
Journal of Theoretical and Applied Information Technology
31st March 2021. Vol.99. No 6

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1386

SENTIMENT-BASED MACHINE LEARNING AND LEXICON-

BASED APPROACHES FOR PREDICTING THE SEVERITY

OF BUG REPORTS

ALADDIN BAARAH 1, AHMAD ALOQAILY2, ZAHER SALAH3, ESRA’A ALSHDAIFAT4
1Department of Software Engineering, Faculty of Prince Al-Hussein Bin Abdallah II For Information

Technology, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan

2Department of Computer Science and its Applications, Faculty of Prince Al-Hussein Bin Abdallah II For

Information Technology, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan

3,4Department of Computer Information systems, Faculty of Prince Al-Hussein Bin Abdallah II For

Information Technology, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan

Email: 1aladdin.baarah@hu.edu.jo, 2aloqaily@hu.edu.jo, 3zaher@hu.edu.jo, 4esraa@hu.edu.jo

ABSTRACT

Fixing bug reports is an important activity performed during software maintenance. End-users and software

developers report bugs related to open and closed-source projects through a bug tracking system. They should

describe the bug reports carefully, mainly when they assign the severity of the bug. Thus, assigning incorrect

severity levels will postpone the fixing order of critical bugs. Many works have been proposed using various

machine learning algorithms to classify the severity of bug reports. However, few research works have

considered the analysis of reporters sentiments expressed in the summary description of bug reports to predict

the bug severity. In this paper, the analysis of the reporters sentiments has been considered and incorporated

into the severity prediction process. More specifically, sentiment-based approaches have been proposed,

namely machine learning and lexicon-based approaches for predicting the severity of bug reports.

SentiWordNet dictionary is used to identify the bug reports sentiment terms and compute their associated

sentiment scores. The proposed sentiment-based approaches have been applied and evaluated on a bug reports

dataset related to closed-source projects extracted from the JIRA bug tracking system. The results of

sentiment-based machine learning and lexicon-based approaches are compared and reported. The results have

shown that the Logistic Model Trees (LMT) model outperforms other sentiment-based models, including the

lexicon-based model. The reported experimental results also revealed that the lexicon-based approach is not

effective for bug severity prediction. However, the sentiment-based machine learning approach significantly

improves the severity prediction of bug reports compared to the lexicon-based approach (baseline approach).

The severity prediction accuracy has been remarkably enhanced from 53% for lexicon-based to 87.14%.

Likewise, the F-Measure of the severity prediction has been improved from 0.65 for lexicon-based to 0.91

after applying the machine learning approach.

Keywords: Software Maintenance; Bug Report; Severity Prediction; Sentiment Analysis; Machine Learning

Algorithms; Lexicon-Based; Sentiment-Based Approach.

1 INTRODUCTION

A software bug report is an essential software
artifact used to execute tasks (e.g., bug severity
classification and bug fixing) in the software
maintenance phase during the development of open
and closed-source projects. End-users and
developers report large amounts of bug reports
related to medium or large-scale software systems

through bug tracking systems (BTS). Thus, fixing
bug reports has become a significant task, especially
when the severity level of bug reports is high [1, 2].
In software maintenance, developers aim to enhance
the next software release by fixing bugs collected
from BTS, such as Bugzilla [3] and JIRA [4].
Therefore, they permit software users to participate
and collaborate in software improvement by

Journal of Theoretical and Applied Information Technology
31st March 2021. Vol.99. No 6

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1387

reporting and submitting bugs using a particular BTS
[5].

Once a bug has been detected in the software, the
reporters use a specific bug report form, according to
the used BTS, to fill the contents of the bug report
based on their experience and background
knowledge. A bug report includes unstructured text
written in natural language to represent the summary
and detailed description fields. Also, it contains
other significant fields, such as severity and priority.
The severity level determines how quickly the bug
should be fixed. For instance, if the bug report is
classified as severe, it should have immediate
attention and should be resolved as soon as possible
because it impacts the performance and functionality
of the system. On the other hand, the priority level
identifies the importance and fixing order of the bug
report [6].

The bug severity levels and their definitions
depend on the utilized BTS system [7]. In Bugzilla,
the severity points out the effect of the bug on the
system functionalities. It is expressed by six
different levels, from Blocker (high severity) to
trivial (low severity). While in JIRA, the severity is
referred to as a priority and varies from Blocker to
minor. It denotes the significance of the bug relative
to other bug reports. In other words, the bug that is
assigned a Blocker level (highest priority) requires
urgent attention and has to be resolved immediately.

A software development company that adopts
JIRA can customize bug reports related to closed-
source projects by adding new fields or updating
existing fields. The INTIX software development

Company, which the proposed methodology has
been applied to their closed-source dataset, has made
a slight change in the bug report format. Even though
the priority field in JIRA represents severity, the
software development team has explicitly added a
new field called severity and changed the priority
definition. The development team has also added
five new levels for the severity field (highest, high,
medium, low and lowest). Figure 1 shows an
example of the customized JIRA bug report form
adopted by INTIX Company.

When bug reports are submitted to BTS, they are
initially inspected and assessed by a group of bug
triagers or development team. In this stage, the
triager reviews the reported bug fields and confirms
that the severity level remains unchanged. Even
though there are general rules on determining the
proper severity level of a bug report, in many cases,
the users may either assign an incorrect severity
level for a given bug report or leave it blank. This is
due to their lack of experience and limited domain
knowledge [8]. Since there are many bug reports
submitted daily through BTS, the triagers spend a
considerable amount of time examining these bug
reports manually to verify the severity level and may
reassign a suitable severity level if required. As a
result, the triagers or development team effort will
increase, causing delays in processing and fixing
critical bug reports [9, 10]. Therefore, to alleviate the
burden on bug triagers and reduce errors regarding
severity level assignment, the bug report severity
prediction should be automated.

Figure 1: An Example of a Customized JIRA Bug Report Form

Journal of Theoretical and Applied Information Technology
31st March 2021. Vol.99. No 6

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1388

Several research works have been proposed to
tackle the problems mentioned above [6, 11-16].
Most of the proposed studies have used well-known
machine learning algorithms such as Support Vector
Machine, Decision Trees, Naïve Bayes, K-Nearest
Neighbor. However, none of these studies consider
the reporters sentiments in predicting the severity of
bug reports. According to the study conducted by
Umer, et al. [5], the number of negative sentiment
words written by the reporters in the severe bug
reports is higher than in the non-severe bug reports.
In other words, the severity of bug reports assigned
by the bug reporters depends on their emotional
expressions written in the summary and description
fields of the reported bugs. Negative sentiment
words (e.g., crash, error, wrong and incorrect)
expressed by the bug reporter may indicate that the
bug is severe and requires urgent action. Therefore,
emotional expressions could be significant in
predicting the severity levels of bug reports.

This paper proposes a sentiment-based
methodology that takes the reporters sentiments
expressed in the summary field of bug reports into
account. Two sentiment-based approaches are
employed, namely: sentiment-based machine
learning and lexicon-based approaches. Concerning
sentiment-based machine learning, five well-known
machine learning algorithms are utilized, which are
Naïve Bayes (NB), Logistic Regression, Vote-
Based, Support Vector Machine (SVM), Random
Forest (RF) and Logistic Model Tree (LMT). The
sentiment-based approaches depend on the popular
SentiWordNet lexicon to identify the sentiment
terms and calculate their associated sentiment
scores. In order to evaluate the performance of the
proposed methodology, the sentiment-based
approaches are applied on a dataset related to closed-
source projects developed by a Jordanian software
development Company called INTIX. This dataset is
extracted from the JIRA repository.

In summary, this study makes the following
contributions:
1. Sentiment-based machine learning and lexicon-

based approaches are proposed to predict the
severity levels of bug reports.

2. The emotions of bug reporters expressed in the
summary field of the bug reports are considered
and incorporated in the bug severity prediction
process.

3. The sentiment analysis process in the proposed
sentiment-based approaches is different from
other similar studies mentioned in the literature.

This paper is organized as follows. Section 2

describes the works related to the proposed
sentiment-based methodology. Section 3
demonstrates, in detail, the proposed methodology.
Then, Section 4 discusses the experimental results.

In Section 5, the potential threats to the validity of
the proposed methodology are introduced. Finally,
Section 6 concludes the paper and suggests future
works.

2 RELATED WORKS

Machine learning and natural language processing
(NLP) techniques have recently been employed in
software engineering to automate many software
maintenance tasks, such as automating bug reports
severity prediction. Numerous research works have
been conducted to predict the severity level of
reported software bugs. The majority of the works
have employed well-known machine learning
algorithms such as SVM, Decision Trees, Naïve
Bayes, Naïve Bayes Multinomial, and K-Nearest
Neighbor (K-NN). However, a small number of
studies have considered the sentiments of bug
reporters to predict the severity of bug reports.

One of the first attempts to predict the severity of
the software bugs was suggested by Menzies and
Marcus [17]. They developed a new technique called
SEVERIS to help test engineers set the appropriate
severity level of a particular bug while validating
NASA’s closed source projects. SEVERIS mainly
relied on both text mining techniques to process the
text description of the defected bugs and the rule
learning approach to classify the bug reports using
the RIPPER rule learner method.

Later on, Lamkanfi, et al. [18] and Lamkanfi, et
al. [15] conducted two studies based on the work of
Menzies and Marcus [17] to predict the severity of
the newly submitted bug. They applied machine
learning algorithms on the short textual description
(i.e., text summary) of the historical bug reports
stored in the Bugzilla bug tracking system related to
open source projects. In both studies, the authors
deduced that the short text of the historical bug
reports could be utilized to precisely predict the
coarse-grained severity level (i.e., severe and non-
severe) of the submitted bugs using machine
learning algorithms. While in a follow-up study of
Lamkanfi, et al. [15], they applied four machine
learning algorithms, particularly Naïve Bayes, Naïve
Bayes Multinomial, K-NN and SVM, on different
datasets related to two open-source projects: Eclipse
and GNOME. According to the experimental results
of their study, Naïve Bayes Multinomial showed
better performance compared to other algorithms.

A work proposed by Tian, et al. [13] used
different attributes of historical bug reports (e.g.,
summary text, description text and product) to
predict the fine-grained severity level (i.e., Critical,
Major, Minor and Trivial). They proposed an
algorithm based on a combination of the BM25Fext
similarity method to compute the similarity between
two bug reports and K-NN, taking into account
duplicate bugs. Various datasets related to Mozilla,

Journal of Theoretical and Applied Information Technology
31st March 2021. Vol.99. No 6

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1389

OpenOffice and Eclipse open-source projects were
utilized to validate their approach.

An approach of comparing ten machine learning
algorithms, namely RF, SVM, Naïve Bayes, K-NN,
Decision Tree, Boosting, Bagging, Stabilized Linear
Discriminant Analysis (SDLA), Generalized Linear
Model (Glmnet), Maximum Entropy (MAXENT)
was conducted by Kaur and Jindal [19] on thirteen
datasets of Apache projects extracted from the JIRA
repository. They claimed that none of the following
four algorithms, SDLA, Glmnet, MAXENT and
Bagging, were used together in a single work. Based
on their results, the Boosting algorithm performed
the best in terms of accuracy, whereas SLDA and
Glmnet were given the least results.

A recent study conducted by Tan, et al. [1] differs
from other studies in the literature. They used the
question and answer posts from Stack Overflow
related to open-source projects Eclipse, Mozilla, and
GCC and integrated them with the bug reports of
these projects. The reason for adding this additional
detailed information was to make the bug reports
dataset better. For fine-grained bug severity
prediction, the authors employed the Logistic
Regression machine learning algorithm. The results
showed that their approach outperformed other
machine learning algorithms, including Naïve
Bayes, KNN and Long Short-Term Memory
(LSTM) when an enhanced version of the bug
reports dataset was taken into consideration.

Several studies adopted topic modeling and
similarity functions to automate the severity
prediction [8, 10, 20]. All these studies employed
Latent Dirichlet Allocation (LDA) to extract the
topics built from the summary and description fields
of bug reports available in a given dataset. So, the
bug reports which belong to the same topic have
similar textual contents. In terms of computing the
degree of similarity between bug reports, Yang, et al.
[10] and Yang, et al. [20] used the KL-divergence
similarity measure, while Zhang, et al. [8] proposed
a new similarity algorithm called REPtopic.

Few researchers proposed to include the analysis
of reporters sentiments to predict the severity of
reported bugs [21-23]. These sentiments are
expressed and presented clearly in the summary
description of the bug reports.

One of the first studies in this domain was
conducted by Yang, et al. [23]. They investigated the
impact of emotional words on predicting the severity
of bug reports from three open-source projects. In
summary, the authors proposed a modified version
of the original Naïve Bayes Multinomial algorithm
and called it EWD-Multinomial. Their methodology
was based on analyzing the sentiment words
according to the well-known sentiment lexicon
called SentiWordNet. According to their
experimental results, their approach performed

better than the original Naïve Bayes Multinomial
and the work proposed by Lamkanfi, et al. [18].

Later, Yang, et al. [22] conducted another study
using a different sentiment-based approach. In their
work, the authors reported a new concept by finding
out the emotional similarity between the reported
bug and the historical bug reports related to different
open source projects using the Emotion-based
Smoothed Unigram Model and KL-divergence. Like
the work of Yang, et al. [23], the SentiWordNet
lexicon was employed in the emotion similarity
analysis phase. The authors also modified the
original Naïve Bayes Multinomial and proposed a
new Emotion Similarity (ES) Multinomial algorithm
to predict the severity level of bug reports. In
general, their research findings indicated that their
methodology had better results compared to other
works proposed by Lamkanfi, et al. [18], Yang, et al.
[23] and Yang, et al. [22].

Ramay, et al. [21] carried out comparative
research. However, besides the sentiment analysis of
reporters emotions expressed in the bug reports
summary field, the authors were the first to employ
a deep learning algorithm to predict the bug reports
severity levels. Unlike the work proposed by Yang,
et al. [23] and Yang, et al. [22], where SentiWordNet
was used for emotion analysis, the authors exploited
a different popular sentiment dictionary called
Senti4SD to compute the sentiment score for each
bug report of a particular dataset extracted from
Bugzilla. Their work revealed a considerable
improvement compared to EWD-Multinomial
proposed by Yang, et al. [23].

Umer, et al. [5] conducted another study that
considered emotion analysis using the
SentiWordNet dictionary. They applied emotion
analysis on bug reports related to the Eclipse open-
source project to predict the priority of the bug
reports. In their approach, the emotion-score of bug
reports and the extracted features were used to train
the SVM algorithm. The authors performed several
experiments, and they concluded that their work
performed better than other approaches listed in the
literature. Their approach also outperformed other
machine learning algorithms, including Naïve
Bayes, Multinomial Naïve Bayes and Linear
Regression.

This study is similar to the studies mentioned
above, where the emotion analysis is exploited for
severity prediction. However, this study is different
from other studies [5, 21-23]. First, this study is
applied to a dataset related to closed-source projects
developed by a private company. Second, sentiment
analysis is performed differently to train the machine
learning, where the sentiment score for each
sentiment term for all bug reports is submitted to the
machine learning algorithms, instead of submitting
the sentiment score of each bug report as followed

Journal of Theoretical and Applied Information Technology
31st March 2021. Vol.99. No 6

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1390

by other studies. Finally, this study has employed the
lexicon-based as a baseline approach to compare the
proposed sentiment-based machine learning
approach.

3. SENTIMENT-BASED SEVERITY

PREDICTION METHODOLOGY

We propose an approach based on sentiment analysis

and machine learning algorithms to predict the

severity levels of bug reports. The proposed

approach is a binary classification technique in

which a new bug report is classified into two severity

levels (i.e., severe or non-severe). The proposed

sentiment-based severity prediction methodology is

shown in Figure 2. The procedure of predicting the

severity of a newly reported bug is briefly illustrated

as follows: first, the historical bug reports from the

JIRA bug tracking system are extracted and the

dataset is prepared. Second, NLP techniques to pre-

process the short description text (i.e., summary) of

each bug report in the dataset are applied. Third, a

feature matrix after performing the pre-processing

stage is constructed. Fourth, the sentiment terms for

each bug report according to the SentiWordNet

lexicon are identified. Then the sentiment score for

each sentiment term presented in the feature matrix

is computed. Finally, the sentiment-based classifiers

to predict the severity level of the newly reported

bugs are trained and tested. In this phase, the input

to the sentiment-based classifier is a collection of

vectors representing bug reports sentiment terms

with their sentiment scores.

Figure 2: Sentiment-Based Severity Prediction Methodology

JIRA

Repositor

y

Bug Reports extraction

Bug

Reports

Dataset

Pre-processing

 Tokenization

 Stop-words Removal

 Lemmatization, etc…

Sentiment

Dictionary

Feature Matrix Feature Vector

Sentiment-Based
Feature Modeling

Bug Severity

Prediction

Sentiment-Based

Classifier

Severity

Predictio

Test Bug

Training Process Testing Process

Journal of Theoretical and Applied Information Technology
31st March 2021. Vol.99. No 6

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1391

3.1 Data Acquisition

In general, software bugs are reported during
software maintenance and managed and tracked
using a particular bug tracking system. In this study,
the dataset is prepared and constructed by extracting
bug reports from the JIRA bug tracking repository.
The software bug reports are related to different
closed-source projects developed by a Jordanian
Company called INTIX located in Amman, Jordan
[11].

When software developers report a particular
bug, they choose one of five severity levels to
determine how severe the bug is. The severity levels
are categorized into five classes: highest (i.e., the
most severe), high, medium (i.e., normal), low and
lowest (i.e., the least severe). In this work, low and
lowest severity levels are considered as non-severe
bugs, whereas high and highest severity levels are
labeled as severe bugs. However, we suggest
excluding bug reports whose severity levels are
classified as normal. As investigated with the
development team, the normal severity level seems
to be the default option for the bug reporters,
especially when it is challenging to decide the
appropriate severity level for each bug report.
Therefore, the bug reports in the dataset categorized
as normal are discarded from the final utilized
dataset.

A software bug report, sbr, is composed of two
main fields; a short description of the bug, sd,
represented by a summary text and a severity level,
sl, associated with each bug. In short, a software bug
report can be formalized as follows:

��� = < ��, �	 >

where �	 ∈ ��
�
�
, ���_�
�
�
�
 (1)

 Table 1 provides a statistical summary of the
utilized closed-source dataset. The bug reports
created between May 2016 and March 2018 are only
included.

Table 1: Statistical Summary of Closed-Source Dataset

Statistical description Value

Number of all bug reports 1164

Number of severe bugs 851

Number of non-severe bugs 313

Number of all terms 9016

Number of unique terms 926

After ignoring the bug reports classified as

normal, the total number of bug reports used in the
experiments is 1164. About 27% of the bug reports
are classified as non-severe bugs and the remaining

bug reports are classified as severe. The number of
all terms found in the short description of all bug
reports is 9016. After applying NLP techniques, the
number of distinct terms extracted from the bug
reports short description is decreased remarkably. It
is found that there are 926 distinct terms.

3.2 Pre-processing

In this step, NLP techniques are applied to the
unstructured text (i.e., summary description field) of
the bug reports dataset. In this work, NLP techniques
are employed to process the textual part of the
dataset. The goal of NLP is to pre-process and
transform the textual representation of bug reports
into a collection of distinct terms or words, which is
called bag-of-words (BOW). The text pre-
processing phase incorporates tokenization, stop-
word removal and lemmatization approaches.

The first step in pre-processing is tokenization,
in which the summary description of each bug report
is split into a set of terms or words. The second step
in pre-processing is stop-word removal, where the
unnecessary words, which do not play a part in
predicting the severity of reported bugs, are
discarded. In other words, constructive words such
as “a”, “an”, “the”, “that”,” on”, “in” and many
others are commonly used in describing the bug
reports and do not convey specific information.
Therefore, stop-words and special characters from
the bug reports dataset are removed as they reduce
the precision of anticipating the severity of newly
reported bugs. This process is performed based on a
predefined list of stop-words implemented in Weka
called Rainbow.

The final step of the pre-processing phase is
lemmatization. Usually, the words in the summary
field of bug reports written by bug reporters can be
expressed differently and appear in several styles.
However, they still carry the same meaning. After
applying the two previous steps, the remaining
words are reduced and transformed into their root.
As a result, the duplication of words that have a
similar root will be avoided. For example, the words
“failure”, “failures”, “fails”, “failed” and “failings”
are converted to the root word “fail”. In this work,
the Porter stemming algorithm is utilized [24]. It is
the most commonly known algorithm that has been
used in the NLP domain to reduce each word to its
basic form.
The following definition depicts the pre-processing
of a bug report sbr:

���ʹ = < ��ʹ, �	 >

��ʹ =< ��, ��, . . . , �� >
 (2)

where, sbrʹ is the pre-processed software bug
report, sdʹ is the pre-processed summary description
of a software bug report sbr, sl represents the

Journal of Theoretical and Applied Information Technology
31st March 2021. Vol.99. No 6

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1392

severity level associated with the bug report sbr and
t1, t2, ……, tn represent the terms or words resulted
from applying the three steps of pre-processing of
the software bug report sbr.

After applying the pre-processing phase, each
bug report is represented as a single vector. Assume
we have r bug reports, in this case, we will have r
vectors of length n, where n represent all the unique
words occurring in all bug reports. In other words, at
the end of the pre-processing stage, we will have a
feature matrix of size r × n.

3.3 Sentiment-Based Feature Modeling

As shown in the proposed methodology, the next
phase is to perform sentiment analysis as the bug
reports could be expressed in a sentiment manner
(i.e., using sentiment terms) by the bug reporters.
The process of sentiment analysis entirely relies on
the sentiment dictionary. In this work, the
SentiWordNet is employed. It is a popular and
publicly available lexical tool used widely in the
sentiment analysis context [25].

SentiWordNet comprises of sentiment words and
their associated positive score PosScore and
negative score NegScore. The net sentiment score
NetSentScore for each sentiment word in the corpus
is calculated by computing the difference between
PosScore and NegScore. In other words, if the value
of PosScore is higher than NegScore, then
NetSentScore is positive. Otherwise, if the value of
NegScore is higher than PosScore, then
NetSentScore is negative.

In this phase, each pre-processed bug report is
exploited to find out whether each word is sentiment
or not. To determine a set of sentiment terms
SentiTermSet for each sbrʹ, we compare the pre-
processed bug report words sbrʹ and sentiment words
available in the sentiment dictionary. Once they
match, the sentiment term SentiTerm is added to
SentiTermSet as depicted in the following equation:

�
����
���
� = ��
����
��� �
�� ∈ �
�������
 ℎ
�
 �
�� = ���"#�$%&#�$'()*"

 + (3)

where, SentiTermSet is a collection of terms that
belong to sentiList, the term represents the word in
sbrʹ, SentiTerm denotes sentiment terms in the pre-
processed bug report sbrʹ and sentiList indicates the
sentiment words in the sentiment dictionary.

After identifying a set of sentiment terms, the
pre-processed software bug report, sbrʹ, represented
as follows:

���ʹʹ = < �
����
���
�, �	 >
�
����
���
� = < �
����
���, … . . , �
����
���

(4)

After that, the SentiWordNet lexicon is used to
compute the sentiment score SentiTermScore for

each SentiTerm included in SentiTermSet by
calculating the NetSentiScore as follows:

�
����
���-��
(�
����
��%) = �−1
��
����-��
% , 2���-��
% < 1
3�-��
%
1
��
����-��
% , 2���-��
% > 1
3�-��
%

1
��
����-��
% = �2���-��
% − 1
3�-��
% , 2���-��
% > 1
3�-��
%
1
3�-��
% − 2���-��
% , 1
3�-��
% > 2���-��
%

 (5)

The sentiment score SentiTermScore has two
possible values; positive and negative. When
SentiTermScore is positive, this indicates that
SentiTerm has a positive sentiment. Otherwise, it has
a negative sentiment.

3.4 Sentiment-Based Approaches

The methodology uses two different sentiment-
based approaches to predict the severity level of bug
reports: a lexicon-based approach (baseline
approach) and a sentiment-based classifier using
different machine learning algorithms.

3.4.1 Lexicon-based approach

The lexicon-based approach aims to analyze the
sentiment of a bug report to predict its severity level
(i.e., severe or non-severe). In particular, the overall
sentiment score of a given bug report articulates its
severity. This study assumes that a bug report is
classified into a severe level when the total sentiment
score of the bug is negative. It is clear that negative
sentiment terms expressed by the reporters signify
that the bugs require immediate attention and should
be resolved instantly. On the other hand, a bug report
is assigned a non-severe level when the total
sentiment score of the bug report is positive. Because
the bug reporter positively describes and
summarizes the reported bug using positive
sentiment terms, in this case, the bug report can be
postponed and fixed later.

Given a pre-processed software bug report
represented as a set of sentiment terms, we target to
calculate the sentiment score for each bug report
SentiBugScore and classify it into positive or
negative sentiment. Ultimately, a bug report with
negative sentiment is assigned a severe level,
whereas a bug report with positive sentiment is given
a non-severe level. The sentiment score of the bug
report is computed by finding the total sum of
sentiment scores of all sentiment terms present in the
pre-processed bug report sbrʹʹ, as described in the
equation below.

�
���453�-��
(���) = 6 �
����
���-��
(�
����
��%)
�

%7�
 (6)

Next, the severity level of the given bug report is
assigned according to its sentiment score. There are
three possible values regarding the sentiment score
of a bug report (SentiBugScore). It can be negative,
positive or zero. When the sentiment score of the bug
report is negative, it means that the given bug report

Journal of Theoretical and Applied Information Technology
31st March 2021. Vol.99. No 6

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1393

belongs to a severe class. In contrast, when the
SentiBugScore is positive, this bug report is
categorized as non-severe. These two cases are
depicted in the equation below.

�
�
���8(���%) = � �
�
�
 , �
���453�-��
% < 0
���_�
�
�
 , �
���453�-��
% > 0 (7)

The last case is when the sentiment score of a bug
report equals zero. Here, the total number of positive
and negative sentiment terms in the pre-processed
bug report sbrʹʹ must be counted. After that, the
severity of the bug report is assigned according to
the comparison between the total number of positive
terms CountTermPos and the total number of
negative terms CountTermNeg. This comparison is
shown in the equation below.

 �
�
���8(���%) = � �
�
�
, :�5���
��1
3 > :�5���
��2��
���_�
�
�
 , :�5���
��2�� > :�5���
��1
3 (8)

3.4.2 Sentiment-based Machine Learning

Approach

The proposed methodology further utilized a
different sentiment-based approach based on the
machine learning-algorithms called: sentiment-
based classifiers. The work presented here is
different from other related works in the literature [5,
21-23], where the authors proposed to pass the total
sentiment score of each bug report to different
classifiers. While in this proposed approach, the
sentiment score of each sentiment term present in the
pre-processed bug reports is submitted to several
machine learning algorithms.

Initially, to build a sentiment-based prediction
model, the bug reports dataset has to be analyzed,
then a set of effective sentiment terms for classifying
the severity level of the bug report has to be
identified. These terms are extracted from each pre-
processed software bug report sbrʹ. After that, each
sentiment score of the sentiment terms included in
the pre-processed bug report is calculated, as
mentioned earlier. The potential sentiment scores are
zero, positive or negative value. In order to calculate
the sentiment score of each sentiment term, first, we
have to examine whether the terms are listed in the
SentiWordNet or not. In case the term does not exist
in the lexicon, then that term is not considered a
sentiment, and hence a zero value is assigned to it.
In contrast, if the term is found, a score is given and
the sentiment score is computed as mentioned in
equations (4) and (5).

Once the sentiment score of each sentiment term
present in bug reports is computed, a sentiment-
based feature matrix is constructed to train the
sentiment-based classifier. It is composed of �
columns and � rows where the unique features
across all � pre-processed bug reports are the

columns of the feature matrix, and each software bug
report is a row of the feature matrix. Thus, when the
pre-processed bug reports have � distinct features,
we would have an � -dimensional feature vector
representing each bug report in the dataset. The
definition of a feature vector is formalized as follow:

��� =< ;�, ;�, … , ;� > (9)

where sbr is a software bug report, n represents
the total number of distinct features, f1, f2, … fn
depicts the unique features extracted from all pre-
processed bug reports.

Next, in order to fill the feature matrix, each
feature vector has to be filled. Therefore, a rule has
been defined to fill the values of all features that exist
in each feature vector. The feature is assigned a zero
value if it does not exist in the corresponding pre-
processed bug report. Otherwise, if the feature does
belong to the corresponding pre-processed bug
report, in this case, the feature may be assigned zero
value when the feature is not a sentiment term or
assigned a sentiment score (i.e., positive or negative
score). As calculated in equations (4) and (5), the
sentiment score is used to represent each feature
considered as a sentiment term. The equation below
expresses how to fill the feature vector.

;%(���) = � 0, �; ;% ∉ ���ʹ => (;% ∈ ���ʹ ?1@ ;% ∉ �
����
���
�)
�
����
���-��
(;%), �; ;% ∈ ���ʹ ?1@ ;% ∈ �
����
���
� (10)

In the sentiment-based classifier, different
machine learning algorithms are applied, and the
goal is to explore which one is best fitted for
predicting the correct severity level of bug reports.
This study employs the following machine learning
algorithms: Naïve Bayes (NB) [26], Random Forest
(RF) [27], Logistic Model Trees (LMT) [28],
Support Vector Machine (SVM) [5], Logistic
Regression and Voting algorithm. The employed
Voting algorithm incorporates both SVM and
Logistic Regression algorithms to build the
sentiment-based model. Both RF and LMT are based
on the Decision Tree algorithm. The reason for
adopting the algorithms mentioned above is their
importance in dealing with unstructured text and
their competitive performance, as reported in the
literature [29, 30]. All the machine learning
algorithms are executed and evaluated using the
open-source WEKA software [31].

3.5 Experimental Procedure and Performance

Metrics

The proposed sentiment-based approaches are
evaluated as follows. First, a bug reports dataset is
built. It is extracted from the JIRA repository related
to closed-source projects developed by a Jordanian
Company called INTIX. Then each bug report in the

Journal of Theoretical and Applied Information Technology
31st March 2021. Vol.99. No 6

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1394

dataset is pre-processed, as mentioned in the pre-
processing section. After that, the Information Gain
(IG) feature selection method is employed to select
the top ‘N’ sentiment features. Finally, the k-fold
cross-validation (k-fold CV) approach is applied to
the entire dataset to evaluate the performance of
sentiment-based machine learning models. This k-
fold cross-validation approach is mainly employed
to avoid the over-fitting problem.

In this study, 10-fold cross-validation is used to
assess the performance of the proposed approach.
The original dataset is divided into ten equal folds or
sets. In the first iteration (k=1), fold number one is
used as a testing dataset to validate the performance
of the machine learning. The nine remaining folds
are used as a training dataset to train the machine
learning model. After finishing the first iteration, the
performance metrics are measured and retained. In
the second repetition (k=2), fold number two is used
as a test set and the remaining are used as a training
set, and the performance metrics are also computed
and recorded for the second model. This procedure
is iterated until iteration k = 10, where each fold of
the 10-folds is used as a test dataset. As a result, ten
models for a particular machine-learning algorithm
are generated. Then, all recorded performance
metrics for all ten models are averaged.

The performance of the proposed sentiment-
based approaches is measured using well-known
performance metrics found in the literature [32]. The
four performance measures, Accuracy, Precision,
Recall and F-Measure, are commonly used to
measure and evaluate the performance of the
sentiment-based approaches. The following
equations are calculated and reported for the
sentiment-based machine learning and lexicon-
based prediction models:

?--5�A-8 = 453�
�
���8�2 + 453�
�
���8�1
453�
�
���82 + 453�
�
���81 (11)

2�
-����� = 453�
�
���8�2
453�
�
���8�2 + 453�
�
���8C2 (12)

>
-A		 = 453�
�
���8�2
453�
�
���8�2 + 453�
�
���8C1 (13)

F-Measure = �∗E)#F%"%(�∗G#FHII
2�
-�����JG#FHII (14)

where,

 BugSeverityP is the number of severe bugs.

 BugSeverityN is the number of non-severe bugs.

 BugSeverityTP is the number of severe bug
reports that are correctly classified by the model.

 BugSeverityTN is the number of non-severe bug
reports that are correctly classified by the model.

 BugSeverityFP is the number of non-severe bug
reports that are incorrectly classified by the
model.

 BugSeverityFN is the number of severe bug
reports that are incorrectly classified by the
model.

Also, another performance metric called
Reciever Operating Characteristic (ROC) has been
considered [32]. According to the True Positive Rate
(TPR) and False Positive Rate (FPR), the ROC curve
is plotted. The Area Under Curve (AUC) is a metric
that measures the capability of the severity
prediction model to differentiate between severe and
non-severe bugs. The value of AUC ranges from 0
to 1. A prediction model performs better than others
in predicting the correct severity level of a bug report
when its AUC value is close to 1.

4. EXPERIMENTAL RESULTS AND

DISCUSSION

Usually, the words written by a developer or end-
user to report a particular bug reflect their emotions.
When the reporters encounter a bug, we assume that
they describe the bug using proper sentiment terms.
Thus, the severity level assigned for a bug report
depends on the reporters sentimental expression.
From this perspective, a methodology is proposed to
perform sentiment analysis on the bug reports to
predict their severity levels.

This work aims to compare the performance of
two sentiment-based approaches for predicting the
severity of bug reports. These approaches are
sentiment-based classifier using machine learning
algorithms and lexicon-based approach. The results
of the sentiment analysis performed in the sentiment-
based feature modeling component of the proposed
methodology will be submitted to the sentiment-
based approaches for training and testing purposes.

Regarding sentiment-based classifiers, machine
learning algorithms (SVM, RF, LMT, NB, Logistic
Regression, and Vote-Based) are utilized to
investigate the algorithm with the best performance
results to predict the bugs severity level. The
lexicon-based approach employs the SentiWordNet
dictionary to classify the severity of bug reports
according to the emotions of bug reporters expressed
as unstructured text in bug reports summary
description. Both sentiment-based approaches are
applied to the same private dataset related to closed-
source projects. In this study, the lexicon-based is
selected as a baseline approach, and the sentiment-
based machine learning approach is compared to the
lexicon-based approach in terms of performance
evaluation results.

After pre-processing the original dataset, the IG
feature selection method is applied to rank all the
feature vector terms according to the obtained

Journal of Theoretical and Applied Information Technology
31st March 2021. Vol.99. No 6

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1395

scores. In this experiment, the top 50, 100, 150, 200
and 300 sentiment terms are selected to generate
different corresponding datasets, and each has 50,
100, 150, 200, and 300-dimensional vectors,
respectively. The sentiment-based machine learning
algorithms are then applied to the originated datasets
for analysis and evaluation using performance
metrics. All the experiments related to the machine
learning algorithms are performed with different
parameter settings using the open-source Weka data
mining tool.

4.1 Sentiment-Based Machine Learning

Approach Results

The average accuracy, F-Measure and AUC of
applying different sentiment-based machine learning
algorithms on the entire pre-processed dataset are
presented in Table 2. As depicted in Table 2, the
accuracy ranges between 76.34% and 84.57%. The
Logistic Regression algorithm has the lowest
accuracy, while the RF algorithm has the highest
accuracy. Since the dataset is imbalanced and
approximately 73% of bug reports are classified as
severe, the accuracy results of all sentiment-based
machine learning algorithms are biased toward the
severe class. However, F-Measure and AUC results
are encouraging because they take into account the
non-severe class that roughly forms 27% of the bug
reports. As observed from Table 2, the F-Measure
values lie in the range of 0.85 – 0.90, and AUC
values fall in the range of 0.59 - 0.88. Thus, F-
Measure and AUC performance metrics are not
biased towards the severe class even though most
bug reports in the dataset are categorized as severe.
So, it can be concluded from Table 2 that the RF
prediction model performs better than other
prediction models in predicting the severity levels of
bug reports, as can be seen from the F-Measure and
AUC results.

Once the original dataset is pre-processed, the IG
feature selection method is utilized to reduce the
number of features in the dataset and improve the

performance of sentiment-based prediction models.
Besides the original pre-processed dataset, five other
datasets with different numbers of selected features
are generated in this experiment. The goal is to
investigate which dataset with top ‘N’ sentiment
terms makes the sentiment-based model performs
better than others. The performance results of
sentiment-based machine learning algorithms
applied on each originated dataset with top-50, top-
100, top-150, top-200 and top 300 sentiment terms
are presented in Figure 3, Figure 4 and Figure 5.
Figure 3 shows the accuracy results of all sentiment-
based machine learning models. As observed from
Figure 3, the performance of sentiment-based
models is improved when the IG feature selection
method is employed compared to the performance
results of sentiment-based models applied to the
original entire pre-processed dataset that contains all
features. In particular, as it is evident from Figure 3,
the Vote-Based model has the highest accuracy
(87.14%) and hence outperforms other sentiment-
based models when the top-200 sentiment terms are
considered for prediction. On the other hand, when
the IG feature selection method is not employed, the
maximum accuracy reaches 84.57%. In general,
from Figure 3, it can be seen that all the sentiment-
based models can exceptionally distinguish the bug
reports severity level when top-50 until top-200
sentiment features are taken into account compared
to the maximum accuracy (84.57%) when the IG
method is not applied. This is indicative from the
maximum values of accuracy which are 85.6%,
86.6%, 86.44%, 87.14%, 86.21% for sentiment-
based machine learning models corresponding to
top-50, top-100, top-150, top-200 and top-300
sentiment terms respectively.

In terms of F-Measure and AUC, the evaluation
of sentiment-based machine learning models is
depicted in Figure 4 and Figure 5, respectively.
These performance metrics are computed for top-50,
top-100, top-150, top-200 and top-300 sentiment
terms for every sentiment-based model.

Table 2: Results of the Sentiment-Based classifier for all Sentiment Terms of the Dataset.

Sentiment-Based Classifier Accuracy F-Measure AUC

Naïve Bayes (NB) 80.06 0.86 0.84

Random Forest (RF) 84.57 0.90 0.88

Logistic Model Tree (LMT) 83.68 0.89 0.85

Vote-Based 76.82 0.85 0.69

Support Vector Machine (SVM) 77.24 0.87 0.59

Logistic Regression 76.34 0.85 0.70

Journal of Theoretical and Applied Information Technology
31st March 2021. Vol.99. No 6

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1396

Figure 3: Accuracy of Sentiment-Based Machine Learning Models.

Figure 4: F-Measure Results of Sentiment-Based Machine Learning Models.

As observed in Figure 4, LMT sentiment-based
model has shown steady performance with the best
F-Measure value (91%) when the number of
sentiment terms considered for severity prediction is
50, 100, 150, 200 and 300 (all top ‘N’ sentiment
terms). Another observation from Figure 4 is that the
RF model has a consistent F-Measure (90%)
irrespective of the selected number of sentiment
terms considered for predicting the severity level of
bug reports.

As presented in Figure 5, LMT sentiment-based
model has the best performance result with AUC
value reaches 90% when the number of selected
sentiment terms is 100, 150 and 200. The RF model
also shows the best performance with AUC 88%
when applied to the dataset that contains all
sentiment features. However, RF performs less when
compared to the performance of LMT. In contrast,
the SVM model shows the least accuracy among
other models. Furthermore, the performance of SVM

70.00

72.00

74.00

76.00

78.00

80.00

82.00

84.00

86.00

88.00

Top 50 Top 100 Top 150 Top 200 Top 300 All data

Accuracy Results

NB RF LMT Vote-Based SVM Logistic Regression

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

Top 50 Top 100 Top 150 Top 200 Top 300 All data

F-Measure Results

NB RF LMT Vote-Based SVM Logistic Regression

Journal of Theoretical and Applied Information Technology
31st March 2021. Vol.99. No 6

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1397

degrades as the number of selected sentiment terms
considered for severity prediction increases.
Nevertheless, other models indicate divergent
performance results.

Generally, it can be observed from Figure 4 and
Figure 5 that the performance results of all
sentiment-based machine learning models are better
when the IG feature selection method is exploited.
The employed feature selection method indicates
that bug reports severity can be predicted with
outstanding performance. Specifically, the models
perform very well when top-50 to top-300 sentiment
terms are selected and considered by the severity
prediction models compared to the results obtained
when all sentiment features are considered. Thus, the
models performance enhancement depends on the
number of selected features used for severity
prediction. When applying different machine
learning algorithms on pre-processed datasets
corresponding to top-50 until top-300 sentiment
terms, it is clear from the results obtained that the
best performance results, in terms of Accuracy, F-
Measure and AUC are reported for top- 200
sentiment terms.

Based on the results reported above, the
sentiment-based model generated by the LMT
algorithm has shown the best performance results
according to the F-Measure and AUC, with
maximum performance results of 0.91 and 0.90,
respectively. Therefore, the LMT model has
effectively predicted the bugs severity level. The
results also indicate that the RF and Logistic
Regression models have achieved comparable
results to the LMT algorithm. AUC and F-Measure
maximum performance results for the RF model are
0.89 and 0.90, respectively and for Logistic
Regression are 0,89 and 0.91, respectively.
Furthermore, the Vote-Based model has the same
attitude, but in certain aspects, less than the results
observed from other models generated by the LMT,
RF and Logistic Regression algorithms.

Thus, according to the analysis of the
experimental results, the conclusion that can be
drawn is that the machine learning model generated
by the LMT algorithm outperforms other models for
predicting the severity level of bug reports.

Figure 5: AUC Results of Sentiment-Based Machine Learning Models.

4.2 Lexicon-Based Approach Results

The overall number of unique sentiment terms
extracted from the pre-processed dataset is 350,
which forms 38% of the total distinct terms of 926
found in the dataset. Among 350 sentiment terms,
205 are positive and 145 are negative, which
constitutes 59% and 41% of the total sentiment
terms.

Table 3 below shows the distribution of positive
and negative terms found in severe and non-severe
bug reports acquired when performing sentiment
analysis using SentiWordNet. As depicted in Table
3, the entire sentiment terms used to describe the
non-sever bugs are 185, where 56% are positive and
the remaining are negative terms. Whereas the total
sentiment terms used to express the severe bug
reports are 280, 42% are negative terms. From Table

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Top 50 Top 100 Top 150 Top 200 Top 300 All data

AUC Results

NB RF LMT Vote-Based SVM Logistic Regression

Journal of Theoretical and Applied Information Technology
31st March 2021. Vol.99. No 6

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1398

3, it is observed that severe bug reports contain more
positive than negative terms. This distribution
affects the performance of the lexicon-based and
machine learning approaches. In general, to obtain
better results, the distribution of sentiment terms
should be as follows: for severe bugs, the majority
should be negative terms. While for non-severe
bugs, the majority should be positive terms.

 Table 3: Distribution of Sentiment Terms in Bug

Reports

Sentiment Terms Non-Severe Severe

Positive Terms 104 163

Negative Terms 81 117

The lexicon-based model is built after the feature

matrix is constructed based on the SentiWordNet
dictionary according to equations 6, 7 and 8. As a
result, the sentiment score of each bug report is
calculated and its severity level is predicted. Then
the results between actual and predicted severity for
all bug reports are compared and reported. As
depicted in Table 4, a confusion matrix is generated
to demonstrate the performance results of the
lexicon-based model.

Table 4: The Confusion Matrix of the Lexicon-Based

Approach

 Actual

severe Non-severe Total

P
re

d
ic

te
d

severe 500 192 692

Non-severe 351 121 472

Total 851 313 1164

As observed from Table 4, among 851 bug

reports classified as severe, the lexicon-based model
has correctly predicted 500 severe bugs. The
remaining 351 bug reports have not been predicted
correctly as severe bugs. Whereas, among the 313
bug reports classified as non-severe, the lexicon-
based model has correctly predicted 121 non-severe
bugs and has failed to predict the remaining 192 bug
reports correctly.
The results reported in the confusion matrix are used
to calculate the performance metrics. Table 5
presents the evaluation metrics used to evaluate the
performance of the lexicon-based model. These
metrics are Accuracy, Precision, Recall
(Sensitivity), Specificity and F-Measure.

As shown in Table 5, the lexicon-based model
performs better in predicting severe bugs than
predicting non-severe bugs. This observation is clear
from the results of Recall (0.59) and Specificity
(0.39). Further, it is observed from Table 5 that the

accuracy of the lexicon-based model is 0.53, which
is low compared to the sentiment-based machine
learning models.

Table 5: The Performance Results of the Lexicon-Based

Approach

Performance Measure Result

Accuracy 0.53

Precision 0.72

Recall 0.59

Specificity 0.39

F-Measure 0.65

The low performance of the lexicon-based

approach can be attributed to how the software
development team expresses their bug reports. When
the software engineers detect bugs, they may not use
proper and sufficient sentiment terms to describe the
reported bugs, as evident by the limited number of
sentiment terms (350 terms) found in all bug reports.
Another reason that degrades the severity prediction
performance is the incompatibility between the
assigned severity level and the corresponding bug
description in the bug reports summary field.

When comparing the performance results
between the lexicon-based and sentiment-based
machine learning approaches, it is apparent that the
machine learning approach performs better than the
lexicon-based approach in predicting the bug reports
severity level. From the evaluation results mentioned
above, the highest accuracy reached by the
sentiment-based machine learning approach is
87.14%, while the lexicon-based approach accuracy
reaches 53%. It is also clear from the results that the
F-Measure of sentiment-based machine learning
models with a maximum value of 0.91 is far superior
to the lexicon-based results.
According to the analysis of the results, it can be
concluded that the lexicon-based approach is not
efficient for predicting the bug reports severity level
present in the utilized closed-source dataset.
However, the sentiment-based machine learning
approaches have shown promising results and
tremendous improvement for severity prediction on
the same dataset. The severity prediction accuracy
has been improved from 53% for the lexicon-based
approach to 87.14% after utilizing the machine
learning approach. Likewise, the F-Measure has
been improved from 0.65 for the lexicon-based
approach to 0.91 after utilizing the machine learning
approach.

To reduce the gap between the performance of
lexicon-based and sentiment-based machine
learning approaches, the software engineers have to
use more sentiment terms, either positive or negative
terms, when describing bugs. The software
engineers should also assign a proper severity level

Journal of Theoretical and Applied Information Technology
31st March 2021. Vol.99. No 6

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1399

consistent with what is expressed in the bug reports
summary field.

5. THREATS TO VALIDITY

In this section, we introduce some of the potential
threats to the validity of our study. The threat to
construct validity is related to the performance
metrics, which been selected for evaluation. Our
study has exploited standard and well-known
metrics used by many studies and researchers to
evaluate the performance of the proposed sentiment-
based models. These metrics are accuracy, Recall,
precision, F-Measure and AUC measures.

Another threat to construct validity is the
selection of a sentiment dictionary used for
computing sentiment scores. In our study, we have
employed the popular SentiWordNet lexicon for
sentiment analysis. However, several sentiment
lexicons are available specifically for software
engineering text, such as SentiS4D [33], which may
impact the performance of the sentiment-based
approach.

The threat to internal validity is related to the
implementation of our sentiment-based severity
prediction approach. Even though we have verified
our approach and checked the performance results to
alleviate this threat, there could be some unobserved
errors. Furthermore, the bug reports we use in this
study belong to closed-source projects, reported and
managed by the software development team of
INTIX company. However, some of the bug reports
severity levels may not be accurate, or the
description of the bug reports are not appropriately
written. Therefore, this threat may affect the results
of severity prediction. Another threat could occur
due to the imbalance distribution of the severity level
of bug reports. Thus, the performance results of the
sentiment-based models can be impacted.

The threat to external validity is the proposed
sentiment-based severity prediction approach has
been evaluated on a private dataset related to closed-
source projects developed by a private Jordanian
Company. In the future, in order to generalize the
results, we plan to apply the proposed sentiment-
based approach on other bug reports related to large
open-source projects such as Mozzila, Eclipse and
Netbeans to measure the effectiveness of the
proposed methodology.

6. CONCLUSIONS

Many research works related to bug report
severity prediction during the software maintenance
phase have been proposed. Most of these studies
have used traditional machine learning algorithms.
However, few studies have considered and
incorporated the bug reporters emotions in
predicting the severity levels of bug reports. Thus,

the importance of this work lies in considering the
emotions of bug reporters may improve the severity
prediction accuracy.

In this paper, a sentiment-based methodology to
predict the severity level of bug reports has been
proposed. The proposed methodology has
considered the reporters sentimental expressions
present in the bug reports summary description.
SentiWordNet dictionary has been used to identify
the sentiment terms and compute their associated
sentiment scores. A closed-source dataset extracted
from the JIRA bug tracking system has been utilized
to evaluate the proposed sentiment-based
approaches.

Regarding the sentiment-based machine learning
approach, five machine learning algorithms have
been compared and evaluated. These algorithms are
Naïve Bayes (NB), Logistic Regression, Vote-
Based, Support Vector Machine (SVM), Random
Forest (RF) and Logistic Model Tree (LMT). In
addition, the sentiment-based machine learning
models have been compared to the lexicon-based as
a baseline approach. The results have shown that
LMT outperforms all sentiment-based models,
including the lexicon-based model.

According to the analysis of experimental
results, it can be concluded that the lexicon-based
approach has shown a low performance in severity
prediction. Moreover, it is not efficient when it has
been applied to the closed-source dataset. However,
the sentiment-based machine learning approach has
shown promising results, and the severity prediction
performance is superior to the lexicon-based
approach. From the reported experimental results,
the sentiment-based machine learning approach has
significantly improved the severity prediction
accuracy to 87.14% compared to the baseline
lexicon-based approach with an accuracy of 53%.
Similarly, the sentiment-based machine learning
approach has, to a large extent, improved the
severity prediction F-Measure from 0.65 for the
lexicon-based to 0.91.

One of the limitations of this work is that the
proposed sentiment-based approach has been
applied and evaluated on a dataset related to private
closed-source projects. Therefore, to ensure the
validity and the efficiency of our work, we intend to
apply the proposed sentiment-based approach to
other datasets related to open-source projects such as
Mozzila and Eclipse. Furthermore, we plan to
compare the proposed sentiment-based approach
with similar research works that utilize similar open-
source datasets.

Another limitation is that we have chosen a well-
known sentiment lexicon (SentiWordNet) to predict
the severity of bug reports. So, we will investigate
whether using other sentiment lexicons such as
Senti4SD and EmoTxt used in software engineering

Journal of Theoretical and Applied Information Technology
31st March 2021. Vol.99. No 6

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1400

text will improve the performance of the proposed
sentiment-based approaches.

REFERENCES

[1] Y. Tan, S. Xu, Z. Wang, T. Zhang, Z. Xu, and

X. Luo, "Bug severity prediction using

question-and-answer pairs from Stack

Overflow," Journal of Systems and Software,

p. 110567, 2020.

[2] A. Chauhan and R. Kumar, "Bug Severity

Classification Using Semantic Feature with

Convolution Neural Network," in Computing

in Engineering and Technology, ed: Springer,

2020, pp. 327-335.

[3] Bugzilla. (2020, October). Bugzilla Tracking

System. Available: https://www.bugzilla.org/

[4] ATLASSIAN. (2020, October). JIRA Bug

Tracking System. Available:

https://www.atlassian.com/software/jira

[5] Q. Umer, H. Liu, and Y. Sultan, "Emotion

based automated priority prediction for bug

reports," IEEE Access, vol. 6, pp. 35743-

35752, 2018.

[6] H. M. Tran, S. T. Le, S. Van Nguyen, and P. T.

Ho, "An Analysis of Software Bug Reports

Using Machine Learning Techniques," SN

Computer Science, vol. 1, p. 4, 2020.

[7] L. A. F. Gomes, R. da Silva Torres, and M. L.

Côrtes, "Bug report severity level prediction in

open source software: A survey and research

opportunities," Information and software

technology, vol. 115, pp. 58-78, 2019.

[8] T. Zhang, J. Chen, G. Yang, B. Lee, and X.

Luo, "Towards more accurate severity

prediction and fixer recommendation of

software bugs," Journal of Systems and

Software, vol. 117, pp. 166-184, 2016.

[9] T. Zhang, G. Yang, B. Lee, and A. T. Chan,

"Predicting severity of bug report by mining

bug repository with concept profile," in

Proceedings of the 30th Annual ACM

Symposium on Applied Computing, 2015, pp.

1553-1558.

[10] G. Yang, T. Zhang, and B. Lee, "Towards

semi-automatic bug triage and severity

prediction based on topic model and multi-

feature of bug reports," in 2014 IEEE 38th

Annual Computer Software and Applications

Conference, 2014, pp. 97-106.

[11] A. Baarah, A. Aloqaily, Z. Salah, M. Zamzeer,

and M. Sallam, "Machine Learning

Approaches for Predicting the Severity Level

of Software Bug Reports in Closed Source

Projects," Machine Learning, vol. 10, 2019.

[12] N. K. S. Roy and B. Rossi, "Towards an

improvement of bug severity classification," in

2014 40th EUROMICRO Conference on

Software Engineering and Advanced

Applications, 2014, pp. 269-276.

[13] Y. Tian, D. Lo, and C. Sun, "Information

retrieval based nearest neighbor classification

for fine-grained bug severity prediction," in

2012 19th Working Conference on Reverse

Engineering, 2012, pp. 215-224.

[14] K. Chaturvedi and V. Singh, "An empirical

comparison of machine learning techniques in

predicting the bug severity of open and closed

source projects," International Journal of

Open Source Software and Processes

(IJOSSP), vol. 4, pp. 32-59, 2012.

[15] A. Lamkanfi, S. Demeyer, Q. D. Soetens, and

T. Verdonck, "Comparing mining algorithms

for predicting the severity of a reported bug,"

in 2011 15th European Conference on

Software Maintenance and Reengineering,

2011, pp. 249-258.

[16] K. K. Sabor, M. Hamdaqa, and A. Hamou-

Lhadj, "Automatic prediction of the severity of

bugs using stack traces and categorical

features," Information and Software

Technology, vol. 123, p. 106205, 2020.

[17] T. Menzies and A. Marcus, "Automated

severity assessment of software defect

reports," in 2008 IEEE International

Conference on Software Maintenance, 2008,

pp. 346-355.

[18] A. Lamkanfi, S. Demeyer, E. Giger, and B.

Goethals, "Predicting the severity of a reported

bug," in 2010 7th IEEE Working Conference

on Mining Software Repositories (MSR 2010),

2010, pp. 1-10.

[19] A. Kaur and S. G. Jindal, "Text analytics based

severity prediction of software bugs for apache

projects," International Journal of System

Assurance Engineering and Management, vol.

10, pp. 765-782, 2019.

[20] G. Yang, K. Min, J.-W. Lee, and B. Lee,

"Applying Topic Modeling and Similarity for

Predicting Bug Severity in Cross Projects,"

KSII Transactions on Internet & Information

Systems, vol. 13, 2019.

[21] W. Y. Ramay, Q. Umer, X. C. Yin, C. Zhu, and

I. Illahi, "Deep Neural Network-Based

Severity Prediction of Bug Reports," IEEE

Access, vol. 7, pp. 46846-46857, 2019.

[22] G. Yang, T. Zhang, and B. Lee, "An emotion

similarity based severity prediction of software

bugs: A case study of open source projects,"

Journal of Theoretical and Applied Information Technology
31st March 2021. Vol.99. No 6

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1401

IEICE TRANSACTIONS on Information and

Systems, vol. 101, pp. 2015-2026, 2018.

[23] G. Yang, S. Baek, J.-W. Lee, and B. Lee,

"Analyzing emotion words to predict severity

of software bugs: A case study of open source

projects," in Proceedings of the Symposium on

Applied Computing, 2017, pp. 1280-1287.

[24] M. F. Porter, "An algorithm for suffix

stripping," Program, vol. 14, pp. 130-137,

1980.

[25] S. Baccianella, A. Esuli, and F. Sebastiani,

"Sentiwordnet 3.0: an enhanced lexical

resource for sentiment analysis and opinion

mining," in Lrec, 2010, pp. 2200-2204.

[26] K. P. Murphy, Machine learning: a

probabilistic perspective: MIT press, 2012.

[27] L. Breiman, "Random forests," Machine

learning, vol. 45, pp. 5-32, 2001.

[28] N. Landwehr, M. Hall, and E. Frank, "Logistic

model trees," Machine learning, vol. 59, pp.

161-205, 2005.

[29] A. Khan, B. Baharudin, L. H. Lee, and K.

Khan, "A review of machine learning

algorithms for text-documents classification,"

Journal of advances in information

technology, vol. 1, pp. 4-20, 2010.

[30] S. M. Weiss, N. Indurkhya, T. Zhang, and F.

Damerau, Text mining: predictive methods for

analyzing unstructured information: Springer

Science & Business Media, 2010.

[31] I. H. Witten, E. Frank, M. A. Hall, and C. J.

Pal, Data Mining: Practical machine learning

tools and techniques: Morgan Kaufmann,

2016.

[32] N. Japkowicz and M. Shah, Evaluating

learning algorithms: a classification

perspective: Cambridge University Press,

2011.

[33] F. Calefato, F. Lanubile, F. Maiorano, and N.

Novielli, "Sentiment polarity detection for

software development," Empirical Software

Engineering, vol. 23, pp. 1352-1382, 2018.

