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ABSTRACT 

 
Fully Homomorphic Encryption(FHE) is an important field of research. This modern technology enables 
computation over encrypted data by a cryptosystem able to perform correctly those calculations. In this 
work, we create an improved release of NTRU called NTRUrobus_PKE (Public Key Encryption), and we 
create over it an efficient Fully Homomorphic Encryption (FHE) scheme. Our NTRUrobust_PKE is 
implemented by using the Number Theoretic Transform (NTT) algorithm combined with our own Fast 
Modular Multiplication algorithm (FMMA). Using these algorithms allows the complete cryptographic 
process to be faster by a factor up to 69 times compared to using just the convolution multiplication instead.  
And that allows our FHE protocol over NTRUrobust_PKE to perform iteratively the computation over the 
encrypted data with perfect correctness and for unlimited depth. In terms of security, we target the high 
level by using the parameters set that meets the category 5 security level defined by NIST (National 
Institute for Standard and Technology). 
Keywords: Post Quantum cryptography, Modular Multiplication, NTRU, NTT, Fully Homomorphic 
Encryption. 
 
1. INTRODUCTION  

 
Over the last decades, information 

technologies (IT) have affected our everyday lives. 
We expect this impact to increase in the next years. 
The dependence on IT also increases the need to 
secure the enormous amounts of sensitive data 
exchanged or stored through public networks and 
data centers. Actually, many companies and 
organizations opt for cloud computing solutions. 
The cloud provides many options, from basic 
storage to applications and services. This choice 
enables high scalability, quick deployment, 
dynamic resources, high computing power, etc, but 
what about data confidentiality and user privacy in 
the cloud? 

To overcome these problems, the providers 
can use the Fully Homomorphic Encryption (FHE) 
schemes. 

The FHE is a breakthrough new 
technology, which allows the Cloud Server to 
perform efficient computation over encrypted data 
and provides the result computed as cipher-texts to 
Clients. The result of such a computation remains 
in encrypted form, only the Clients can decrypt this 
result computed by the Cloud Server.  

 

 
Figure.1: Computation on encrypted data by the Cloud 
Server. 

This technique envisaged first by Rivest, 
Adleman, and Dertouzos 30 years ago. In 2009 
Craig Gentry [1], constructed the first FHE scheme 
based on Ring Learning With Errors (Ring-LWE) 
problems. Since Gentry’s proposition, many FHE 
schemes based on the Ring Learning with Errors 
RLWE) or NTRU were proposed; the major 
challenge was building efficient schemes in the 
practice. 

The main basic operations over encrypted 
data are addition and multiplication. A scheme 
which is both additively and multiplicatively 
Homomorphic is called Fully Homomorphic 
Encryption (FHE), this standard definition allows 
more general constructions, and thus, an FHE 
scheme enables computation of arbitrary functions 
on encrypted data. Formally, if c1 (respectively c2) 
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is a cipher of m1 (respectively m2) there are two 
operations such as: 

Additive Homomorphic Encryption:  

𝐷𝑒𝑐(𝑐ଵ ⊕ 𝑐ଶ) = 𝐷𝑒𝑐(𝑐ଵ) ⊕ 𝐷𝑒𝑐(𝑐ଶ) = 𝑚ଵ + 𝑚ଶ.     (1) 

Multiplicative Homomorphic Encryption: 

 𝐷𝑒𝑐(𝑐ଵ ⊗ 𝑐ଶ) = 𝐷𝑒𝑐(𝑐ଵ) ⊗ 𝐷𝑒𝑐(𝑐ଶ) = 𝑚ଵ ∗ 𝑚ଶ.      (2) 
 

If the scheme is only additively or 
multiplicatively homomorphic, we call the scheme 
Partially Homomorphic. For most FHE schemes, 
the multiplicative depth of circuits is the main 
practical limitation in performing computation over 
encrypted data. 

 
1.1    Contributions 

Firstly, we contribute by creating a new 
NTRUrobust_PKE (Public Key Encryption) release 
inspired by our last paper titled “New Efficient and 
Robust NTRU Post-Quantum   Key Exchange 
release- NTRUrobust” [3] and NTRU scheme [4]. 
This release implements the NTT algorithm 
combined with our own Fast Modular 
Multiplication Algorithm (FMMA) for speeding-up 
the polynomial multiplication. Compared to the use 
of the convolution multiplication, our 
implementation grows the speed performance of the 
cryptographic process by factor up to 87 times for 
keys generation, 35 times for encryption, and 47 for 
decryption. 

 Secondly, we contribute by creating a new 
Fully Homomorphic Encryption (FHE) scheme 
over NTRUrobust_PKE.  Our FHE protocol 
performs iteratively the addition, the multiplication, 
and combination of them, over the encrypted data 
for unlimited depths, and with perfect correctness.  

The principal idea of our purpose is to 
build the FHE scheme by 
“Encryption/Computation/ Decryption/Iteration” 
(ECDI) for each step described in section 4. 

We define the NTRUrobust_PKE in the 
polynomial ring of the form R୯ = ℤ୯[X]/(X୬ + 1)  
with the parameters set {n=1024, q=65537, p=2} 
that achieving the category 5 security level defined 
by NIST “the category 5 security level is equivalent 
to an algorithm is at least as hard to break 
AES256”[5]. 
 
1.2    Outline 

We organize the rest of our work as 
follows: the section.1 contains this introduction; in 
Section 2, we define some notation used in this 
work, we describe briefly the FMMA algorithm, 
and NTT algorithm; and we recall some related 
works to the Fully Homomorphic Encryption; the 

Section 3, concerns the description of our 
NTRUrobust public-key encryption scheme; in 
Section 4, we present our FHE scheme; in Section 
5, we present the result analysis of  
NTRUrobust_FHE implementation and FHE 
scheme implementation ; in Section 7, we give a 
conclusion on our work and our future research 
orientation. 
 
2. PRELIMMINARIES 
 

In this section, we will focus to provide 
only descriptions of the principal subjects that we 
will evoke in this work. So, we describe briefly our 
Fast Modular Multiplication and the NTT algorithm 
and for more details see [1]. 
 
2.1    Notation 

In the remainder of this paper, we use the 
following notations: 𝑅 = ℤ[𝑋]/(𝑋 + 1) the 
polynomials ring ; (a,b,..) uppercase the elements of 
𝑅; (a,b,...) lower-case the coefficients of elements 
of 𝑅; (*) denotes the multiplication of two 
polynomials; (·) denotes the multiplication of  two 
integer;  𝒇  =  𝑁𝑇𝑇(𝒇 ) the function that transforms 
a polynomial into NTT form and the 𝒇 =

𝑖𝑛𝑣𝑁𝑇𝑇(𝒇) the inverse NTT function that 
transforms the polynomial to normal form; we also 
note ∑ h ୧

ିଵ
୧ୀ  X=∑ fመିଵ

୧ୀ ୧
∗ gො ୧ (mod q), the point 

wise multiplication of two polynomials in NTT 
form and we also note it 𝒉 = 𝒇  ○ 𝒈ෝ ; we refer to 
sampCBD(seed) the polynomial sampled according 
to Centered Binomial Distribution; the convolution 
multiplication (*) of two polynomials  f and g is: 
 
 𝒇 ∗ 𝒈 =  ∑ 𝑓

ே
ାୀ 𝑔  𝑋; With 𝑖, 𝑗, 𝑘 ∈ [0, 𝑁[.    (3) 

 
2.2   Fast Modular Multiplication Algorithm 

We construct FMMA especially for 
Fermat prime numbers and all numbers of the form: 
q = 2୩ + 1 . In our case study, we use the fourth 
Fermat prime number as the modulus for our 
implementation, as we will describe below [6]. 

FMMA is more suitable for computing 
modular multiplication by transforming the 
modulus parameter q, into a number of the form 
𝜙 = 𝑞 − 1 = 2, because, this form allows the 
computers, signal processors, and microprocessors 
to speed-up the reduction and the division by 
simple logical operators (&), and (>>) respectively. 
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Algorithm1: FMMA 

Input : , , 2 1, ( 1).kIntegers x y modulus q and q     

FMMA( ):  
1.  𝑝 ←  𝑥 ∗ 𝑦; 
2.  𝑧 ←  𝑝 . & (𝜙 − 1); 
3.  𝑑 ←  (𝑝 − 𝑧) >> 𝑙𝑜𝑔ଶ(𝜙); 
4.  𝑟𝑒𝑠𝑢𝑙𝑡 ←  (𝑧 − 𝑑); 
5.  𝑖𝑓(𝑟𝑒𝑠𝑢𝑙𝑡 < 0) 𝑡ℎ𝑒𝑛  𝑟𝑒𝑡𝑢𝑟𝑛  𝑟𝑒𝑠𝑢𝑙𝑡 + 𝑞. 
6.  𝑒𝑙𝑠𝑒  𝑟𝑒𝑡𝑢𝑟𝑛   𝑟𝑒𝑠𝑢𝑙𝑡. 
 
Output: Reduced number:  * mod .result x y q   

 
2.3   Number Theoretic Transform (NTT) 

The number-theoretic transform (NTT) is 
a generalization of the Discrete Fourier Transform 
(DFT), see [7, 8], which is carried out in positive 
Integer group and finite fields whereas the DFT is 
defined in complex numbers group.  

The Number Theoretic Transform (NTT) 
provides efficient polynomials multiplication in the 
form’s ring  𝑅 = ℤ[𝑋]/(𝑋 + 1) (with n power 
of two and q prime number). NTT has many 
applications in the computer arithmetic and 
cryptographic domain, because it reduces the time 
complexity from𝑂(𝑛ଶ)   𝑡𝑜   𝑂(𝑛 ∗ 𝑙𝑜𝑔(𝑛)). 

To use NTT algorithm, we must choose 
the modulus that satisfying, q=k.n+1 then the 
multiplicative group ℝ   has size 𝜑(𝑞) = 𝑞 − 1 =
𝑘. 𝑛, a generator g and computing the primitive nth 
root of unity Omega 𝜔 = 𝑔(mod𝑞)  and    
     𝜔 = 𝑔 = 1(mod𝑞). 
 A polynomial in normal form: 
 

                    𝒇 = ∑ 𝑓
ିଵ
ୀ 𝑋 ∈ 𝑅 (mod q).           (4) 

 

Can be transformed to NTT form by:  
 

                  𝒇 =  𝛾ିଵ

ୀ
𝑓𝜔  (𝑚𝑜𝑑 𝑞).          (5) 

With    is the 2nd root of unity.  
And the inverse of NTT function to return 

back to normal form is computed by: 

       𝑓 = 𝑛ିଵ𝛾ି  𝑓ఫ
ିଵ

ୀ
 𝜔ି  (mod𝑞).         [6] 

With    𝑖𝑛𝑣𝑁𝑇𝑇 ( 𝒇) = 𝒇. 
 

In our implementation, the FMMA 
function is integrated in NTT functions and it is 
called for each coefficients multiplication. For more 
details of FMMA and NTT algorithms and how to 
implement them, the reader can see our paper [3].  

 
 
 

2.4   Related Works 

The homomorphic encryption includes 
different methods that perform distinct classes of 
computations. (1) The partially homomorphic 
encryption (PHE) that supports only one 
computation like RSA which supports only the 
multiplication operation on ciphertexts; (2) the 
Somewhat homomorphic encryption (SHE) can 
evaluate the addition and multiplications operations 
but only for limited depth; (3) the Leveled fully 
homomorphic encryption (LFHE), can evaluate 
both operations but only for limited depth (pre-
determined); (4) the FHE can evaluate all 
operations of unlimited depth. 
Many works are performed for creating FHE 
cryptosystems. In this section we are going   to give 
a brief description of the homomorphic encryption 
for RSA scheme and for some other lattice-based 
schemes. 
2.4.1   RSA homomorphic encryption 

RSA is partially homomorphic because it 
supports the multiplication only; the evaluation of 
homomorphic encryption is not suitable for 
addition.  

So, let be N, e, d are the RSA parameters 
and  c1, c2 two ciphertexts respectively of m1 and 
m2. The multiplicative homomorphic encryption is 
defined as follow:  

𝑐 = 𝑐ଵ ∗ 𝑐ଶ = 𝑚ଵ
 ∗ 𝑚ଶ

 = (𝑚ଵ ∗ 𝑚ଶ)  (𝑚𝑜𝑑 𝑁). 
Then the decryption of c is: 

 Dec(cଵ ∗ cଶ) = (mଵ ∗ mଶ)ୣୢୀଵ(mod N) . 
But it is not additively homomorphic, because 
Dec(cଵ + cଶ) = (mଵ

ୣ + mଶ
ୣ)ୢ 

≠ (mଵ +  mଶ)  (mod N). 
2.4.2   Gentry FHE cryptosystem 

Craig Gentry, cryptosystem [2] is defined 
in the ring of the form 𝑅 = ℤ[𝑋]/(𝑋ே + 1). 
Gentry chooses an error e in an ideal I  in Rq, with 
𝒆 = 𝑘𝑰   and compute a ciphertext by: 𝒄 = 𝒎 + 𝑘𝑰. 
So the encryption of two message m1 and m2 is:   
𝒄𝟏 = 𝒎𝟏 ∗ 𝑘ଵ𝑰  𝒆𝒕  𝒄𝟐 = 𝒎𝟐 ∗ 𝑘ଶ𝑰  
 The addition of two ciphertext as:  
 𝒄𝟏 + 𝒄𝟐 = 𝒎𝟏 + 𝒎𝟐 + (𝒌𝟏 + 𝒌𝟐)𝑰 
Then we can decrypt: 𝑫𝒆𝒄(𝒄𝟏 + 𝒄𝟐) = 𝒎𝟏 + 𝒎𝟐. 
And the multiplication of two ciphertexts as: 
𝒄𝟏 ⊗ 𝒄𝟐 = 𝒎𝟏 ⊗ 𝒎𝟐 + ((𝒎𝟏 ⊗ 𝒎𝟐)𝒌𝟏 ⊕
𝒌𝟏𝒌𝟐)𝑰.  

The multiplication represents an enormous 
challenge to build a FHE because the error is very 
affected by the multiplication. So, Gentry got the 
FHE from the SHE by using a method called 
"Bootstrapping", which comprises testing the 
decryption function step by step [9]. 

2.4.3   Brakerski-Gentry-Vaikuntanathan (BGV)  
The BGV cryptosystem [1] is based on Ring-LWE 
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problem, and they define it in the polynomials ring 
of the form qR [ ] / ( 1)n

q X X  .  

The BGV begins by generating randomly a private 
key s, an error e, and a from the ring 𝑅q; and 
computing (𝒂, 𝒃) = (𝒂, 𝒂 ∗ 𝒔 + 𝒑 ∗ 𝒆) where b is 
the public key.  

For encryption, the system chooses a 
message M, and chooses randomly (s1, r1, r2 ) 
elements of Rq ; and computing the pair of ring 
elements (u,v)= (a *s1+r1, b*s1+p*r2+M).  

And for decryption the system performs 
𝒎ᇱ = 𝒖 ∗ 𝒔 + 𝒗 (mod q), and computes m=m’  
(mod p) in Rp. 
So, it is easy to verify the BGV homomorphic 
encryption for addition: 
c1+c2=(u1+u2,v1+v2)=(u,v) and  Dec(c1+c2)=m1+m2; 

But the BGV HE for multiplication is very 
difficult. Let be : 

c1=(u1,v1)= (a *s1+r1, b.s1+p.r2+m1);  

c2 =(u2,v2)= (a *s2+r3, b.s2+p.r4+m2); 

The multiplication of c1 and c2 is: 

 c= c1*c2=(u1*v1, u1*v2+u2*v1, u2*v2)=(u,v,w). 

We obtain a vector with 3 elements. To 
tackle this, the BGV authors “use a modulus 
reduction technique, which uses progressively 
smaller modulus qℓ for each level ℓ and rescales the 
ciphertext to the smaller modulus to reduce its 
noise level” [9]. 
2.4.4    NTRU multi-keys FHE 

The Adriana L´opez-Alt et al. [10] multi-
key FHE scheme allows the computation over 
encrypted data with multiple keys and multiple 
users. 

The multi-key FHE scheme is based on 
NTRU scheme and defined in the form's ring 𝑅 =

ℤ[𝑋]/(𝑋ே + 1).  The system begins by generating 
two elements  f, g and computes the private key 
F=2f+1; computing the inverse of F in Rq; 
computing the public key  h= 2g/F mod q. For the 
encryption of a message m, the system generates r, 
e, and computes c=h*r+2e+m mod q. And for 
decryption of c, the system computes a = F*c mod 
q, and m=a (mod 2). 

The FHE principle is to compute a keys 
(hi, Fi) for each message mi. So the Additive 
homomorphic encryption can be easily verified: cadd 
= c1 + c2 mod q should be decrypted to m1 + m2 by 
F1 and F2. But the multiplicative homomorphic 
encryption is very difficult: cmult = c1 *c2 mod q 
should be decrypted to m1* m2 by F1 and F2 .  So: 

Dec(cmult, F1,F2)= F1*F2 (c1*c2)  

= 2[2g1*g2*r1*r2 + g1*r1*F2(2e2 + m2) + g2*r2*F1(2e1 
+ m1)+F1*F2 (e1*m2 + e2*m1 + 2e1*e2)] + F1*F2 
(m1*m2) 

= 2emult+F1*F2 (m1*m2) .                                   (6) 

The correctness decryption of  cadd and cmult  turn on 
“the sum and the product of the underlying 
messages, respectively, as long as the error (emult) 
does not grow too large”[10]. 
 
3.    OUR NTRU_ROBUST_PKE 
 

In 1996, NTRU was introduced by the 
three mathematicians J. Hofstein, J. Pipher, and J. 
H. Silverman, and then published in 1998 [11]. 
They presented it as an alternative to RSA and 
ECC. NTRU is completely constructed from 
Lattice-Based-Cryptography [12]. Its domain of 
computation is the polynomials ring of the form 
𝑅 = ℤ[𝑋]/(𝑋 − 1)  with n is a prime number 
and the modulus q is a power of two, or the 
polynomials ring of the form 𝑅 = ℤ[𝑋]/(𝑋 +

1) with n is a power of two and q is a prime 
number. Since its first creation there are several 
versions, the latest NTRUhps scheme is now a 
candidate to NIST's post-quantum standardization 
project. According to the NIST experts' analysis, 
NTRU is an exciting field of research, and it is very 
efficient [13] (for more details see [4]). 

In this section we describe our 
NTRUrobust_PKE public key encryption release 
inspired from our latest NTRUrobust post-quantum 
key exchange release [3]. 
 
3.1 NTRUrobust_PKE parameters definition 

Our NTRUrobust_PKE scheme 
implements the NTT algorithm   combined with our 
FMMA algorithm for speeding-up the polynomials 
multiplication. We define it in the polynomials ring 
of the form 𝑅𝑞 = ℤ𝑞[𝑋]/(𝑋𝑁 + 1), with the 
parameters set that achieves the category 5 security 
level defined by NIST {𝑛 = 1024,  𝑞 = 65537,

 𝑝 = 2,   𝜎 = √16/2}, with   is the standard 
deviation used for choosing the polynomials 
according to Centered Binomial Distribution. The 
modulus used is the fourth Fermat prime number 
𝑞 = 2ଶర

+ 1 = 65537.   The Fermat prime 
numbers were first studied by Pierre Fermat [12]. 

To use the NTT algorithm we must 
defining the n-th primitive root of unity 
omega: ω = (mod q) = 1089, its square root 

gamma: 𝛾 = √𝜔 = 33, the inverse of 

gamma: 𝛾−1 (mod 𝑞) = 1986, the inverse of 
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omega: 𝜔−1 (mod 𝑞) = 11976, and the inverse 
of n modulo q is 𝑛ିଵ (mod 𝑞) = 65473.  

The polynomials are sampled according to 
Centered Binomial Distribution (sampCBD() 
function) Alkim et al. [14], in the sets {f, g, r, m} 
defined respectively as below: 

𝑳𝒇 = {𝒇 ∈ 𝑹 𝑤𝑖𝑡ℎ 𝑓 ∈ [−3, . . ,3]} ; 
𝑳𝒈 = {𝒈 ∈ 𝑹 𝑤𝑖𝑡ℎ 𝑔 ∈ [−3, . . ,3]} ; 
𝑳𝒓 = {𝒓 ∈ 𝑹 𝑤𝑖𝑡ℎ 𝑟 ∈ [−3, . . ,3] ; 
𝑳𝒎 = {𝒎 ∈ 𝑹 𝑤𝑖𝑡ℎ 𝑚 ∈ {0,1}}. 

 

We also note that our version takes the 
private key F in the form 𝑭 = 𝑝. 𝒇 + 1   [15]. This 
form allows us to avoid the computation of the 
inverse of f (mod p) because 𝑭 = 𝑝. 𝒇 +
1 (mod𝑝) = 1   

The Keys Generation, Encryption, and  
Decryption algorithms below illustrate the use of 
the NTT functions, and we note that we integrate 
the FMMA modular multiplication function into 
NTT functions for each polynomial coefficients 
multiplication [3][7]. 

 
3.2   Algorithm 2: Keys Generation 

Input: the Integer parameters 𝑛, 𝑞, 𝑝, 𝑎𝑛𝑑 𝑠𝑒𝑒𝑑. 
1.  𝒇, 𝒈 ← 𝑠𝑎𝑚𝑝𝐶𝐵𝐷(𝒔𝒆𝒆𝒅); 
2.  𝑭 ← 𝑭 = 𝑝. 𝒇 + 𝟏; 
3. 𝑭, 𝒈ෝ ← 𝑵𝑻𝑻𝒇𝒖𝒏𝒄(𝑭, 𝒈);   

4.  𝑖𝑛𝑣𝑭 ←
𝟏

𝑭
 (mod𝑞); 

5. 𝒉 ← 𝒈ෝ ○ 𝑖𝑛𝑣𝑭 (mod𝑞); 
 

Output: private key 𝑭 and the public key 𝒉 saved 
in NTT form. 
 
Comment: In the key generation our 
implementation generates both private keys (f, g) at 
the same time by the sampCBD(seed) function(line 
1) that allows us to increase the key generation 
process, this function uses the SHAKE-256 Keccak 
hash function [16]. The implementation keeps the 
private key and the public key in NTT form. In 
(line 4), the inverse of the polynomial (𝑭) is found 
by computing the inverse of each coefficient 
modulo q, 𝑖𝑛𝑣𝐹ప

 = 1/𝑓ప
 (mod 𝑞)  by using the 

extended Euclidean algorithm. 
 
 
 
 
 
 
 

3.3  Algorithm 3 : Encryption 

Input : The public key  𝒉, message msg, and seed 
1.  𝒎 ← 𝑀𝑎𝑝(𝒎𝒔𝒈); 
2. 𝒎ෝ ← 𝑁𝑇𝑇𝑓𝑢𝑛𝑐(𝒎); 
3.  𝒓 ← 𝑠𝑎𝑚𝑝𝐶𝐵𝐷(𝒔𝒆𝒆𝒅); 
4. 𝒓ො ← 𝑁𝑇𝑇𝑓𝑢𝑛𝑐(𝒓); 
5. 𝒄ො ← 𝑝. (𝒓ො ○ 𝒉) + 𝒎ෝ ; 
Output: The encrypted message 𝒄ො in NTT form. 
 
Comment: In (line 1), the encryption function 
maps the message into a binary polynomial. In 
(line.5) the cipher-text is computed by using point-
wise Multiplication (○) of (rො and h), multiplying 
them by the parameter p, and adding the 
message mෝ .  All polynomials computed are now in 
the NTT form.  

3.4    Algorithm 4: Decryption 

Input: The encrypted message 𝒄ො, and the private 
key 𝑭. 

1. 𝒂ෝ ← 𝒄ො ○ 𝑭 (mod𝑞); 
2.  𝒂 ← 𝐼𝑛𝑣𝑁𝑇𝑇(𝒂ෝ) (mod𝑞); 

3.  𝒂 ← 𝑙𝑒𝑓𝑡𝑖𝑛𝑔 𝑎 ∈ {
−𝑞

2
,
𝑞

2
}; 

4.  𝒎 ← 𝒂 (mod 𝑝); 

Output: The message m decrypted in binary 
polynomial in the normal form. 
 
Comment: In (line1), the decryption function 
computes a polynomial 𝒂ෝ in NTT form by the 
point-wise multiplication of the ciphertext 𝒄ො and the 
private key 𝐹, in (lin 4) the first step is achieved by 
computing the decrypted message m in normal 
form. 

The NTRUrobust_PKE warrants perfect 
correctness of the decryption function with failure 
probability rate equal to ZERO (2ିஶ), even we 
generate the private key in the form 𝑭 = 𝑝. 𝒇 + 1 
[15], The result is obtained by using the python 
script developed by NTRU team [17, 18]. So 
NTRUrobust_PKE is very confident against an 
eventual attack using decryption failure [19]. 
 
4.    OUR FULLY HOMOMORPHIC 

ENCRYPTION SCHEME (FHE) 
      

We construct the FHE scheme over our 
NTRUrobust_PKE, which computes the private 
key, the public key, the ciphertext, and the plaintext 
in the NTT form by using point-wise 
multiplication. So the sum and the product of two 
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encrypted data performed by our FHE scheme, not 
increase largely the error which allows the 
decryption to be perfect and more exact than the 
NTRU scheme that uses the convolution 
multiplication. Let be: 

             𝒄ො𝟏 = 𝑝. (𝒓ො𝟏 ○ 𝒉) + 𝒎ෝ 𝟏 (𝑚𝑜𝑑 𝑞).           (7) 

𝒄ො𝟐 = 𝑝. (𝒓ො𝟐 ○ 𝒉) +  𝒎ෝ 𝟐 (𝑚𝑜𝑑 𝑞). 

- The homomorphic encryption for addition of two 
encrypted data is as follow: 

𝒄ො = 𝒄ො𝟏 + 𝒄ො𝟐 = 𝑝. ቀ𝒉 ○ (𝒓ො𝟏 +  𝒓ො𝟐)ቁ + 𝒎ෝ 𝟐 +

 𝒎ෝ 𝟏(mod q).                                                         (8) 

Then we calculate a ciphertext coefficient 
𝑐̂  of the polynomial 𝒄ො by: 
 

𝑐̂ = 𝑐ଵ̂, + 𝑐ଶ̂, = 𝑝. ℎ. ൫�̂�ଵ, + �̂�ଶ,൯ + 𝑚ෝଵ, + 𝑚ෝଶ,.  
 
With 𝑐ଵ̂, , 𝑐ଶ̂,, �̂�ଵ, , �̂�ଶ,,𝑚ෝଵ,, and 𝑚ෝଶ, are the 
coefficients respectively of the polynomials   
𝒄ො𝟏, 𝒄ො𝟐, 𝒓ො𝟏, 𝒓ො𝟐, 𝒎ෝ 𝟏, and 𝒎ෝ 𝟐.  

Our implementation computes easily the 
decryption of the addition of two encrypted data by 
computing a polynomial 𝒂ො = 𝒄ො ○  𝑭ෝ 𝑚𝑜𝑑 𝑞; 
computing 𝒂 = 𝑖𝑛𝑣𝑁𝑇𝑇(𝒂ො); and computing 𝒎 =
𝒂 𝑚𝑜𝑑 𝑝.  

Then:   𝐷𝑒𝑐(𝒄 = 𝒄𝟏 + 𝒄𝟐) = 𝒎 = 𝒎𝟏 + 𝒎𝟐. 

- The homomorphic encryption for Multiplication 
of two encrypted data is as follow: 

 𝒄ො = 𝒄ො𝟏 ○ 𝒄ො𝟐 = ൫𝑝. ൫𝒉 ○ 𝒓ො𝟏൯ + 𝒎ෝ 𝟏൯ ○ ൫𝑝. ൫𝒉 ○ 𝒓ො𝟐൯ +

𝒎ෝ 𝟐൯(mod q).   (9) 

We calculate a ciphertext coefficient 𝑐̂  of the 
polynomial 𝒄ො by: 

�̂� = �̂�ଵ, ∗ �̂�ଶ, = ൫𝑝. ℎ . �̂�ଵ, + 𝑚ෝଵ,൯൫𝑝. ℎ . �̂�ଶ, + 𝑚ෝ ଶ,൯ 

= 𝑝. ℎ(𝑝. ℎ�̂�ଵ,�̂�ଶ, + �̂�ଵ,𝑚ෝଶ, + �̂�ଶ,𝑚ෝଵ,) + 𝑚ෝଵ,𝑚ෝଶ, 

Our implementation computes easily the 
decryption of the product of two encrypted data by 
computing a polynomial 𝒂ො = 𝒄ො ○  𝑭ෝ 𝑚𝑜𝑑 𝑞, 
computing 𝒂 = 𝑖𝑛𝑣𝑁𝑇𝑇(𝒂ො), and computing 𝒎 =
𝒂 𝑚𝑜𝑑 𝑝.  

Then:   𝐷𝑒𝑐(𝒄 = 𝒄𝟏 ∗ 𝒄𝟐) = 𝒎 = 𝒎𝟏 ∗ 𝒎𝟐. 

The NTRUrobust_PKE decrypt exactly the 
computation of two encrypted data. So, for  
computing (addition, multiplication, and 
combination of them) many encrypted data, our 
FHE scheme apply the process Encrypt/ Compute 
/Decrypt/Re-Encrypt/Iteration (ECDREI) for each 
depth. 

For example, if we want to encrypt m1,m2, 
and m3 in c1, c2, c3 and we want the Cloud Server to 
compute c1*c2*c3; the process is : the Client sends  
(c1, c2) to the Cloud Server; the Cloud Server  
computes c=c1*c2 and sends it to Client; the Client 

decrypts c in m=m1*m2 and re-encrypt it in c;  the 
next step the Client send c and c3 and the Cloud 
Server computes c= c*c3 and return it to Client 
who decrypts it in m=m*m3= m1*m2*m3. 
 

 
Figure.2: Iterative computation of three encrypted data. 

 

In the subsections below we will present 
the Additive Homomorphic Encryption 
(AdditiveHE) algorithm, the Multiplicative 
Homomorphic Encryption (MultiplicativeHE) 
algorithm, and   the combination of both Additive 
and Multiplicative Homomorphic Encryption 
(AddMulFHE) Algorithm that computes: 
Dec(𝐚𝟏 ∗ 𝐛𝟏 + 𝐜𝟏 ∗ 𝐝𝟏) = 𝐦𝐚𝟏 ∗ 𝐦𝐛𝟏 + 𝐦𝐜𝟏 ∗
𝐦𝐝𝟏. 

With 𝐚𝟏, 𝐛𝟏, 𝐜𝟏, and 𝐝𝟏, the encrypted data 
respectively of the messages 𝐦𝐚𝟏, 𝐦𝐛𝟏 , 𝐦𝐜𝟏,
𝐚𝐧𝐝 𝐦𝐝𝟏. 
 
4.1   Additive Homomorphic Encryption  

In algorithm.5, we suppose that a ClientA 
send the encrypted data ci of the messages mi, and 

the Cloud Server computes  ∑ 𝒄
𝒊ୀ𝒅𝒆𝒑𝒕𝒉
𝒊ୀ𝟏 𝒊

 ; and then 

the ClientA obtains the result of the 
sum  ∑ 𝒎𝒊

𝒊ୀ𝒅𝒆𝒑𝒕𝒉
𝒊ୀ𝟏 . NTRUrobust_PKE cryptosystem 

performs the AdditiveHE, by computing iteratively 
the addition of many encrypted data, and following 

the process Encrypt/ Compute /Decrypt/Re-
Encrypt/Iteration (ECDREI) for each depth. 
 
   𝑫𝒆𝒄𝒓𝒚𝒑𝒕 ቀ∑ 𝒄

𝒊ୀ𝒅𝒆𝒑𝒕𝒉
𝒊ୀ𝟏 𝒊

ቁ = ∑ 𝒎𝒊
𝒊ୀ𝒅𝒆𝒑𝒕𝒉
𝒊ୀ𝟏  .      (10)  

 
Algorithm 5:  AdditiveHE Algorithm. 
________________________________________ 
Input: The public key 𝒉𝒂,  the private key 𝑭𝒂, the 
mapped messages   mi ∈ Rଶ (binary polynomial), 
and depth. 
_________________________________________
1      𝒎 ← 𝒎𝟏; 
2.  𝑓𝑜𝑟(𝑖𝑛𝑡 𝑖 = 1; 𝑖 ≤ 𝑑𝑒𝑝𝑡ℎ; 𝑖 + +)  𝑑𝑜 ∶  { 
3.            𝑚ෝ ← 𝑁𝑇𝑇(𝑚); 
4.            𝑚ෝ  ← 𝑁𝑇𝑇(𝑚);  
5.           𝒄ො𝒂 ← 𝒆𝒏𝒄𝒓𝒚𝒑𝒕𝒊𝒐𝒏൫𝒉𝒂, 𝒎ෝ ൯;       
6.           𝒄ො𝒊   ← 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛൫𝒉𝒂, 𝒎ෝ 𝒊൯;  
7.           𝒄ො𝒂  ← 𝐴𝑑𝑑(𝒄ො𝒂, 𝒄ො𝒊); //Server  
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8.          m← decryption(𝒄ො𝒂, 𝑭𝒂);       
9.           } 𝑒𝑛𝑑 𝑓𝑜𝑟; 
10.    return m; 
Output: The Decrypted message  𝒎 =

∑ 𝒎𝒊  𝑚𝑜𝑑 𝑝
ௗ௧
ୀଵ    in normal form. 

Comment: So, in line.1 the AdditiveHE initializes  
the binary polynomial m=m1 which will stores the 
result; in line.2 the first iteration begins the 
addition polynomial (messages); ClientA 
transforms (m, m2) to NTT form (lines 3,4), 
encrypts them in (𝒄ො𝒂, 𝒄ො𝟐) respectively (lines 5,6), 
and sends them to the Server; the Server computes 
𝒄ො𝒂=𝒄ො𝒂+𝒄ො𝟐 (line.7) and sends it to ClientA; the 
ClientA decrypt 𝒄ො𝒂 in m which equal to m=m1+m2; 
and so on until depth  limit. 

4.2 Multiplicative Homomorphic Encryption 
In algorithm.6, we suppose that the 

ClientA sends the encrypted data ci of the messages 
mi to the Cloud Server, and the Cloud Server 
computes  ∏ 𝑐

ௗ௧
ୀଵ  ; and then the ClientA obtains 

the result of the product of ∏ 𝑚
ௗ௧
ୀଵ . 

NTRUrobust_PKE cryptosystem performs the 
multiplicative homomorphic encryption called 
(MultiplicativeHE), by computing iteratively the 
multiplication of many encrypted data by following 
the process Encrypt/ Compute /Decrypt/Re-
Encrypt/Iteration (ECDREI) for each depth. 
 
    𝐷𝑒𝑐𝑟𝑦𝑝𝑡൫∏ 𝑐

ௗ௧
ୀଵ ൯ = ∏ 𝑚 

ௗ௧
ୀଵ .          (11) 

 
Algorithm 6: MultiplicativeHE Algorithm  
____________________________________ 
 Input: The public key h, the mapped messages   
mi ∈ Rଶ (binary polynomial), and depth. 
________________________________ 

1. m←m1; 
2. 𝑓𝑜𝑟(𝑖𝑛𝑡 𝑖 = 1; 𝑖 ≤ 𝑑𝑒𝑝𝑡ℎ; 𝑖 + +)  𝑑𝑜 ∶  { 
3.      𝒎ෝ ← 𝑁𝑇𝑇(𝒎);  
4.     𝒎ෝ  ← 𝑁𝑇𝑇(𝒎𝒊); 
5.      𝒄ො𝒂  ← 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛൫𝒉𝒂, 𝒎ෝ ൯; 
6.      𝒄ො𝒊 ← 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛൫𝒉𝒂, 𝒎ෝ ൯; 
7.      𝒄ො𝒂 ← 𝒄ො𝒂  ○ 𝒄ො𝒊;//Server 
8.      𝒎 ← 𝒅𝒆𝒄𝒓𝒚𝒑𝒕𝒊𝒐𝒏(𝒄ො𝒂, 𝑭𝒂);  
9. } 𝑒𝑛𝑑 𝑓𝑜𝑟; 
10. return m; 

 
Output : The Decrypted message  𝒎 =
∏   𝑚  𝑚𝑜𝑑 𝑝𝒌

𝒊ୀ𝟏   in Normal form. 
 
Comment: In line.1 the MultiplicativeHE 
initializes  the binary polynomial m=m1 which will 

store the result; in line.2 the first iteration begins ; 
ClientA transforms (m, m2) to NTT form ( 𝒎ෝ , 𝒎ෝ ଶ) 
(lines 3,4), encrypts them in (𝒄ො𝒂, 𝒄ො𝟐) 
respectively(lines 5,6), and sends them to the 
Server; the Server computes      𝒄ො𝒂 = 𝒄ො𝒂  ○ 𝒄ො𝟐 
(line.7) by point-wise multiplication because they 
are in NTT form; and sends 𝒄ො𝒂 to ClientA; the 
ClientA decrypt 𝒄ො𝒂 in m in normal form, which 
equal to m=m*m2; and so on until depth value. 
 
4.3  Combination of Additive and Multiplicative 
Homomorphic Encryption  

We can combine the AdditiveHE 
algorithm and MultiplicativeHE algorithm for 
computing many equations that we want. For 
example, we can use those algorithms for 
computing the equation below: 

 Dec(𝒄𝒂 ∗ 𝒄𝒃 + 𝒄𝒄 ∗ 𝒄𝒅) =  (𝒂 ∗ 𝒃 + 𝒄 ∗ 𝒅) .   

Where (𝒄𝒂, 𝒄𝒃, 𝒄𝒄, 𝒄𝒅) are the encrypted data 
(polynomials) of (𝒂, 𝒃, 𝒄, 𝒅) respectively. 

 
Algorithm 7 : CombineFHE Algorithm 
 

Input: The public key 𝒉, the private key 𝑭 , and 
the mapped messages (𝒂, 𝒃, 𝒄, 𝒅 ) in 𝑅ଶ

ସ. 
 
1. 𝒂ෝ, 𝒃, 𝒄ො, 𝒅   ← NTT(𝒂, 𝒃, 𝒄, 𝒅); //ClientA 
2. 𝒄𝒂ෞ, 𝒄𝒃, 𝒄𝒄ෞ, 𝒄𝒅 ← encrypt൫𝒉 , 𝒂ෝ, 𝒃, 𝒄ො, 𝒅 ൯; 
3. 𝑪𝒂𝒃  ← MultipicativeHE(𝒄𝒂ෞ, 𝒄𝒃); //server 
4. 𝑪𝒄𝒅  ← 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒𝐻𝐸(𝒄𝒄ෞ, 𝒄𝒅 );//server 
5.  𝑪𝑨 ← AdditiveHE(𝑪𝒂𝒃, 𝑪𝒄𝒅 );//server 
6. 𝐌𝐚 ← 𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛(𝑪𝑨 , 𝑭𝒂 ); // ClientA 
 
Output: The Decrypted message  
 𝑴𝒂 =  (𝒂 ∗ 𝒃 + 𝒄 ∗ 𝒅). 
 
Comment: In line.1 the ClientA transforms the 
polynomials 𝒂, 𝒃, 𝒄, and 𝒅 from normal form to 
NTT form respectively into 𝒂ෝ , 𝒃, 𝒄ො, and  𝒅; 
encrypts them (line.2) respectively into 𝒄𝒂ෞ, 𝒄𝒃, 𝒄𝒄ෞ,

and 𝒄𝒅 ;  and sends them to the Cloud Server, who 
in line.3 and line.4   calls the MultiplicativeHE 
algorithm  for computing 𝒄𝒂ෞ ○  𝒄𝒃  and 𝒄𝒄ෞ ○ 𝒄𝒅  
respectively into 𝑪𝒂𝒃 𝑎𝑛𝑑 𝑪𝒄𝒅  ; in line.5 the 
Cloud Server calls the AdditiveHE algorithm for 
computing the sum of  𝑪𝒂𝒃 𝑎𝑛𝑑 𝑪𝒄𝒅  into 𝑪𝑨   
obtained in NTT form and return it to ClientA; 
finally, ClientA decrypts the encrypted message CA  
into 𝐌𝐚, which is computed in normal form, and 
represent the final result 𝐌𝐚 =  (𝒂 ∗ 𝒃 + 𝒄 ∗ 𝒅).   
If we have to compute the sum or the product of 
𝐌𝐚 for many times, we should call iteratively this 
algorithm until the pre-defined depth. 
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5.    RESULT ANALYSIS 
  

We note that all implementations are 
performed on a PC-TOSHIBA with an Intel(R) 
Core(TM) i7-2630QM CPU, 2 GHz processor, 
RAM 8 GO, under environment Windows 7-32 bits 
and Dev-C++ 4.9.9.2; and the speed of the 
algorithms are given in milliseconds (ms). 
 
5.1    Performance of our NTRUrobust_PKE 

In this subsection we present the 
performance results of our NTRUrobust_PKE using 
(NTT&FMMA) compared to the same NTRU 
scheme but implemented with convolution 
multiplication, we called it NTRU_CONV. 

Both implementations use the same 
parameters set {n=1024, q=65537, p=2}. We 
choose this sequence parameters for targeting the 
high security level that meets the category 5 
defined by NIST, and the Fermat prime number 
$q=2^16+1=65537$, allows the modular 
multiplication to be fast by using our FMMA 
algorithm. 

We built the two software on the same 
machine cited above, and we report the median 
performance results of 100 runs in Table 
1(Figure.3).  
 
Table 1: Speed performance benchmarking (ms) 

 
 
 
 
 
 
 

 
 
Figure 3:  Performance benchmarking between 
NTRUrobust and NTRU_CONV. The result values are 
given in milliseconds (ms). 

Comment: In this result, we remark that we did 
better, by speeding-up the key generation by a 
factor up to 87 times, the encryption by a factor up 
to 35 times, and the decryption by a factor up to 47 
times. 

The implementation of NTRUrobust_PKE 
release described in this paper is available on the 
Google Drive website at [20]; and the NTRU, 
implementations are available on the NIST website 
at [21]. 

 
5.2    Performance of our FHE scheme 

In this subsection, we present the 
performance of our FHE scheme, by performing the 
AdditiveHE algorithm and the MultiplicativeHE 
algorithm for some value of depth. For example, we 
choose the depth value {100, 200, 400, 800, 1000}; 
we test both algorithms by those values, that allows 
us to be confident about the speed performance and 
the correctness of the decryption after many 
computation of encrypted data.  

We reported the result in Milliseconds 
(ms), as indicated in Table.2, and Figure.4 below. 
 
Table 2: Speed performance of our FHE algorithms 
(ms) 
depth 100 200 400 800 1000 

MultiplicativeHE 124 256 516 1030 1201 

AdditiveHE 109 234 453 904 1138 

 

 
 
Figure 4: Complexity time(ms) evolution of the 
AdditiveHE and MultiplicativeHE in function of depth 
value. The result values are given in milliseconds. 

Comment: We did those tests with large depths to 
prove the efficiency of   AdditiveHE and 
MultiplicativeHE algorithms of our FHE scheme 
based on the process Encrypt/ Compute 
/Decrypt/Re-Encrypt/Iteration (ECDREI). Thanks 
to our NTRUrobst_PKE cryptosystem, we obtain 
the perfect correctness of the decryption function 

0

500

1000

1500

100 200 400 800 1000

MultiplicativeHE
AdditiveHE

depth

ms

Schemes KeysGen 
(ms) 

Encrypt 
(ms) 

Decrypt 
(ms) 

NTRU _CONV 109 16 15 

NTRUrobust 
NTT+FMMA 

1.25 0.46 0.32 

Speed-up 
Factor (X) 

87 times 35 times 47 times 

 



Journal of Theoretical and Applied Information Technology 
15th March 2021. Vol.99. No 5 
© 2021 Little Lion Scientific 

 
ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
1075 

 

for all tests, which gives us great confidence in our 
implementation.  

We remark, in figure.4, that the evolution is in 
linear time with depth's values. The complexity of 
the AdditiveHE and MultiplicativeHE algorithms 
are almost the same, which proves the efficiency of 
our Fully Homomorphic Encryption scheme. 
Whereas Gentry’s homomorphic cryptosystem is 
not applicable given the increased noise for 
addition and the multiplication; DGHV, 
Homomorphic cryptosystem, the encryption-
decryption time remains very large; and for NTRU-
multi-Keys FHE will be very complicated when the 
depth value is large. For example, with the 
depth=100, we should create 100 private keys and 
100 public keys.  

Our FHE scheme over our 
NTRUrobust_PKE is very efficient; we create only 
one private key and one public key for unbounded 
depth. 

 
5.3    NTRUrobust_PKE Security 
 

Many cryptanalysis works are performed; 
their principal goal was to check the robustness of 
the Lattices-Based Cryptography by posing the 
hardest problems on point lattice in ℝ𝑛. The best 
tools used to prove the security is Lattice reduction 
by the algorithms (Gram-Schmidt, LLL, BKZ 
algorithms) and Meet-in-The-Middle attack 
(MIM)[4] [12]. 

We used Martin R. Albrecht et al. [22] tool 
to estimate the security level of NTRUrobust_PKE 
release, by solving the uSVP (primal attack)  with 
BKZ cost model of size  c=20,292b for the classical 
security and decreasing this size to c=20,265b  for 
quantum security (b is the block size used by the 
BKZ algorithm). This tool used the quantum 
sieving algorithm to consider potential Grover 
speed-ups [14]. Our release achieves 2230 for the 
classical security level and 2208 for the quantum 
security level.  

NIST states its report [8240] that “the 
security of NTRU is based on stronger assumption 
than LWE or RLWE schemes also based on 
Lattices” [13].  

6. CONCLUSION 

In this paper, we purpose complementary 
works; we contribute by creating 
NTRUrobust_PKE post-quantum (Public Key 
Encryption), with an excellent performance in 
terms of speed as well as in terms of security ( the 
parameters  set meets Category 5 security level 

defined by NIST). And then we create over it an 
efficient FHE scheme that performs the principle 
operations, the Additive Homomorphic encryption 
and the Multiplicative Homomorphic encryption, 
with a perfect correctness of decryption function 
and for unbounded depth.  

Thanks to our Fast Modular Multiplication 
Algorithm (FMMA) with the NTT algorithm, we 
obtain this drastic result. Our FHE scheme is very 
helpful to Cloud Services providers, Industrials, 
and companies that exchange sensitive data.  

The inconvenient of our FHE scheme is 
that the communication time between the Client 
and the Cloud Server increase linearly for each 
level of $depth$, because the Client should 
decrypts and re-encrypt the result of the 
computation (Addition or Multiplication of 
encrypted data ) for each level of $depth$.  

For our future works, we hope to 
implement our NTRUrobust_PKE and our FHE 
scheme to the banking systems and adapting our 
scheme for other industrial domains like the health 
domain. 
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