGuard is able to detect SQLi attacks because
the SQLi input changes the SQL command’s syntax
tree while the valid input does not change the SQL
command’s syntax tree. Experiments confirm that
SQLGuard can detect SQLi attacks effectively.
However, the proposed method requires the manual
construction of syntax trees of all SQL valid
commands of the web application. Furthermore, it

requires the modification to the Java source code of
the web application, which is not always possible.

Using a relatively similar approach to SQLGuard
[6] and SQLCheck [7], SQL- IDS [8] is a SQLi
attack detection system based on specifications.
Figure 4 describes the architecture of SQL-IDS.
SQL-IDS first built a set of specification rules
described structures of valid SQL queries produced
by the web application to be executed at the
database server. Then, it monitors, pre-processes
and classifies incoming SQL queries based on the
pre-built rule set. Only SQL queries classified as
‘valid’ are forwarded to execution stage at the
database server. Otherwise, invalid queries will be
blocked and logged. SQL-IDS is reported to have
0% false alarm rate and it can be used to protect
multiple websites because it is implemented as a
proxy between the web and database servers.
However, the manual building of the specification
rule set is a site-specific and time-consuming task.

Figure 4: The Architecture Of SQL-IDS [8]

Figure 5: The Architecture Of XSS-GUARD [9]

On the other hand, XSS-GUARD [9] is a
framework that monitors and prevents XSS attacks
by generating a ‘shadow page’ and comparing it
with the real page before sending the real page to
client. Figure 5 describes the architecture of
XSS-GUARD. The shadow web page is created in
parallel with the real web page from the response of
the web server, but with the clean input (without
scripts) generated automatically, which has the
same length as the real input. Experiments show
that XSS-GUARD is able to prevent various types
of XSS attacks listed by OWASP. In addition, it

Journal of Theoretical and Applied Information Technology
31st March 2021. Vol.99. No 6
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1342

does not require bulky and frequent-updated rule
sets. However, XSS-GUARD adds considerable
loads to web servers because of the generation and
comparison of shadow pages with real pages.

Web attack detection methods in the anomaly-
based group first construct a ‘profile’ of the web
application in normal working conditions and then
monitor the activities of the web applications and if
any significant differences between the current
activities and those stored in ‘profile’, an attack
alarm is raised. AMNESIA [10], Swaddler [12],
CANDID [13] and Torrano-Gimenez et al. [14] are
typical proposals in this group. AMNESIA [10] is
an anomaly-based web attack detection system, in
which it first scans the web application code to find
and analyse all used SQL queries. Each SQL query
is then modelled using the non-deterministic finite
automaton (NDFA) method. The set of SQL query
NDFAs is considered the ‘profile’ for the detection
process. And then, AMNESIA monitors the web
application, captures, analyses and constructs a
NDFA for each SQL query sent to the database
server. Next, the new SQL query’s NDFA is
compared to the corresponding NDFA stored in the
constructed ‘profile’. If a mismatch is found, the
SQL query is blocked and logged. Experiments
confirm that AMNESIA is able to detect all SQLi
attacks in the test scenarios. However, it requires
the access to the source code of the web application,
which is not always possible in practice.

In the same group with AMNESIA [10],
Swaddler [12] is an anomaly-based web attack
detection system using a pretty different approach.
Swaddler analyses a web application’s internal state
and learns the relationship between critical
execution points of the application and its internal
state to detect inconsistent, or anomalous states.
Swaddler’s advantages are it can be used to protect
multiple websites running on the same PHP engine
and the construction of the detection model can be
done automatically. However, it requires to modify
the PHP engine to monitor the execution flow of the
web application, which can be a difficulty in the
practical deployment. In addition, Swaddler’s
performance also needs to be taken into
consideration.

On the other hand, CANDID [13] first uses
dynamic analysis to extract the legitimate SQL
queries of a web application in the run-time and
then constructs the detection profile using the
syntax tree method. Each legitimate SQL query is
modelled as a syntax tree and stored into the profile.
Then, it monitors the web application’s SQL
queries that are sent to the database system for

execution. Each captured SQL query is converted to
a syntax tree and then the syntax tree is compared
with the profile’s standard tree to look for the
difference. If a mismatch is found, the SQL query is
blocked and logged. CANDID’s advantage over
AMNESIA is it does not need to access the web
application’s source code. However, the proposed
method only works with web applications
developed and operated on Java platform.

Using a more general approach, Torrano-
Gimenez et al. [14] proposes an anomaly-based
detection method that can detect several types of
web attacks using web traffic. The proposed method
is composed of two periods, including the training
period and the detection period. In the training
period, normal HTTP requests to the web
application are captured and features are extracted
to build the profile of normal behaviour. The profile
is saved into an XML file. In the detection period,
each HTTP request is captured and transferred to
the web access behaviour. Then, the web access
behaviour is compared against the profile and any
deviate from the normal behaviour is considered an
attack. The proposed approach is reportedly to have
a high level of detection rate as well as a low level
of false alarm rate.

The machine learning-based group that includes
proposals, such as Betarte et al. [15], Liang et al.
[16] and Pan et al. [17], uses machine learning
algorithms to construct detection models and then
uses these models to detect possible web attacks.
The machine learning algorithms used can be either
traditional learning methods, such as naive bayes,
decision tree, SVM, random forest [19][20], or deep
learning methods, such as CNN and RNN [21].
Betarte et al. [15] proposes a combination of the
one-class classification based on machine learning
and the analysis based on n-gram technique to
improve ModSecurity’s detection performance. The
one-class classification is used when only normal
data for training is available and the n-gram
analysis is used when both normal and attacked data
for training are available. Experiments show that
the proposed method outperforms ModSecurity’s
OWASP Core Rule Set [5].

Liang et al. [16] proposes to use the RNN deep
learning to build the web attack detection models,
as shown in Figure 6. Experiments on the CSIC
2010 dataset [22] confirm that the proposed
approach has the accuracy of over 98% on overall.
In addition, the proposed method can eliminate the
manual and time-consuming task of the feature
selection and extraction. On the other hand, Pan et
al. [17] proposes the Robust Software Modelling

Journal of Theoretical and Applied Information Technology
31st March 2021. Vol.99. No 6
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1343

Tool to monitor and extract runtime information of
an application and then use collected information to
train the stacked denoising autoencoder to build the
detection model. Experiments show that the
proposed approach can detect various types of web
attacks and achieves the F1-score of over 91% on
average.

Figure 6: The Architecture Of Liang et al. [16]

From the above reviews, we can draw some
comments as the following:

 Proposals in the input data filter-based group,
such as OWASP Core Rule Set [5], SQLGuard
[6], SQLCheck [7] and SQL-IDS [8] can detect
web attacks effectively. However, they require
the manual construction and frequent update to
the detection rules or models;

 SQLGuard [6], SQLCheck [7], SQL-IDS [8]
and XSS-GUARD [9] can only detect one type
of web attacks, in which SQLGuard [6],
SQLCheck [7], SQL-IDS [8] can only detect
SQLi attacks while XSS-GUARD [9] can only
detect XSS attacks;

 XSS-GUARD [9] faces the server’s
performance degradation problem because of
the generation and comparison of a shadow
page to the real web page for every user request.
Similarly, Pan et al. [17] also faces the server’s
performance degradation problem because of
using Robust Software Modelling Tool to
monitor the server’s real-time execution;

 Solutions in the machine learning-based group,
such as Liang et al. [16] and Pan et al. [17] use
deep learning for web attack detection. This is a
relatively new approach in the field. However
deep learning is generally expensive and it may
not be suitable for real-time web attack

detection. In addition, their detection
performance is lower (Pan et al. [17]), or only
slightly higher than that of the traditional
supervised machine learning (Liang et al. [16]).

In summary, the research issues of existing
works include (1) manual construction and frequent
update to the detection rules or models, (2) only
able to detect a single type of web attacks, (3)
requirement of extensive computing resources and
(4) not high detection rate. In order to address the
above research issues, we propose a model to detect
common web attacks based on supervised machine
learning using web logs with the following
advantages over previous works:

 The process of feature selection, extraction and
model construction can be done automatically in
the training stage. Therefore, our detection
model does not require frequent updates;

 Our model can detect 4 major types of web
attacks, including SQLi, XSS, CMDi and Path
traversal;

 Inexpensive traditional machine learning
algorithms, including SVM, decision tree and
random forest are used to achieve a high
detection performance. This allows our model
to require less computing resource for the model
construction and for the classification of web
logs to detect web attacks;

 Our detection model performs better than those
in the literature with the overall detection
accuracy rate of 99.68%.

 The data input of the detection model are web
logs, which are available by default on most
modern web servers. This means the data
collection is fairly simple and this makes it
easier for the practical deployment.

3. MACHINE LEARNING-BASED MODEL
FOR DETECTING COMMON WEB
ATTACKS

3.1 The Proposed Model
Our model for web attack detection is composed

of the training stage and the detection stage. The
training stage as illustrated in Figure 7 consists of 3
steps as follows:

1. Data collection for training: Normal URIs
(Uniform Resource Identifier) and attacked
URIs are collected to form the dataset for
training;

2. Data pre-processing: The collected dataset is
pre-processed to extract classification features,
in which each URI is converted into a feature

Journal of Theoretical and Applied Information Technology
31st March 2021. Vol.99. No 6
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1344

vector. The result of this step is a M×(N+1)
training matrix, where M is the number of data
items and N is the number of the classification
features. The values in the matrix’s last column
store the labels of data items;

3. The training matrix is put into the ‘Training’
step to construct the Classifier or the Model that
is used in next stage.

The detection stage as presented in Figure 8 also
includes 3 steps as follows:

1. URI extraction: URIs are extracted from web
logs and each URI is the input of the detection
process in sequence;

2. URI pre-processing: The URI is pre-processed
using the same method done for each URI of the
training set. The output of this step is a URI
feature vector, which is used in the next step;

3. URI classification: The constructed
Classifier/Model is used to classify the URI’s
feature vector. This step’s output is the
predicted label for the URI. The ‘Normal’ label
is for the normal URI and ‘Attacked’ label is for
the the web attack URI.

Figure 7: Proposed Model For Web Attack Detection:
Training Stage

Figure 8: Proposed Model For Web Attack Detection:
Detection Stage

3.2 Data Pre-processing
The two tasks of URI feature extraction and

vectorization in the pre-processing step are carried
out as follows:

 The extraction of URI features based on the n-
gram technique. The n-gram technique is
selected because of its simplicity and fast
execution. Specifically, the 3-gram is chosen for
URI feature extraction.

 The vectorization of URI features based on the
combination of Term Frequency and Inverse
Document Frequency (TF-IDF) methods [18].
The tf-idf value of each 3-gram is computed
using the following formulas:

(1)

(2)

(3)

where tf(t, d) is the frequency of 3-gram t in URI
d; f(t, d) is the occurrence number of 3-gram t in
URI d; max{f(w,d):w∈d} is the maximum
occurrence number of any 3-gram in URI d; D is
the set of all URIs and N is the URI total number.

Since the number of URI classification features is
pretty large, the Principle Component Analysis
method is used to lower the feature number to 256,
which is selected based on empirical.

3.3 Training and Cross-Validation
The training step uses some common supervised

machine learning algorithms supported by Sklearn
library in Python to construct and validate the
detection models. The machine learning algorithms
used include naive bayes, SVM, decision tree and
random forest. For each algorithm, we randomly
take 80% of the dataset for training to construct the
detection model, and then use 20% of the dataset
for validation to get the performance measurements.
The final performance measurements are computed
as the average of the measurements of 10 runs. In
the end, the learning method that gives the best
performance on overall is selected for the
construction of the model to detect web attacks
from real web logs.

We use 6 measurements, including TPR (True
Positive Rate or Recall), FPR (False Positive Rate),
FNR (False Negative Rate), PPV (Positive
Predictive Value or Precision), F1 (F1-Score) and
ACC (Overall Accuracy) to measure the proposed
model’s performance as the following:

Journal of Theoretical and Applied Information Technology
31st March 2021. Vol.99. No 6
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1345

(4)

(5)

(6)

(7)

(8)

(9)

where TP, FP, FN and TN are elements of the
confusion matrix given in Table 1.

Table 1: TP, FP, FN And TN In The Confusion Matrix

 Actual Class
 Attacked Normal

Predicted
Class

Attacked
TP (True
Positives)

FP (False
Positives)

Normal
FN (False
Negatives)

TN (True
Negatives)

In addition, we use the Detection Rate (DR) to
measure the effectiveness of the proposed detection
model for each type of web attack. The DR for each
web attack type is calculated the following:

(10)

3.2 Overview of Machine Learning and Its
Techniques

3.2.1 Overview of Machine Learning
Machine learning is a field of computer science,

which involves the study and construction of
techniques that enable computers to self-study
based on the input data to solve specific problems
[19][20]. Based on the learning methods, machine
learning techniques are usually classified into three
main categories: supervised learning, unsupervised
learning and semi-supervised learning [19]. In
supervised learning, labelled training data is used to
train the classifier. The machine will “learn” from
the labelled patterns to construct the classifier and
use it to predict labels for new data. On the other
hand, unsupervised learning uses unlabelled
training data as the input. In this form, the machine
will “learn” by analyzing the data characteristics to
build the classifier. Semi-supervised learning is the
combination approach between supervised and
unsupervised learning. In semi-supervised learning,
the input training dataset will contain both labelled

and unlabelled data. Each method has its own
advantages and disadvantages and has its own
application domain. In this paper, we only examine
the effectiveness of supervised learning techniques
in web attack detection and the next subsection
briefly describes some of the common supervised
machine learning algorithms [19][20], including
Naive Bayes, Support Vector Machine, decision
tree, and random forest.

3.2.2 Supervised Learning Techniques
a. Naïve Bayes

Naive Bayes is a conditional probability model
that is based on the Bayes theorem [16]. In the
problem of classification, the data consists of: D is
the set of training data that has been vectorized as
𝑥⃗ = (𝑥1, 𝑥2,..., 𝑥𝑛), Ci is subclass i, with i = 1,2, ...,
m}. Assume that all properties are conditionally
independent of each pair together. According to
Bayes theorem, we have:

(11)

Based on the conditionally independent
characteristic, we have:

(12)

where, P(𝐶𝑖|𝑋) is the probability of class i given
sample X, 𝑃(𝐶𝑖) is the probability of class i and
𝑃(𝑥𝑘 |𝐶𝑖) is the probability of the k property that has
the value of xk given X in class i.

b. Support Vector Machine
Support Vector Machine (SVM) introduced by

Vapnik and his colleagues in 1992 is in the class of
supervised learning algorithms. SVM has been
widely used for classification and regression
analysis. The SVM’s main idea is to consider the
input data as points in the n-dimensional space and
from the initial labelled training data to find a
hyperplane that accurately categorizes these data
points. The resulting hyperplane is then used to
classify the new unlabelled data [19].

In practice, it is possible to generate multiple
different hyperplanes using the original data for
classifying new data. However, the problem is that
in an n-dimensional space with such sample data
sets, how to find a hyperplane to always ensure that
it best divides the data points. It can be understood
that a good hyperplane is the hyperplane, whose
distance from the classified data points closest to it
is largest. The equation containing these data points
is called the margins, so in other words a good

Journal of Theoretical and Applied Information Technology
31st March 2021. Vol.99. No 6
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1346

hyperplane is the hyperplane with the distance
between it and the margin as large as possible [19].

c. Decision Tree
Decision tree is a predictive model that has been

used widely to solve the classification problem
[19][20]. Decision tree creates models that allow
the object classification by creating a set of decision
rules. These rules are extracted based on the set of
characteristics of the training data. In a decision
tree, leaves represent classes and each child node in
the tree and its branches represent a combination of
features that lead to classification. Therefore,
classifying an object will begin with checking the
value of the root node, and then continuing
downward under the tree branches corresponding to
those values. This process is performed repeatedly
for each node until it cannot go any further and
touch the leaf node. For the best model, the decision
to select the root node and sub-node while building
the decision tree is based on the Information Gain
(IG) and Gini Impurity measurements [19]. The
decision tree algorithm used for experiments in this
paper is the CART tree supported by the Python
Sklearn library.

d. Random Forest
Random Forest (RF) is a chain member of

decision tree algorithms. The random forest’s idea
is to create some decision trees. These decision
trees will run and produce independent results. The
answer predicted by the largest number of decision
trees will be chosen by the random forest [19]. In
order to ensure that the decision trees are not the
same, random forest randomly selects a subset of
the characteristics of each node. The remaining
parameters are used in the random forest as those in
the decision trees.

4. EXPERIMENTS AND RESULTS

4.1 Experiments on HTTP Param Dataset
4.1.1 The HTTP Param Dataset

The HTTP Param Dataset [23] consists of 31,067
URI payloads of web requests, including the
payload lengths and labels. There are 2 payload
labels: Norm (no attack) and Anom (attack). Anom
payloads in turn are divided into 4 types: SQLi,
XSS, CMDi and Path-traversal. Figure 9 provides
some samples of the HTTP Param Dataset. The
amount of each type of payloads is as follows:

 19,304 normal payloads;
 10,852 SQLi payloads;
 532 XSS payloads;
 89 CMDi payloads;
 290 path traversal payloads.

The length of payloads is varied, which ranges
from 1 to 1058 characters. On the other side, the
HTTP Param Dataset is stored in some files
according to the usage purposes:

 A single file that consists of the full dataset;
 Two files, in which the training file includes

20,000 payloads and the testing file includes of
11,067 payloads.

In our experiments, we use the single file of the
full dataset for training and validating the proposed
model, in which the 10-fold cross-validation
method is used with 80% of dataset for training and
20% of dataset for cross-validation.

4.1.2 Detection Model’s Performance Results
As mentioned in Section 3.3, we use the cross-

validation technique to get the performance of the
proposed web attack detection model. The most
common supervised machine learning methods,
such as naive bayes, SVM (Linear and RBF
kernels), decision tree and random forest have been
used to construct and validate the proposed model.
The ratio between the amounts of data for training
and validating is 80:20. The final performance
measurements are the average of 10 runs’ results for
each machine learning algorithm. Table 2 gives the
proposed model’s 10-fold cross-validation
confusion matrix parameters (TP, FP, FN and TN)
on average. Table 3 shows the overall performance
values (PPV, FPR, TPR, FNR, ACC and F1) for all
types of web attacks. On the other hand, Table 4
provides the detection rates (DR) for each type of
web attacks as well as the average of all web attack
types.

4.2 Experiments on real web logs
In this section, we provide experimental results

on real web logs collected from our web servers.
Generally, common web servers, such as Mozilla
Apache, Microsoft IIS and Ng ngix can create logs
for each website they host on web requests from
users. Most web logs are in the form of plain text
and a text line is a log record. Although there have
been many log formats, the W3C Extended log file
format [24] is most widely used and supported by
most modern web servers. Figure 10 shows a part of
web log file created by Microsoft IIS using the
W3C Extended log file format.

Based on the performance evaluation done in
Section 4.1, we selected the model created using the
random forest machine learning algorithm to be the
‘Classifier’ for classifying the real web logs to
detect web attacks in this section. From the web log
file, we extract each access URI that is a
combination of cs-uri-stem and cs-uri-query fields

Journal of Theoretical and Applied Information Technology
31st March 2021. Vol.99. No 6
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1347

of a log record. Then the URI is put into the
detection stage as described on Figure 4.
Experiments on real web logs confirm that our
proposed model is able to detect common web
attacks correctly and efficiently. Table 5 shows
typical attacked and normal payloads detected using
real web logs.

4.3 Discussion
In this sub-section, we discuss the detection

performance of the proposed model on three
aspects: (1) the effect of the distribution of web
attack payloads to the detection rate, (2) the
detection performance on various machine learning
algorithms and (3) the comparison between the
proposed model and previous related proposals.

As mentioned in Section 4.1.1, the HTTP Param
Dataset [23] is not balanced because the normal and
SQLi payloads dominate the dataset with about
97% of the all payloads. This is reasonable because
SQLi is the most common type of web attack. Other
types of web attacks, including XSS, CMDi and
Path Traversal are less common than SQLi and they
only account for 3% of all payloads. The
unbalanced amount of web attack payloads affects
heavily on the detection performance for each type
of web attacks. The detection rate for SQLi is
highest and detection rate for CMDi is lowest.
Specifically, the detection rates for SQLi, Path
traversal, XSS and CMDi using random forest
algorithm are 99.51%, 97,78%, 88.74% and
73.89%, respectively, according to the performance
results give in Table 4. The detection rate of CMDi
attacks is not high because the amount of training
data for this type of web attacks is not sufficient to
build a good detection model.

Regarding the proposed model’s detection
performance on machine learning algorithms, the
random forest performs best and naive bayes
performs worst, according to the results given in
Table 3. The model’s performance using decision
tree and SVM is almost at the same level. The
model’s F1-scores based on random forest, decision
tree, Rbf-SVM, Linear-SVM and naive bayes are
99.57%, 98.76%, 98.33%, 98.10% and 75.10%,
respectively. Although random forest requires more
computational resources than that of decision tree, it
performs much better than decision tree, especially
on reducing the false alarm rates. The FPR and
FNR produced by random forest-based model are
0.0775% and 0.7253% while the results by decision
tree-based model are 0.5185% and 1.6122%,
respectively. Therefore, we select random forest-
based model as the final model for detecting attacks
on real web logs.

As mentioned in Section 3.1, our detection model
has been built using supervised machine learning
algorithms from the training data automatically and
therefore it does not require the manual
construction and frequent update of the rule set as
required in [5][6][7][8][9]. In addition, our model
does not require the access to the source code of
web applications (as required in [11]), nor it needs
special mechanisms (as required in [17]) to get the
input information because it uses web logs as the
input to detect the web attacks. Regarding the
detection performance, our model performs better
than the highest accuracy of 98.42% of Liang et al.
[16] and much better than that of 91.40% of Pan et
al. [17], which use expensive deep learning
techniques for web attack detection, as shown in
Table 6.

Table 6. The Overall Detection Accuracy Of Our Model
And Liang et al. [16] And Pan et al. [17]

Our model Liang et al. [16] Pan et al. [17]

99.68% 98.42% 91.40%

5. CONCLUSION

In this paper, we propose a model for detecting
web attacks, which is based on supervised machine
learning methods using web logs. The proposed
model is capable of detecting four types of the most
dangerous web attacks, including SQLi, XSS,
CMDi and path traversal. Experiments on the
labelled data set and real web logs confirm that our
random forest-based model achieves high overall
accuracy (ACC) and F1-score of 99.68% and
99.57%, respectively. The performance results
confirm that our detection model is able to detect
common web attacks effectively and it performs
better than state-of-the-art detection models based
on deep learning [16][17].

Apart from the high detection performance, the
proposed model has some additional advantages
over previous proposals: (1) it is built using
inexpensive supervised machine learning
algorithms to gain a good detection performance.
This is important for practical deployment because
a light-weight web attack detection system usually
requires less computing resource to process a large
amount of web logs; and (2) the model’s
construction can be done automatically and it does
not require the frequent update.

For future work, we will extend the proposed
model so that it can detect more types of web
attacks. The new model should have higher

Journal of Theoretical and Applied Information Technology
31st March 2021. Vol.99. No 6
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1348

detection rates for some special types of web
attacks, including XSS and CMDi.

REFRENCES:
[1] OWASP Project, https://owasp.org, last

accessed 2020/09/20.
[2] A.K. Baranwal, “Approaches to detect SQL

injection and XSS in web applications,”
EECE 571B, Term Survey Paper, University
of British Columbia, Canada, April 2012.

[3] Website Attack Tools,
https://sourcedefense.com/glossary/website-
attack-tools/, last accessed 2020/06/20.

[4] A. Tajpour, S. Ibrahim and M. Masrom, “SQL
Injection Detection and Prevention
Techniques,” International Journal of
Advancements in Computing Technology, vol.
3, no. 7, August 2011.
DOI:10.4156/IJACT.VOL3.ISSUE7.11.

[5] OWASP ModSecurity Core Rule Set,
https://www.owasp.org/index.php/Category:
OWASP_ModSecurity_Core_Rule_Set_Proje
ct, last accessed 2020/09/20.

[6] G.T. Buehrer, B.W. Weide and P.A.G.
Sivilotti, “Using Parse Tree Validation to
Prevent SQL Injection Attacks,” Proceedings
of the 5th international workshop on Software
engineering and middleware, September
2005, pp. 106–113.

[7] Z. Su and G. Wassermann, “The Essence of
Command Injection Attacks in Web
Applications,” ACM SIGPLAN Notices, vol.
41, pp. 372-382, 2006.

[8] K. Kemalis, T. Tzouramanis, “SQL-IDS: A
Specification-based Approach for SQL
injection Detection,” ACM SAC’08, pp. 2153-
2158, March 16-20, 2008, Fortaleza, Brazil.

[9] P. Bisht and V.N. Venkatakrishnan, “XSS-
GUARD: Precise dynamic prevention of
Cross-Site Scripting Attacks,” In Proceeding
of 5th Conference on Detection of Intrusions
and Malware & Vulnerability Assessment,
LNCS 5137, pp. 23-43, 2008.

[10] Mod Security, https://www.modsecurity.org,
last accessed 2020/09/20.

[11] W.G.J. Halfond and A. Orso, “AMNESIA:
Analysis and Monitoring for NEutralizing
SQL-Injection Attacks,” IEEE and ACM
International Conference on Automated
Software Engineering, pp.174-183, November
2005, USA.

[12] M. Cova, D. Balzarotti, “Swaddler: An
Approach for the Anomaly-based Detection of

State Violations in Web Applications,”
International Symposium on Recent Advances
in Intrusion Detection, Vol. 4637, pp. 63-86,
2007.

[13] P. Bisht, P. Madhusudan and and V.N.
Venkatakrishnan, “CANDID: Dynamic
Candidate Evaluations for Automatic
Prevention of SQL Injection Attacks,” ACM
Transactions on Information and System
Security, vol. 13, March 2010.

[14] C. Torrano-Gimenez, A. Pérez-Villegas and G.
Alvarez, “An Anomaly-Based Approach for
Intrusion Detection in Web Traffic,” The
Allen Institute for Artificial Intelligence, 2009.

[15] G. Betarte, E. Giménez, R. Martínez, and A.
Pardo, “Machine learning-assisted virtual
patching of web applications,” [Online]
https://arxiv.org/abs/1803.05529, Mar 2018.

[16] J. Liang, W. Zhao, W. Ye, “Anomaly-Based
Web Attack Detection: A Deep Learning
Approach,” ICNCC 2017, pp. 80-85,
December 8–10, 2017, Kunming, China.

[17] Y. Pan, F. Sun, Z. Teng, J. White, D.C.
Schmidt, J. Staples and L. Krause, “Detecting
web attacks with end-to-end deep learning,”
Journal of Internet Services and Applications,
vol. 10:16, SpringerOpen, 2019.

[18] H. Wu, R. Luk, K. Wong and K. Kwok,
“Interpreting TF-IDF term weights as making
relevance decisions,” ACM Transactions on
Information Systems, vol. 26, no.3, 2008.

[19] A. Smola and S.V.N. Vishwanathan,
“Introduction to Machine Learning,”
Cambridge University, 2008.

[20] N.K. Sangani, H. Zarger, “Machine Learning
in Application Security,” Book chapter in
"Advances in Security in Computing and
Communications", IntechOpen, 2017.

[21] Towards Data Science,
https://towardsdatascience.com/an-
introduction-to-deep-learning- af63448c122c,
last accessed 2020/09/20.

[22] HTTP DATASET CSIC 2010,
https://www.isi.csic.es/dataset/, last accessed
2020/09/20.

[23] HTTP Param Dataset,
https://github.com/Morzeux/HttpParamsDatas
et, last accessed 2020/09/20.

[24] Extended Log File Format,
https://www.w3.org/TR/WD-logfile.html, last
accessed 2020/09/20.

Journal of Theoretical and Applied Information Technology
31st March 2021. Vol.99. No 6
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1349

Figure 6: Sample Records Of The HTTP Param Dataset [23]

Table 2. Average of TP, FP, FN And TN On 10-Fold Cross-Validation

Algorithms TP FP FN TN

Naive bayes 2184 1315 133 2582

Linear-SVM 2322 31 48 3813

Rbf-SVM 2319 20 38 3837

Decision Tree 2320 56 34 3804

Random Forest 2327 3 17 3867

Table 3. The Overall Performance On Machine Learning Algorithms

Algorithms PPV (%) TPR (%) FPR (%) FNR (%) ACC (%) F1 (%)

Naive bayes 62.42 94.26 33.74 5.7402 76.70 75.10

Linear-SVM 97.64 98.56 1.4508 1.4444 98.55 98.10

Rbf-SVM 98.68 97.97 0.8065 2.0253 98.73 98.33

Decision Tree 99.14 98.39 0.5185 1.6122 99.07 98.76

Random Forest 99.87 99.27 0.0775 0.7253 99.68 99.57

Table 4. Detection Rates (DR) For Web Attacks On Machine Learning Algorithms

Algorithms SQLi
(%)

XSS
(%)

CMDi
(%)

Path
(%)

Average
(%)

Naive bayes 94.46 91.42 50.85 96.91 94.05

Linear-SVM 99.23 87.05 77.35 97.18 98.47

Rbf-SVM 99.32 69.27 32.34 91.25 97.28

Decision Tree 99.49 86.31 23.66 92.60 98.11

Random Forest 99.51 88.74 73.89 97.78 98.78

Journal of Theoretical and Applied Information Technology
31st March 2021. Vol.99. No 6
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1350

Figure 7: A Part Of Web Log File Using W3C Extended Log File Format

Table 5: Typical Attacked/Normal Payloads Detected Using Real Web Logs

Detection label Attack payload used
Path Traversal /././././././././etc/passwd
SQLi 1' where 2145=2145;select sleep(5)#d
XSS <bgsound src='javascript:document.cookie=true;'>
Path Traversal EXEC xp_cmdshell('cat ../../../etc/passwd')#
SQLi tabid=109' and 'x'='y
SQLi "-7868"" union all select 1805--"
SQLi tabid=439) AND 9999=CAST((CHR(113)||CHR(106)||CHR(113)|| CHR(112)||CHR(113))
SQLi "1%""))) and (select * from (select(sleep(5)))gcrr)#"
Normal tabid=471&language=en-US
Path Traversal sname=../../../../../../../../../../../../../../../../Windows/system.ini
Path Traversal name=../../../etc/passwd&sid=1293&pageid=4321
SQLi topicid=82&pageid=61669 union select /**/ unhex(hex(version()))
SQLi topicid=82&pageid=6166 or (1, 2) = (select * from (select name_const(CHAR(111, 108,

111, 108, 111, 115, 104, 101, 114), 1)
CMDi "& ping -n 30 127.0.0.1 &"
Path Traversal txtSearchNews=.../.\.../.\.../.\.../.\.../.\.../.\.../.\.../.\.../.\.../.\windows/win.ini
Path Traversal id=../../../../../../../../../../../../../../../../Windows/system.ini&txtSearchNews=ZAP
CMDi "<!--#exec cmd=""/bin/cat /etc/shadow""-->","39"
Path Traversal query=/../WEB-INF/web.xml
XSS ""
XSS sname="><script > alert(String.fromCharCode(88, 83, 83)) </script>

&sid=1300&pageid=32782

