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ABSTRACT 
 

Web attacks, such as SQLi (SQL injection) and XSS (Cross Site Scripting) have been seen critical threats to 
web applications, websites and web users. These types of web attacks can cause serious damages to web 
applications, websites and web users, ranging from bypassing authentication systems, stealing sensitive 
information from databases and users, to even taking the full control of server systems. To cope with web 
attacks, a number of methods have been researched and applied to protect web applications, websites and 
web users. Among them, the detection of web attacks is a promising approach in defensive layers to 
safeguard websites and web applications. However, some methods can only detect one kind of web attacks, 
while other proposals either require regular updates of detection rules, or require extensive computing 
resources because they use complicated detection methods. In this paper, we propose a model for web 
attack detection based on machine learning using web logs. Our model’s main aims are (1) building the 
detection model automatically and without the requirement of frequent update, (2) being able to detect 
common types of web attacks and (3) improving the detection rate as well as lowering down the false alarm 
rates. The proposed detection model is built using inexpensive machine learning algorithms, including 
SVM, decision tree and random forest. Experiments conducted on a labelled dataset and real web logs show 
that the proposed model is capable of detecting common types of web attacks effectively with the highest 
overall detection accuracy rate of 99.68%. 

Keywords: Common Web Attacks, Web Attack Detection, SQL injection Detection, Cross Site Scripting 
Detection, Machine Learning-based Web Attack Detection 

 
1. INTRODUCTION  

Web attacks, such as SQLi, XSS, CMDi 
(Operating System Command injection) and Path 
traversal have been considered constant and 
dangerous threats to websites, web applications and 
web users [1][2]. These kinds of attacks are 
common because of the popularity of websites and 
web applications and the availability of the web 
attack tools on the Internet [3]. We name the web 
attack group of SQLi, XSS, CMDi and Path 
traversal (Path) as “common web attacks”. The 
major cause that allows common web attacks is the 
security vulnerability in the input data validation 
mechanisms of web systems [1][2]. Common web 
attacks can cause serious consequences to websites, 
web applications and their users. These attacks can 
assist attackers to bypass the web systems’ 
authentication mechanisms, to carry out 
unauthorized modifications to web content and 
databases, to extract important data from web 

application databases, to steal sensitive information 
of web servers and web users, and even to take the 
full control of the web servers and/or the database 
servers [1][2].  

Among common web attacks, SQLi or SQL 
injection attack is one of the most dangerous attacks 
to websites and web applications. SQLi is in the 
“Injection” web attack group that has been the first 
position of the Top 10 OWASP web vulnerabilities 
and threats for many years [1]. The main target of 
SQLi attacks are the databases of websites or web 
applications. Attackers usually exploit the 
vulnerabilities in websites’ user input data 
validation to launch SQLi attacks. Malicious SQL 
code can be inserted into web URLs and web data 
input forms, then they are sent to the web server 
and finally executed on the database server of the 
web system. Figure 1 shows an example of SQLi 
attack to a web system, in which the attacker inserts 
the malicious code into the input data in order to 
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extract the list of usernames and passwords from 
the database of the web system. 

 

Figure 1: An example Of SQLi Attacks To Extract The 
List Of Usernames And Passwords From Web Database 

XSS or Cross Site Scripting is another common 
type of web attacks and it is different from SQLi, 
where the major XSS target is the web browsers. 
Malicious XSS code in the form of HTML or 
JavaScript code is inserted into web pages and 
finally executed on the users’ web browsers. 
Attackers usually use XSS to steal sensitive and 
valuable data stored in the user web browsers. 
Figure 2 illustrates a typical model of XSS attack, 
in which XSS code is inserted and permanently 
stored in the web server and then the code is 
executed on the user’s web browser when the user 
visits the website. 

 

Figure 2: A Model Of XSS Attacks 

CMDi or command injection is in the same 
“Injection” web attack group with SQLi attack. 
Instead of using malicious SQL code, the malicious 
operating system commands are inserted and 
executed on the server. CMDi attacks can allow 
attackers to execute dangerous commands, such as 
deleting sensitive files or folders on the web server 
system.  

The last type of common web attacks is path 
traversal. This type of web attacks exploits the 

vulnerability in the validation of the input path 
strings of files or folders. The attacks allow the 
attackers to download the content of sensitive files 
of the servers. Figure 3 presents an example of path 
traversal attacks, in which the content of the 
system’s password file (/etc/passwd) is retrieved 
and displayed on the web browser window. 

 

Figure 3: An Example Of Path Traversal Attacks 

Due to the danger of common web attacks, 
several countermeasures have been researched and 
applied into practice to detect and prevent these 
attacks to protect websites, web applications and 
web users. Generally, there are 3 defensive 
approaches for these attacks, including (1) validate 
all data inputs, (2) reduce the attacking surfaces and 
(3) use “defense in depth” strategy [1][2]. 
Specifically, approach (1) requires all input data to 
web applications to be checked thoroughly using a 
set of input filters and only legitimate inputs are 
passed to next steps for processing. On the other 
hand, approach (2) requires dividing a web 
application into several parts and then applies 
suitable access controls to limit user accesses. For 
approach (3), several defensive measures are 
deployed in consecutive layers to protect websites, 
web applications and web users.  

This paper proposes a model to detect common 
web attacks based on supervised machine learning 
methods using web logs, which belongs to  
approach (3). We attempt to use supervised 
machine learning methods to construct detection 
models in order to eliminate the manual 
construction and update of detection rules and/or 
signatures, as well as to increase the detection rate 
and to lower the false alarm rates. Based on 
experimental results, we select the machine learning 
method that gives the best overall detection 
performance to build the model for the web attack 
detection on real web logs. On the other hand, web 
logs generated by the web server for each hosted 
website by default are used as the major input to the 
detection model. 
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The remaining of our paper is structured as 
follows: Section 2 describes previous closely 
related works; Section 3 presents our proposed web 
attack detection model and its main processing 
steps; Section 4 shows experiments and results on a 
labelled dataset and a dataset of real web logs. 
Section 5 is the paper’s conclusion. 

2. RELATED WORKS 

As mentioned in Section 1, a number of solutions 
of the three approaches have been researched and 
deployed into practice to defend again common 
web attacks [2]. In this section, we analyze some 
proposals for web attack detection, which are 
closely related to our work, including those in the 
following groups: the input data filter-based group, 
the anomaly-based group and the machine learning-
based group.  

Proposals in the input data filter-based group use 
sets of rules, or signatures, or techniques to filter 
and validate the input data in order to detect and 
prevent web attacks. Typical proposals in this group 
include OWASP Core Rule Set [5], SQLGuard [6], 
SQLCheck [7], SQL-IDS [8] and XSS-GUARD [9]. 
Core Rule Set is a set of rules developed by the 
OWASP project for detecting various types of web 
attacks in OWASP top 10 [1] with low false alarm 
rate. It can be used in ModSecurity [10] that is a 
web application firewall module attached to Apache 
web server. Core Rule Set is well-supported by 
OWASP and the web security community. 
However, it may be a difficulty to use Core Rule 
Set in some other web application firewalls or to 
integrate with other web servers, such as Microsoft 
Internet Information Services. 

SQLGuard [6] and SQLCheck [7] are very 
similar because they both use the validation of 
syntax trees of SQL commands to detect SQLi 
attacks. Therefore, we only do a review on 
SQLGuard. SQLGuard is a SQLi detection and 
prevention system based on the validation of the 
syntax tree of the SQL command. SQLGuard 
constructs and compares the SQL command’s 
syntax tree before inserting user input data and its 
syntax tree after inserting user input data. 
SQLGuard is able to detect SQLi attacks because 
the SQLi input changes the SQL command’s syntax 
tree while the valid input does not change the SQL 
command’s syntax tree. Experiments confirm that 
SQLGuard can detect SQLi attacks effectively. 
However, the proposed method requires the manual 
construction of syntax trees of all SQL valid 
commands of the web application. Furthermore, it 

requires the modification to the Java source code of 
the web application, which is not always possible. 

Using a relatively similar approach to SQLGuard 
[6] and SQLCheck [7], SQL- IDS [8] is a SQLi 
attack detection system based on specifications. 
Figure 4 describes the architecture of SQL-IDS. 
SQL-IDS first built a set of specification rules 
described structures of valid SQL queries produced 
by the web application to be executed at the 
database server. Then, it monitors, pre-processes 
and classifies incoming SQL queries based on the 
pre-built rule set. Only SQL queries classified as 
‘valid’ are forwarded to execution stage at the 
database server. Otherwise, invalid queries will be 
blocked and logged. SQL-IDS is reported to have 
0% false alarm rate and it can be used to protect 
multiple websites because it is implemented as a 
proxy between the web and database servers. 
However, the manual building of the specification 
rule set is a site-specific and time-consuming task. 

 

Figure 4: The Architecture Of SQL-IDS [8] 

 

Figure 5: The Architecture Of XSS-GUARD [9] 

On the other hand, XSS-GUARD [9] is a 
framework that monitors and prevents XSS attacks 
by generating a ‘shadow page’ and comparing it 
with the real page before sending the real page to 
client. Figure 5 describes the architecture of  
XSS-GUARD. The shadow web page is created in 
parallel with the real web page from the response of 
the web server, but with the clean input (without 
scripts) generated automatically, which has the 
same length as the real input. Experiments show 
that XSS-GUARD is able to prevent various types 
of XSS attacks listed by OWASP. In addition, it 
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does not require bulky and frequent-updated rule 
sets. However, XSS-GUARD adds considerable 
loads to web servers because of the generation and 
comparison of shadow pages with real pages. 

Web attack detection methods in the anomaly-
based group first construct a ‘profile’ of the web 
application in normal working conditions and then 
monitor the activities of the web applications and if 
any significant differences between the current 
activities and those stored in ‘profile’, an attack 
alarm is raised. AMNESIA [10], Swaddler [12], 
CANDID [13] and Torrano-Gimenez et al. [14] are 
typical proposals in this group. AMNESIA [10] is 
an anomaly-based web attack detection system, in 
which it first scans the web application code to find 
and analyse all used SQL queries. Each SQL query 
is then modelled using the non-deterministic finite 
automaton (NDFA) method. The set of SQL query 
NDFAs is considered the ‘profile’ for the detection 
process. And then, AMNESIA monitors the web 
application, captures, analyses and constructs a 
NDFA for each SQL query sent to the database 
server. Next, the new SQL query’s NDFA is 
compared to the corresponding NDFA stored in the 
constructed ‘profile’. If a mismatch is found, the 
SQL query is blocked and logged. Experiments 
confirm that AMNESIA is able to detect all SQLi 
attacks in the test scenarios. However, it requires 
the access to the source code of the web application, 
which is not always possible in practice.  

In the same group with AMNESIA [10], 
Swaddler [12] is an anomaly-based web attack 
detection system using a pretty different approach. 
Swaddler analyses a web application’s internal state 
and learns the relationship between critical 
execution points of the application and its internal 
state to detect inconsistent, or anomalous states. 
Swaddler’s advantages are it can be used to protect 
multiple websites running on the same PHP engine 
and the construction of the detection model can be 
done automatically. However, it requires to modify 
the PHP engine to monitor the execution flow of the 
web application, which can be a difficulty in the 
practical deployment. In addition, Swaddler’s 
performance also needs to be taken into 
consideration.  

On the other hand, CANDID [13] first uses 
dynamic analysis to extract the legitimate SQL 
queries of a web application in the run-time and 
then constructs the detection profile using the 
syntax tree method. Each legitimate SQL query is 
modelled as a syntax tree and stored into the profile. 
Then, it monitors the web application’s SQL 
queries that are sent to the database system for 

execution. Each captured SQL query is converted to 
a syntax tree and then the syntax tree is compared 
with the profile’s standard tree to look for the 
difference. If a mismatch is found, the SQL query is 
blocked and logged. CANDID’s advantage over 
AMNESIA is it does not need to access the web 
application’s source code. However, the proposed 
method only works with web applications 
developed and operated on Java platform. 

Using a more general approach, Torrano-
Gimenez et al. [14] proposes an anomaly-based 
detection method that can detect several types of 
web attacks using web traffic. The proposed method 
is composed of two periods, including the training 
period and the detection period. In the training 
period, normal HTTP requests to the web 
application are captured and features are extracted 
to build the profile of normal behaviour. The profile 
is saved into an XML file. In the detection period, 
each HTTP request is captured and transferred to 
the web access behaviour. Then, the web access 
behaviour is compared against the profile and any 
deviate from the normal behaviour is considered an 
attack. The proposed approach is reportedly to have 
a high level of detection rate as well as a low level 
of false alarm rate.  

The machine learning-based group that includes 
proposals, such as Betarte et al. [15], Liang et al. 
[16] and Pan et al. [17], uses machine learning 
algorithms to construct detection models and then 
uses these models to detect possible web attacks. 
The machine learning algorithms used can be either 
traditional learning methods, such as naive bayes, 
decision tree, SVM, random forest [19][20], or deep 
learning methods, such as CNN and RNN [21]. 
Betarte et al. [15] proposes a combination of the 
one-class classification based on machine learning 
and the analysis based on n-gram technique to 
improve ModSecurity’s detection performance. The 
one-class classification is used when only normal 
data for training is available and the n-gram 
analysis is used when both normal and attacked data 
for training are available. Experiments show that 
the proposed method outperforms ModSecurity’s 
OWASP Core Rule Set [5]. 

Liang et al. [16] proposes to use the RNN deep 
learning to build the web attack detection models, 
as shown in Figure 6. Experiments on the CSIC 
2010 dataset [22] confirm that the proposed 
approach has the accuracy of over 98% on overall. 
In addition, the proposed method can eliminate the 
manual and time-consuming task of the feature 
selection and extraction. On the other hand, Pan et 
al. [17] proposes the Robust Software Modelling 
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Tool to monitor and extract runtime information of 
an application and then use collected information to 
train the stacked denoising autoencoder to build the 
detection model. Experiments show that the 
proposed approach can detect various types of web 
attacks and achieves the F1-score of over 91% on 
average. 

 

Figure 6: The Architecture Of Liang et al. [16] 

From the above reviews, we can draw some 
comments as the following: 

 Proposals in the input data filter-based group, 
such as OWASP Core Rule Set [5], SQLGuard 
[6], SQLCheck [7] and SQL-IDS [8] can detect 
web attacks effectively. However, they require 
the manual construction and frequent update to 
the detection rules or models; 

 SQLGuard [6],  SQLCheck [7], SQL-IDS [8] 
and XSS-GUARD [9] can only detect one type 
of web attacks, in which SQLGuard [6],  
SQLCheck [7], SQL-IDS [8] can only detect 
SQLi attacks while XSS-GUARD [9] can only 
detect XSS attacks; 

 XSS-GUARD [9] faces the server’s 
performance degradation problem because of 
the generation and comparison of a shadow 
page to the real web page for every user request. 
Similarly, Pan et al. [17] also faces the server’s 
performance degradation problem because of 
using Robust Software Modelling Tool to 
monitor the server’s real-time execution; 

 Solutions in the machine learning-based group, 
such as Liang et al. [16] and Pan et al. [17] use 
deep learning for web attack detection. This is a 
relatively new approach in the field. However 
deep learning is generally expensive and it may 
not be suitable for real-time web attack 

detection. In addition, their detection 
performance is lower (Pan et al. [17]), or only 
slightly higher than that of the traditional 
supervised machine learning (Liang et al. [16]).  

In summary, the research issues of existing 
works include (1) manual construction and frequent 
update to the detection rules or models, (2) only 
able to detect a single type of web attacks, (3) 
requirement of extensive computing resources and 
(4) not high detection rate. In order to address the 
above research issues, we propose a model to detect 
common web attacks based on supervised machine 
learning using web logs with the following 
advantages over previous works:  

 The process of feature selection, extraction and 
model construction can be done automatically in 
the training stage. Therefore, our detection 
model does not require frequent updates; 

 Our model can detect 4 major types of web 
attacks, including SQLi, XSS, CMDi and Path 
traversal;  

 Inexpensive traditional machine learning 
algorithms, including SVM, decision tree and 
random forest are used to achieve a high 
detection performance. This allows our model 
to require less computing resource for the model 
construction and for the classification of web 
logs to detect web attacks;  

 Our detection model performs better than those 
in the literature with the overall detection 
accuracy rate of 99.68%. 

 The data input of the detection model are web 
logs, which are available by default on most 
modern web servers. This means the data 
collection is fairly simple and this makes it 
easier for the practical deployment. 

3. MACHINE LEARNING-BASED MODEL 
FOR DETECTING COMMON WEB 
ATTACKS 

3.1 The Proposed Model 
Our model for web attack detection is composed 

of the training stage and the detection stage. The 
training stage as illustrated in Figure 7 consists of 3 
steps as follows: 

1. Data collection for training: Normal URIs 
(Uniform Resource Identifier) and attacked 
URIs are collected to form the dataset for 
training; 

2. Data pre-processing: The collected dataset is 
pre-processed to extract classification features, 
in which each URI is converted into a feature 
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vector. The result of this step is a M×(N+1) 
training matrix, where M is the number of data 
items and N is the number of the classification 
features. The values in the matrix’s last column 
store the labels of data items; 

3. The training matrix is put into the ‘Training’ 
step to construct the Classifier or the Model that 
is used in next stage. 

The detection stage as presented in Figure 8 also 
includes 3 steps as follows: 

1. URI extraction: URIs are extracted from web 
logs and each URI is the input of the detection 
process in sequence; 

2. URI pre-processing: The URI is pre-processed 
using the same method done for each URI of the 
training set. The output of this step is a URI 
feature vector, which is used in the next step; 

3. URI classification: The constructed 
Classifier/Model is used to classify the URI’s 
feature vector. This step’s output is the 
predicted label for the URI. The ‘Normal’ label 
is for the normal URI and ‘Attacked’ label is for 
the the web attack URI. 

 

 

Figure 7: Proposed Model For Web Attack Detection: 
Training Stage 

 

Figure 8: Proposed Model For Web Attack Detection: 
Detection Stage 

3.2 Data Pre-processing 
The two tasks of URI feature extraction and 

vectorization in the pre-processing step are carried 
out as follows: 

 The extraction of URI features based on the n-
gram technique. The n-gram technique is 
selected because of its simplicity and fast 
execution. Specifically, the 3-gram is chosen for 
URI feature extraction. 

 The vectorization of URI features based on the 
combination of Term Frequency and Inverse 
Document Frequency (TF-IDF) methods [18]. 
The tf-idf value of each 3-gram is computed 
using the following formulas: 

 
(1) 

 
(2) 

 
(3) 

where tf(t, d) is the frequency of 3-gram t in URI 
d; f(t, d) is the occurrence number of 3-gram t in 
URI d; max{f(w,d):w∈d} is the maximum 
occurrence number of any 3-gram in URI d; D is 
the set of all URIs and N is the URI total number.  

Since the number of URI classification features is 
pretty large, the Principle Component Analysis 
method is used to lower the feature number to 256, 
which is selected based on empirical. 

3.3 Training and Cross-Validation 
The training step uses some common supervised 

machine learning algorithms supported by Sklearn 
library in Python to construct and validate the 
detection models. The machine learning algorithms 
used include naive bayes, SVM, decision tree and 
random forest. For each algorithm, we randomly 
take 80% of the dataset for training to construct the 
detection model, and then use 20% of the dataset 
for validation to get the performance measurements. 
The final performance measurements are computed 
as the average of the measurements of 10 runs. In 
the end, the learning method that gives the best 
performance on overall is selected for the 
construction of the model to detect web attacks 
from real web logs. 

We use 6 measurements, including TPR (True 
Positive Rate or Recall), FPR (False Positive Rate), 
FNR (False Negative Rate), PPV (Positive 
Predictive Value or Precision), F1 (F1-Score) and 
ACC (Overall Accuracy) to measure the proposed 
model’s performance as the following: 
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(4) 

 
(5) 

 
(6) 

 
(7) 

 
(8) 

 
(9) 

where TP, FP, FN and TN are elements of the 
confusion matrix given in Table 1. 

Table 1: TP, FP, FN And TN In The Confusion Matrix 

  Actual Class 
  Attacked Normal 

Predicted  
Class 

Attacked 
TP (True  
Positives) 

FP (False 
Positives) 

Normal 
FN (False 
Negatives) 

TN (True 
Negatives) 

In addition, we use the Detection Rate (DR) to 
measure the effectiveness of the proposed detection 
model for each type of web attack. The DR for each 
web attack type is calculated the following: 

 
(10) 

3.2 Overview of Machine Learning and Its 
Techniques 

3.2.1 Overview of Machine Learning 
Machine learning is a field of computer science, 

which involves the study and construction of 
techniques that enable computers to self-study 
based on the input data to solve specific problems 
[19][20]. Based on the learning methods, machine 
learning techniques are usually classified into three 
main categories: supervised learning, unsupervised 
learning and semi-supervised learning [19]. In 
supervised learning, labelled training data is used to 
train the classifier. The machine will “learn” from 
the labelled patterns to construct the classifier and 
use it to predict labels for new data. On the other 
hand, unsupervised learning uses unlabelled 
training data as the input. In this form, the machine 
will “learn” by analyzing the data characteristics to 
build the classifier. Semi-supervised learning is the 
combination approach between supervised and 
unsupervised learning. In semi-supervised learning, 
the input training dataset will contain both labelled 

and unlabelled data. Each method has its own 
advantages and disadvantages and has its own 
application domain. In this paper, we only examine 
the effectiveness of supervised learning techniques 
in web attack detection and the next subsection 
briefly describes some of the common supervised 
machine learning algorithms [19][20], including 
Naive Bayes, Support Vector Machine, decision 
tree, and random forest. 

3.2.2 Supervised Learning Techniques 
a. Naïve Bayes 

Naive Bayes is a conditional probability model 
that is based on the Bayes theorem [16]. In the 
problem of classification, the data consists of: D is 
the set of training data that has been vectorized as  
𝑥⃗ = (𝑥1, 𝑥2,..., 𝑥𝑛), Ci is subclass i, with i = 1,2, ..., 
m}. Assume that all properties are conditionally 
independent of each pair together. According to 
Bayes theorem, we have: 

 
(11) 

Based on the conditionally independent 
characteristic, we have: 

 
(12) 

where, P(𝐶𝑖|𝑋) is the probability of class i given 
sample X, 𝑃(𝐶𝑖) is the probability of class i and  
𝑃(𝑥𝑘 |𝐶𝑖) is the probability of the k property that has 
the value of xk given X in class i. 

b. Support Vector Machine 
Support Vector Machine (SVM) introduced by 

Vapnik and his colleagues in 1992 is in the class of 
supervised learning algorithms. SVM has been 
widely used for classification and regression 
analysis.  The SVM’s main idea is to consider the 
input data as points in the n-dimensional space and 
from the initial labelled training data to find a 
hyperplane that accurately categorizes these data 
points. The resulting hyperplane is then used to 
classify the new unlabelled data [19]. 

In practice, it is possible to generate multiple 
different hyperplanes using the original data for 
classifying new data. However, the problem is that 
in an n-dimensional space with such sample data 
sets, how to find a hyperplane to always ensure that 
it best divides the data points. It can be understood 
that a good hyperplane is the hyperplane, whose 
distance from the classified data points closest to it 
is largest. The equation containing these data points 
is called the margins, so in other words a good 
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hyperplane is the hyperplane with the distance 
between it and the margin as large as possible [19]. 

c. Decision Tree 
Decision tree is a predictive model that has been 

used widely to solve the classification problem 
[19][20]. Decision tree creates models that allow 
the object classification by creating a set of decision 
rules. These rules are extracted based on the set of 
characteristics of the training data. In a decision 
tree, leaves represent classes and each child node in 
the tree and its branches represent a combination of 
features that lead to classification. Therefore, 
classifying an object will begin with checking the 
value of the root node, and then continuing 
downward under the tree branches corresponding to 
those values. This process is performed repeatedly 
for each node until it cannot go any further and 
touch the leaf node. For the best model, the decision 
to select the root node and sub-node while building 
the decision tree is based on the Information Gain 
(IG) and Gini Impurity measurements [19]. The 
decision tree algorithm used for experiments in this 
paper is the CART tree supported by the Python 
Sklearn library. 

d. Random Forest 
Random Forest (RF) is a chain member of 

decision tree algorithms. The random forest’s idea 
is to create some decision trees. These decision 
trees will run and produce independent results. The 
answer predicted by the largest number of decision 
trees will be chosen by the random forest [19]. In 
order to ensure that the decision trees are not the 
same, random forest randomly selects a subset of 
the characteristics of each node. The remaining 
parameters are used in the random forest as those in 
the decision trees. 

4. EXPERIMENTS AND RESULTS 

4.1 Experiments on HTTP Param Dataset 
4.1.1 The HTTP Param Dataset 

The HTTP Param Dataset [23] consists of 31,067 
URI payloads of web requests, including the 
payload lengths and labels. There are 2 payload 
labels: Norm (no attack) and Anom (attack). Anom 
payloads in turn are divided into 4 types: SQLi, 
XSS, CMDi and Path-traversal. Figure 9 provides 
some samples of the HTTP Param Dataset. The 
amount of each type of payloads is as follows: 

 19,304 normal payloads; 
 10,852 SQLi payloads; 
 532 XSS payloads; 
 89 CMDi payloads; 
 290 path traversal payloads. 

The length of payloads is varied, which ranges 
from 1 to 1058 characters. On the other side, the 
HTTP Param Dataset is stored in some files 
according to the usage purposes: 

 A single file that consists of the full dataset; 
 Two files, in which the training file includes 

20,000 payloads and the testing file includes of 
11,067 payloads. 

In our experiments, we use the single file of the 
full dataset for training and validating the proposed 
model, in which the 10-fold cross-validation 
method is used with 80% of dataset for training and 
20% of dataset for cross-validation. 

4.1.2 Detection Model’s Performance Results 
As mentioned in Section 3.3, we use the cross-

validation technique to get the performance of the 
proposed web attack detection model. The most 
common supervised machine learning methods, 
such as naive bayes, SVM (Linear and RBF 
kernels), decision tree and random forest have been 
used to construct and validate the proposed model. 
The ratio between the amounts of data for training 
and validating is 80:20. The final performance 
measurements are the average of 10 runs’ results for 
each machine learning algorithm. Table 2 gives the 
proposed model’s 10-fold cross-validation 
confusion matrix parameters (TP, FP, FN and TN) 
on average. Table 3 shows the overall performance 
values (PPV, FPR, TPR, FNR, ACC and F1) for all 
types of web attacks. On the other hand, Table 4 
provides the detection rates (DR) for each type of 
web attacks as well as the average of all web attack 
types. 

4.2 Experiments on real web logs 
In this section, we provide experimental results 

on real web logs collected from our web servers. 
Generally, common web servers, such as Mozilla 
Apache, Microsoft IIS and Ng ngix can create logs 
for each website they host on web requests from 
users. Most web logs are in the form of plain text 
and a text line is a log record. Although there have 
been many log formats, the W3C Extended log file 
format [24] is most widely used and supported by 
most modern web servers. Figure 10 shows a part of 
web log file created by Microsoft IIS using the 
W3C Extended log file format. 

Based on the performance evaluation done in 
Section 4.1, we selected the model created using the 
random forest machine learning algorithm to be the 
‘Classifier’ for classifying the real web logs to 
detect web attacks in this section. From the web log 
file, we extract each access URI that is a 
combination of cs-uri-stem and cs-uri-query fields 
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of a log record. Then the URI is put into the 
detection stage as described on Figure 4. 
Experiments on real web logs confirm that our 
proposed model is able to detect common web 
attacks correctly and efficiently. Table 5 shows 
typical attacked and normal payloads detected using 
real web logs. 

4.3 Discussion 
In this sub-section, we discuss the detection 

performance of the proposed model on three 
aspects: (1) the effect of the distribution of web 
attack payloads to the detection rate, (2) the 
detection performance on various machine learning 
algorithms and (3) the comparison between the 
proposed model and previous related proposals.  

As mentioned in Section 4.1.1, the HTTP Param 
Dataset [23] is not balanced because the normal and 
SQLi payloads dominate the dataset with about 
97% of the all payloads. This is reasonable because 
SQLi is the most common type of web attack. Other 
types of web attacks, including XSS, CMDi and 
Path Traversal are less common than SQLi and they 
only account for 3% of all payloads. The 
unbalanced amount of web attack payloads affects 
heavily on the detection performance for each type 
of web attacks. The detection rate for SQLi is 
highest and detection rate for CMDi is lowest. 
Specifically, the detection rates for SQLi, Path 
traversal, XSS and CMDi using random forest 
algorithm are 99.51%, 97,78%, 88.74% and 
73.89%, respectively, according to the performance 
results give in Table 4. The detection rate of CMDi 
attacks is not high because the amount of training 
data for this type of web attacks is not sufficient to 
build a good detection model. 

Regarding the proposed model’s detection 
performance on machine learning algorithms, the 
random forest performs best and naive bayes 
performs worst, according to the results given in 
Table 3. The model’s performance using decision 
tree and SVM is almost at the same level. The 
model’s F1-scores based on random forest, decision 
tree, Rbf-SVM, Linear-SVM and naive bayes are 
99.57%, 98.76%, 98.33%, 98.10% and 75.10%, 
respectively. Although random forest requires more 
computational resources than that of decision tree, it 
performs much better than decision tree, especially 
on reducing the false alarm rates. The FPR and 
FNR produced by random forest-based model are 
0.0775% and 0.7253% while the results by decision 
tree-based model are 0.5185% and 1.6122%, 
respectively. Therefore, we select random forest-
based model as the final model for detecting attacks 
on real web logs. 

As mentioned in Section 3.1, our detection model 
has been built using supervised machine learning 
algorithms from the training data automatically and 
therefore it does not require the manual 
construction and frequent update of the rule set as 
required in [5][6][7][8][9]. In addition, our model 
does not require the access to the source code of 
web applications (as required in [11]), nor it needs 
special mechanisms (as required in [17]) to get the 
input information because it uses web logs as the 
input to detect the web attacks. Regarding the 
detection performance, our model performs better 
than the highest accuracy of 98.42% of Liang et al. 
[16] and much better than that of 91.40% of Pan et 
al. [17], which use expensive deep learning 
techniques for web attack detection, as shown in 
Table 6. 

Table 6. The Overall Detection Accuracy Of Our Model  
And Liang et al. [16] And Pan et al. [17]  

Our model Liang et al. [16] Pan et al. [17] 

99.68% 98.42% 91.40% 

5. CONCLUSION 

In this paper, we propose a model for detecting 
web attacks, which is based on supervised machine 
learning methods using web logs. The proposed 
model is capable of detecting four types of the most 
dangerous web attacks, including SQLi, XSS, 
CMDi and path traversal. Experiments on the 
labelled data set and real web logs confirm that our 
random forest-based model achieves high overall 
accuracy (ACC) and F1-score of 99.68% and 
99.57%, respectively. The performance results 
confirm that our detection model is able to detect 
common web attacks effectively and it performs 
better than state-of-the-art detection models based 
on deep learning [16][17]. 

Apart from the high detection performance, the 
proposed model has some additional advantages 
over previous proposals: (1) it is built using 
inexpensive supervised machine learning 
algorithms to gain a good detection performance. 
This is important for practical deployment because 
a light-weight web attack detection system usually 
requires less computing resource to process a large 
amount of web logs; and (2) the model’s 
construction can be done automatically and it does 
not require the frequent update. 

For future work, we will extend the proposed 
model so that it can detect more types of web 
attacks. The new model should have higher 
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detection rates for some special types of web 
attacks, including XSS and CMDi. 
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Figure 6: Sample Records Of The HTTP Param Dataset [23] 

Table 2. Average of TP, FP, FN And TN On 10-Fold Cross-Validation  

Algorithms TP FP FN TN 

Naive bayes 2184 1315 133 2582 

Linear-SVM 2322 31 48 3813 

Rbf-SVM 2319 20 38 3837 

Decision Tree 2320 56 34 3804 

Random Forest 2327 3 17 3867 

Table 3. The Overall Performance On Machine Learning Algorithms 

Algorithms PPV (%) TPR (%) FPR (%) FNR (%) ACC (%) F1 (%) 

Naive bayes 62.42 94.26 33.74 5.7402 76.70 75.10 

Linear-SVM 97.64 98.56 1.4508 1.4444 98.55 98.10 

Rbf-SVM 98.68 97.97 0.8065 2.0253 98.73 98.33 

Decision Tree 99.14 98.39 0.5185 1.6122 99.07 98.76 

Random Forest 99.87 99.27 0.0775 0.7253 99.68 99.57 

Table 4. Detection Rates (DR) For Web Attacks On Machine Learning Algorithms 

Algorithms SQLi  
(%) 

XSS  
(%) 

CMDi 
(%) 

Path 
(%) 

Average 
(%) 

Naive bayes 94.46 91.42 50.85 96.91 94.05 

Linear-SVM 99.23 87.05 77.35 97.18 98.47 

Rbf-SVM 99.32 69.27 32.34 91.25 97.28 

Decision Tree 99.49 86.31 23.66 92.60 98.11 

Random Forest 99.51 88.74 73.89 97.78 98.78 
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Figure 7: A Part Of Web Log File Using W3C Extended Log File Format 

Table 5: Typical Attacked/Normal Payloads Detected Using Real Web Logs  

Detection label  Attack payload used 
Path Traversal /././././././././etc/passwd 
SQLi 1' where 2145=2145;select sleep(5)#d 
XSS <bgsound src='javascript:document.cookie=true;'> 
Path Traversal EXEC xp_cmdshell('cat ../../../etc/passwd')# 
SQLi tabid=109' and 'x'='y 
SQLi "-7868"" union all select 1805--" 
SQLi tabid=439) AND 9999=CAST((CHR(113)||CHR(106)||CHR(113)|| CHR(112)||CHR(113)) 
SQLi "1%""))) and (select * from (select(sleep(5)))gcrr)#" 
Normal tabid=471&language=en-US 
Path Traversal sname=../../../../../../../../../../../../../../../../Windows/system.ini 
Path Traversal name=../../../etc/passwd&sid=1293&pageid=4321 
SQLi topicid=82&pageid=61669 union select /**/ unhex(hex(version())) 
SQLi topicid=82&pageid=6166 or (1, 2) = (select * from (select name_const(CHAR(111, 108, 

111, 108, 111, 115, 104, 101, 114), 1) 
CMDi "& ping -n 30 127.0.0.1 &" 
Path Traversal txtSearchNews=.../.\.../.\.../.\.../.\.../.\.../.\.../.\.../.\.../.\.../.\windows/win.ini 
Path Traversal id=../../../../../../../../../../../../../../../../Windows/system.ini&txtSearchNews=ZAP 
CMDi "<!--#exec cmd=""/bin/cat /etc/shadow""-->","39" 
Path Traversal query=/../WEB-INF/web.xml 
XSS "<img id=xss src="" javascript:alert('xss');"">" 
XSS sname="><script > alert(String.fromCharCode(88, 83, 83)) </script> 

&sid=1300&pageid=32782 
 
 
 
 
 


