
Journal of Theoretical and Applied Information Technology
15th March 2021. Vol.99. No 5
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1067

AN EFFICIENT FULLY HOMOMORPHIC ENCRYPTION
SCHEME OVER NTRU_ROBUST_PKE

1EL HASSANE LAAJI, 1ABDELMALEK AZIZI, AND 2TAOUFIK SERRAJ
1ACSA Laboratory , Mohammed First Uniersity, Oujda, Morocco

2MASI Laboratory, Multidisciplinary Faculty, Nador, Morocco

 e.laaji@ump.ac.ma, abdelmalekazizi@yahoo.fr, taoufik.serraj@gmail.com

ABSTRACT

Fully Homomorphic Encryption(FHE) is an important field of research. This modern technology enables
computation over encrypted data by a cryptosystem able to perform correctly those calculations. In this
work, we create an improved release of NTRU called NTRUrobus_PKE (Public Key Encryption), and we
create over it an efficient Fully Homomorphic Encryption (FHE) scheme. Our NTRUrobust_PKE is
implemented by using the Number Theoretic Transform (NTT) algorithm combined with our own Fast
Modular Multiplication algorithm (FMMA). Using these algorithms allows the complete cryptographic
process to be faster by a factor up to 69 times compared to using just the convolution multiplication instead.
And that allows our FHE protocol over NTRUrobust_PKE to perform iteratively the computation over the
encrypted data with perfect correctness and for unlimited depth. In terms of security, we target the high
level by using the parameters set that meets the category 5 security level defined by NIST (National
Institute for Standard and Technology).
Keywords: Post Quantum cryptography, Modular Multiplication, NTRU, NTT, Fully Homomorphic
Encryption.

1. INTRODUCTION

Over the last decades, information

technologies (IT) have affected our everyday lives.
We expect this impact to increase in the next years.
The dependence on IT also increases the need to
secure the enormous amounts of sensitive data
exchanged or stored through public networks and
data centers. Actually, many companies and
organizations opt for cloud computing solutions.
The cloud provides many options, from basic
storage to applications and services. This choice
enables high scalability, quick deployment,
dynamic resources, high computing power, etc, but
what about data confidentiality and user privacy in
the cloud?

To overcome these problems, the providers
can use the Fully Homomorphic Encryption (FHE)
schemes.

The FHE is a breakthrough new
technology, which allows the Cloud Server to
perform efficient computation over encrypted data
and provides the result computed as cipher-texts to
Clients. The result of such a computation remains
in encrypted form, only the Clients can decrypt this
result computed by the Cloud Server.

Figure.1: Computation on encrypted data by the Cloud
Server.

This technique envisaged first by Rivest,
Adleman, and Dertouzos 30 years ago. In 2009
Craig Gentry [1], constructed the first FHE scheme
based on Ring Learning With Errors (Ring-LWE)
problems. Since Gentry’s proposition, many FHE
schemes based on the Ring Learning with Errors
RLWE) or NTRU were proposed; the major
challenge was building efficient schemes in the
practice.

The main basic operations over encrypted
data are addition and multiplication. A scheme
which is both additively and multiplicatively
Homomorphic is called Fully Homomorphic
Encryption (FHE), this standard definition allows
more general constructions, and thus, an FHE
scheme enables computation of arbitrary functions
on encrypted data. Formally, if c1 (respectively c2)

Journal of Theoretical and Applied Information Technology
15th March 2021. Vol.99. No 5
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1068

is a cipher of m1 (respectively m2) there are two
operations such as:

Additive Homomorphic Encryption:

𝐷𝑒𝑐(𝑐ଵ ⊕ 𝑐ଶ) = 𝐷𝑒𝑐(𝑐ଵ) ⊕ 𝐷𝑒𝑐(𝑐ଶ) = 𝑚ଵ + 𝑚ଶ. (1)

Multiplicative Homomorphic Encryption:

 𝐷𝑒𝑐(𝑐ଵ ⊗ 𝑐ଶ) = 𝐷𝑒𝑐(𝑐ଵ) ⊗ 𝐷𝑒𝑐(𝑐ଶ) = 𝑚ଵ ∗ 𝑚ଶ. (2)

If the scheme is only additively or
multiplicatively homomorphic, we call the scheme
Partially Homomorphic. For most FHE schemes,
the multiplicative depth of circuits is the main
practical limitation in performing computation over
encrypted data.

1.1 Contributions

Firstly, we contribute by creating a new
NTRUrobust_PKE (Public Key Encryption) release
inspired by our last paper titled “New Efficient and
Robust NTRU Post-Quantum Key Exchange
release- NTRUrobust” [3] and NTRU scheme [4].
This release implements the NTT algorithm
combined with our own Fast Modular
Multiplication Algorithm (FMMA) for speeding-up
the polynomial multiplication. Compared to the use
of the convolution multiplication, our
implementation grows the speed performance of the
cryptographic process by factor up to 87 times for
keys generation, 35 times for encryption, and 47 for
decryption.

 Secondly, we contribute by creating a new
Fully Homomorphic Encryption (FHE) scheme
over NTRUrobust_PKE. Our FHE protocol
performs iteratively the addition, the multiplication,
and combination of them, over the encrypted data
for unlimited depths, and with perfect correctness.

The principal idea of our purpose is to
build the FHE scheme by
“Encryption/Computation/ Decryption/Iteration”
(ECDI) for each step described in section 4.

We define the NTRUrobust_PKE in the
polynomial ring of the form R୯ = ℤ୯[X]/(X୬ + 1)
with the parameters set {n=1024, q=65537, p=2}
that achieving the category 5 security level defined
by NIST “the category 5 security level is equivalent
to an algorithm is at least as hard to break
AES256”[5].

1.2 Outline

We organize the rest of our work as
follows: the section.1 contains this introduction; in
Section 2, we define some notation used in this
work, we describe briefly the FMMA algorithm,
and NTT algorithm; and we recall some related
works to the Fully Homomorphic Encryption; the

Section 3, concerns the description of our
NTRUrobust public-key encryption scheme; in
Section 4, we present our FHE scheme; in Section
5, we present the result analysis of
NTRUrobust_FHE implementation and FHE
scheme implementation ; in Section 7, we give a
conclusion on our work and our future research
orientation.

2. PRELIMMINARIES

In this section, we will focus to provide
only descriptions of the principal subjects that we
will evoke in this work. So, we describe briefly our
Fast Modular Multiplication and the NTT algorithm
and for more details see [1].

2.1 Notation

In the remainder of this paper, we use the
following notations: 𝑅௤ = ℤ௤[𝑋]/(𝑋௡ + 1) the
polynomials ring ; (a,b,..) uppercase the elements of
𝑅௤; (a,b,...) lower-case the coefficients of elements
of 𝑅௤; (*) denotes the multiplication of two
polynomials; (·) denotes the multiplication of two
integer; 𝒇෠ = 𝑁𝑇𝑇(𝒇) the function that transforms
a polynomial into NTT form and the 𝒇 =

𝑖𝑛𝑣𝑁𝑇𝑇(𝒇෠) the inverse NTT function that
transforms the polynomial to normal form; we also
note ∑ h෠ ୧

୒ିଵ
୧ୀ଴ X=∑ fመ୒ିଵ

୧ୀ଴ ୧
∗ gො ୧ (mod q), the point

wise multiplication of two polynomials in NTT
form and we also note it 𝒉෡ = 𝒇෠ ○ 𝒈ෝ ; we refer to
sampCBD(seed) the polynomial sampled according
to Centered Binomial Distribution; the convolution
multiplication (*) of two polynomials f and g is:

 𝒇 ∗ 𝒈 = ∑ 𝑓௜

ே
௜ା௝ୀ௞ 𝑔௝ 𝑋௞; With 𝑖, 𝑗, 𝑘 ∈ [0, 𝑁[. (3)

2.2 Fast Modular Multiplication Algorithm

We construct FMMA especially for
Fermat prime numbers and all numbers of the form:
q = 2୩ + 1 . In our case study, we use the fourth
Fermat prime number as the modulus for our
implementation, as we will describe below [6].

FMMA is more suitable for computing
modular multiplication by transforming the
modulus parameter q, into a number of the form
𝜙 = 𝑞 − 1 = 2௞, because, this form allows the
computers, signal processors, and microprocessors
to speed-up the reduction and the division by
simple logical operators (&), and (>>) respectively.

Journal of Theoretical and Applied Information Technology
15th March 2021. Vol.99. No 5
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1069

Algorithm1: FMMA

Input : , , 2 1, (1).kIntegers x y modulus q and q   

FMMA():
1. 𝑝 ← 𝑥 ∗ 𝑦;
2. 𝑧 ← 𝑝 . & (𝜙 − 1);
3. 𝑑 ← (𝑝 − 𝑧) >> 𝑙𝑜𝑔ଶ(𝜙);
4. 𝑟𝑒𝑠𝑢𝑙𝑡 ← (𝑧 − 𝑑);
5. 𝑖𝑓(𝑟𝑒𝑠𝑢𝑙𝑡 < 0) 𝑡ℎ𝑒𝑛  𝑟𝑒𝑡𝑢𝑟𝑛  𝑟𝑒𝑠𝑢𝑙𝑡 + 𝑞.
6. 𝑒𝑙𝑠𝑒  𝑟𝑒𝑡𝑢𝑟𝑛   𝑟𝑒𝑠𝑢𝑙𝑡.

Output: Reduced number:  * mod .result x y q

2.3 Number Theoretic Transform (NTT)

The number-theoretic transform (NTT) is
a generalization of the Discrete Fourier Transform
(DFT), see [7, 8], which is carried out in positive
Integer group and finite fields whereas the DFT is
defined in complex numbers group.

The Number Theoretic Transform (NTT)
provides efficient polynomials multiplication in the
form’s ring 𝑅௤ = ℤ௤[𝑋]/(𝑋௡ + 1) (with n power
of two and q prime number). NTT has many
applications in the computer arithmetic and
cryptographic domain, because it reduces the time
complexity from𝑂(𝑛ଶ)   𝑡𝑜   𝑂(𝑛 ∗ 𝑙𝑜𝑔(𝑛)).

To use NTT algorithm, we must choose
the modulus that satisfying, q=k.n+1 then the
multiplicative group ℝ௡   has size 𝜑(𝑞) = 𝑞 − 1 =
𝑘. 𝑛, a generator g and computing the primitive nth
root of unity Omega 𝜔 = 𝑔௞(mod𝑞) and
   𝜔௡ = 𝑔௞௡ = 1(mod𝑞).
 A polynomial in normal form:

 𝒇 = ∑ 𝑓௜
௡ିଵ
௜ୀ଴ 𝑋௜ ∈ 𝑅௤ (mod q). (4)

Can be transformed to NTT form by:

 𝒇෠ = ෌ 𝛾௝௡ିଵ

௝ୀ଴
𝑓௝𝜔௜௝ (𝑚𝑜𝑑 𝑞). (5)

With   is the 2nd root of unity.
And the inverse of NTT function to return

back to normal form is computed by:

 𝑓௜ = 𝑛ିଵ𝛾ି௜ ෌ 𝑓ఫ
෡௡ିଵ

௝ୀ଴
 𝜔ି௜ (mod𝑞). [6]

With 𝑖𝑛𝑣𝑁𝑇𝑇 (𝒇෠) = 𝒇.

In our implementation, the FMMA
function is integrated in NTT functions and it is
called for each coefficients multiplication. For more
details of FMMA and NTT algorithms and how to
implement them, the reader can see our paper [3].

2.4 Related Works

The homomorphic encryption includes
different methods that perform distinct classes of
computations. (1) The partially homomorphic
encryption (PHE) that supports only one
computation like RSA which supports only the
multiplication operation on ciphertexts; (2) the
Somewhat homomorphic encryption (SHE) can
evaluate the addition and multiplications operations
but only for limited depth; (3) the Leveled fully
homomorphic encryption (LFHE), can evaluate
both operations but only for limited depth (pre-
determined); (4) the FHE can evaluate all
operations of unlimited depth.
Many works are performed for creating FHE
cryptosystems. In this section we are going to give
a brief description of the homomorphic encryption
for RSA scheme and for some other lattice-based
schemes.
2.4.1 RSA homomorphic encryption

RSA is partially homomorphic because it
supports the multiplication only; the evaluation of
homomorphic encryption is not suitable for
addition.

So, let be N, e, d are the RSA parameters
and c1, c2 two ciphertexts respectively of m1 and
m2. The multiplicative homomorphic encryption is
defined as follow:

𝑐 = 𝑐ଵ ∗ 𝑐ଶ = 𝑚ଵ
௘ ∗ 𝑚ଶ

௘ = (𝑚ଵ ∗ 𝑚ଶ)௘ (𝑚𝑜𝑑 𝑁).
Then the decryption of c is:

 Dec(cଵ ∗ cଶ) = (mଵ ∗ mଶ)ୣୢୀଵ(mod N) .
But it is not additively homomorphic, because
Dec(cଵ + cଶ) = (mଵ

ୣ + mଶ
ୣ)ୢ

≠ (mଵ + mଶ) (mod N).
2.4.2 Gentry FHE cryptosystem

Craig Gentry, cryptosystem [2] is defined
in the ring of the form 𝑅௤ = ℤ௤[𝑋]/(𝑋ே + 1).
Gentry chooses an error e in an ideal I in Rq, with
𝒆 = 𝑘𝑰 and compute a ciphertext by: 𝒄 = 𝒎 + 𝑘𝑰.
So the encryption of two message m1 and m2 is:
𝒄𝟏 = 𝒎𝟏 ∗ 𝑘ଵ𝑰 𝒆𝒕 𝒄𝟐 = 𝒎𝟐 ∗ 𝑘ଶ𝑰
 The addition of two ciphertext as:
 𝒄𝟏 + 𝒄𝟐 = 𝒎𝟏 + 𝒎𝟐 + (𝒌𝟏 + 𝒌𝟐)𝑰
Then we can decrypt: 𝑫𝒆𝒄(𝒄𝟏 + 𝒄𝟐) = 𝒎𝟏 + 𝒎𝟐.
And the multiplication of two ciphertexts as:
𝒄𝟏 ⊗ 𝒄𝟐 = 𝒎𝟏 ⊗ 𝒎𝟐 + ((𝒎𝟏 ⊗ 𝒎𝟐)𝒌𝟏 ⊕
𝒌𝟏𝒌𝟐)𝑰.

The multiplication represents an enormous
challenge to build a FHE because the error is very
affected by the multiplication. So, Gentry got the
FHE from the SHE by using a method called
"Bootstrapping", which comprises testing the
decryption function step by step [9].

2.4.3 Brakerski-Gentry-Vaikuntanathan (BGV)
The BGV cryptosystem [1] is based on Ring-LWE

Journal of Theoretical and Applied Information Technology
15th March 2021. Vol.99. No 5
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1070

problem, and they define it in the polynomials ring
of the form qR [] / (1)n

q X X  .

The BGV begins by generating randomly a private
key s, an error e, and a from the ring 𝑅q; and
computing (𝒂, 𝒃) = (𝒂, 𝒂 ∗ 𝒔 + 𝒑 ∗ 𝒆) where b is
the public key.

For encryption, the system chooses a
message M, and chooses randomly (s1, r1, r2)
elements of Rq ; and computing the pair of ring
elements (u,v)= (a *s1+r1, b*s1+p*r2+M).

And for decryption the system performs
𝒎ᇱ = 𝒖 ∗ 𝒔 + 𝒗 (mod q), and computes m=m’
(mod p) in Rp.
So, it is easy to verify the BGV homomorphic
encryption for addition:
c1+c2=(u1+u2,v1+v2)=(u,v) and Dec(c1+c2)=m1+m2;

But the BGV HE for multiplication is very
difficult. Let be :

c1=(u1,v1)= (a *s1+r1, b.s1+p.r2+m1);

c2 =(u2,v2)= (a *s2+r3, b.s2+p.r4+m2);

The multiplication of c1 and c2 is:

 c= c1*c2=(u1*v1, u1*v2+u2*v1, u2*v2)=(u,v,w).

We obtain a vector with 3 elements. To
tackle this, the BGV authors “use a modulus
reduction technique, which uses progressively
smaller modulus qℓ for each level ℓ and rescales the
ciphertext to the smaller modulus to reduce its
noise level” [9].
2.4.4 NTRU multi-keys FHE

The Adriana L´opez-Alt et al. [10] multi-
key FHE scheme allows the computation over
encrypted data with multiple keys and multiple
users.

The multi-key FHE scheme is based on
NTRU scheme and defined in the form's ring 𝑅௤ =

ℤ௤[𝑋]/(𝑋ே + 1). The system begins by generating
two elements f, g and computes the private key
F=2f+1; computing the inverse of F in Rq;
computing the public key h= 2g/F mod q. For the
encryption of a message m, the system generates r,
e, and computes c=h*r+2e+m mod q. And for
decryption of c, the system computes a = F*c mod
q, and m=a (mod 2).

The FHE principle is to compute a keys
(hi, Fi) for each message mi. So the Additive
homomorphic encryption can be easily verified: cadd
= c1 + c2 mod q should be decrypted to m1 + m2 by
F1 and F2. But the multiplicative homomorphic
encryption is very difficult: cmult = c1 *c2 mod q
should be decrypted to m1* m2 by F1 and F2 . So:

Dec(cmult, F1,F2)= F1*F2 (c1*c2)

= 2[2g1*g2*r1*r2 + g1*r1*F2(2e2 + m2) + g2*r2*F1(2e1
+ m1)+F1*F2 (e1*m2 + e2*m1 + 2e1*e2)] + F1*F2
(m1*m2)

= 2emult+F1*F2 (m1*m2) . (6)

The correctness decryption of cadd and cmult turn on
“the sum and the product of the underlying
messages, respectively, as long as the error (emult)
does not grow too large”[10].

3. OUR NTRU_ROBUST_PKE

In 1996, NTRU was introduced by the
three mathematicians J. Hofstein, J. Pipher, and J.
H. Silverman, and then published in 1998 [11].
They presented it as an alternative to RSA and
ECC. NTRU is completely constructed from
Lattice-Based-Cryptography [12]. Its domain of
computation is the polynomials ring of the form
𝑅௤ = ℤ௤[𝑋]/(𝑋௡ − 1) with n is a prime number
and the modulus q is a power of two, or the
polynomials ring of the form 𝑅௤ = ℤ௤[𝑋]/(𝑋௡ +

1) with n is a power of two and q is a prime
number. Since its first creation there are several
versions, the latest NTRUhps scheme is now a
candidate to NIST's post-quantum standardization
project. According to the NIST experts' analysis,
NTRU is an exciting field of research, and it is very
efficient [13] (for more details see [4]).

In this section we describe our
NTRUrobust_PKE public key encryption release
inspired from our latest NTRUrobust post-quantum
key exchange release [3].

3.1 NTRUrobust_PKE parameters definition

Our NTRUrobust_PKE scheme
implements the NTT algorithm combined with our
FMMA algorithm for speeding-up the polynomials
multiplication. We define it in the polynomials ring
of the form 𝑅𝑞 = ℤ𝑞[𝑋]/(𝑋𝑁 + 1), with the
parameters set that achieves the category 5 security
level defined by NIST {𝑛 = 1024,  𝑞 = 65537,

 𝑝 = 2,   𝜎 = √16/2}, with  is the standard
deviation used for choosing the polynomials
according to Centered Binomial Distribution. The
modulus used is the fourth Fermat prime number
𝑞 = 2ଶర

+ 1 = 65537. The Fermat prime
numbers were first studied by Pierre Fermat [12].

To use the NTT algorithm we must
defining the n-th primitive root of unity
omega: ω = (mod q) = 1089, its square root

gamma: 𝛾 = √𝜔 = 33, the inverse of

gamma: 𝛾−1 (mod 𝑞) = 1986, the inverse of

Journal of Theoretical and Applied Information Technology
15th March 2021. Vol.99. No 5
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1071

omega: 𝜔−1 (mod 𝑞) = 11976, and the inverse
of n modulo q is 𝑛ିଵ (mod 𝑞) = 65473.

The polynomials are sampled according to
Centered Binomial Distribution (sampCBD()
function) Alkim et al. [14], in the sets {f, g, r, m}
defined respectively as below:

𝑳𝒇 = {𝒇 ∈ 𝑹 𝑤𝑖𝑡ℎ 𝑓௜ ∈ [−3, . . ,3]} ;
𝑳𝒈 = {𝒈 ∈ 𝑹 𝑤𝑖𝑡ℎ 𝑔௜ ∈ [−3, . . ,3]} ;
𝑳𝒓 = {𝒓 ∈ 𝑹 𝑤𝑖𝑡ℎ 𝑟௜ ∈ [−3, . . ,3] ;
𝑳𝒎 = {𝒎 ∈ 𝑹 𝑤𝑖𝑡ℎ 𝑚௜ ∈ {0,1}}.

We also note that our version takes the
private key F in the form 𝑭 = 𝑝. 𝒇 + 1   [15]. This
form allows us to avoid the computation of the
inverse of f (mod p) because 𝑭 = 𝑝. 𝒇 +
1 (mod𝑝) = 1  

The Keys Generation, Encryption, and
Decryption algorithms below illustrate the use of
the NTT functions, and we note that we integrate
the FMMA modular multiplication function into
NTT functions for each polynomial coefficients
multiplication [3][7].

3.2 Algorithm 2: Keys Generation

Input: the Integer parameters 𝑛, 𝑞, 𝑝, 𝑎𝑛𝑑 𝑠𝑒𝑒𝑑.
1. 𝒇, 𝒈 ← 𝑠𝑎𝑚𝑝𝐶𝐵𝐷(𝒔𝒆𝒆𝒅);
2. 𝑭 ← 𝑭 = 𝑝. 𝒇 + 𝟏;
3. 𝑭෡, 𝒈ෝ ← 𝑵𝑻𝑻𝒇𝒖𝒏𝒄(𝑭, 𝒈);

4. 𝑖𝑛𝑣𝑭෡ ←
𝟏

𝑭
 (mod𝑞);

5. 𝒉෡ ← 𝒈ෝ ○ 𝑖𝑛𝑣𝑭෡ (mod𝑞);

Output: private key 𝑭෡ and the public key 𝒉෡ saved
in NTT form.

Comment: In the key generation our
implementation generates both private keys (f, g) at
the same time by the sampCBD(seed) function(line
1) that allows us to increase the key generation
process, this function uses the SHAKE-256 Keccak
hash function [16]. The implementation keeps the
private key and the public key in NTT form. In
(line 4), the inverse of the polynomial (𝑭෡) is found
by computing the inverse of each coefficient
modulo q, 𝑖𝑛𝑣𝐹ప

෡ = 1/𝑓ప
෡ (mod 𝑞) by using the

extended Euclidean algorithm.

3.3 Algorithm 3 : Encryption

Input : The public key 𝒉෡, message msg, and seed
1. 𝒎 ← 𝑀𝑎𝑝(𝒎𝒔𝒈);
2. 𝒎ෝ ← 𝑁𝑇𝑇𝑓𝑢𝑛𝑐(𝒎);
3. 𝒓 ← 𝑠𝑎𝑚𝑝𝐶𝐵𝐷(𝒔𝒆𝒆𝒅);
4. 𝒓ො ← 𝑁𝑇𝑇𝑓𝑢𝑛𝑐(𝒓);
5. 𝒄ො ← 𝑝. (𝒓ො ○ 𝒉෡) + 𝒎ෝ ;
Output: The encrypted message 𝒄ො in NTT form.

Comment: In (line 1), the encryption function
maps the message into a binary polynomial. In
(line.5) the cipher-text is computed by using point-
wise Multiplication (○) of (rො and h෠), multiplying
them by the parameter p, and adding the
message mෝ . All polynomials computed are now in
the NTT form.

3.4 Algorithm 4: Decryption

Input: The encrypted message 𝒄ො, and the private
key 𝑭෡.

1. 𝒂ෝ ← 𝒄ො ○ 𝑭෡ (mod𝑞);
2. 𝒂 ← 𝐼𝑛𝑣𝑁𝑇𝑇(𝒂ෝ) (mod𝑞);

3. 𝒂 ← 𝑙𝑒𝑓𝑡𝑖𝑛𝑔 𝑎௜ ∈ {
−𝑞

2
,
𝑞

2
};

4. 𝒎 ← 𝒂 (mod 𝑝);

Output: The message m decrypted in binary
polynomial in the normal form.

Comment: In (line1), the decryption function
computes a polynomial 𝒂ෝ in NTT form by the
point-wise multiplication of the ciphertext 𝒄ො and the
private key 𝐹෠, in (lin 4) the first step is achieved by
computing the decrypted message m in normal
form.

The NTRUrobust_PKE warrants perfect
correctness of the decryption function with failure
probability rate equal to ZERO (2ିஶ), even we
generate the private key in the form 𝑭 = 𝑝. 𝒇 + 1
[15], The result is obtained by using the python
script developed by NTRU team [17, 18]. So
NTRUrobust_PKE is very confident against an
eventual attack using decryption failure [19].

4. OUR FULLY HOMOMORPHIC

ENCRYPTION SCHEME (FHE)

We construct the FHE scheme over our
NTRUrobust_PKE, which computes the private
key, the public key, the ciphertext, and the plaintext
in the NTT form by using point-wise
multiplication. So the sum and the product of two

Journal of Theoretical and Applied Information Technology
15th March 2021. Vol.99. No 5
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1072

encrypted data performed by our FHE scheme, not
increase largely the error which allows the
decryption to be perfect and more exact than the
NTRU scheme that uses the convolution
multiplication. Let be:

 𝒄ො𝟏 = 𝑝. (𝒓ො𝟏 ○ 𝒉෡) + 𝒎ෝ 𝟏 (𝑚𝑜𝑑 𝑞). (7)

𝒄ො𝟐 = 𝑝. (𝒓ො𝟐 ○ 𝒉෡) + 𝒎ෝ 𝟐 (𝑚𝑜𝑑 𝑞).

- The homomorphic encryption for addition of two
encrypted data is as follow:

𝒄ො = 𝒄ො𝟏 + 𝒄ො𝟐 = 𝑝. ቀ𝒉෡ ○ (𝒓ො𝟏 + 𝒓ො𝟐)ቁ + 𝒎ෝ 𝟐 +

 𝒎ෝ 𝟏(mod q). (8)

Then we calculate a ciphertext coefficient
𝑐௜̂ of the polynomial 𝒄ො by:

𝑐௜̂ = 𝑐ଵ̂,௜ + 𝑐ଶ̂,௜ = 𝑝. ℎ෠௜. ൫�̂�ଵ,௜ + �̂�ଶ,௜൯ + 𝑚ෝଵ,௜ + 𝑚ෝଶ,௜.

With 𝑐ଵ̂,௜ , 𝑐ଶ̂,௜, �̂�ଵ,௜ , �̂�ଶ,௜,𝑚ෝଵ,௜, and 𝑚ෝଶ,௜ are the
coefficients respectively of the polynomials
𝒄ො𝟏, 𝒄ො𝟐, 𝒓ො𝟏, 𝒓ො𝟐, 𝒎ෝ 𝟏, and 𝒎ෝ 𝟐.

Our implementation computes easily the
decryption of the addition of two encrypted data by
computing a polynomial 𝒂ො = 𝒄ො ○ 𝑭ෝ 𝑚𝑜𝑑 𝑞;
computing 𝒂 = 𝑖𝑛𝑣𝑁𝑇𝑇(𝒂ො); and computing 𝒎 =
𝒂 𝑚𝑜𝑑 𝑝.

Then: 𝐷𝑒𝑐(𝒄 = 𝒄𝟏 + 𝒄𝟐) = 𝒎 = 𝒎𝟏 + 𝒎𝟐.

- The homomorphic encryption for Multiplication
of two encrypted data is as follow:

 𝒄ො = 𝒄ො𝟏 ○ 𝒄ො𝟐 = ൫𝑝. ൫𝒉෡ ○ 𝒓ො𝟏൯ + 𝒎ෝ 𝟏൯ ○ ൫𝑝. ൫𝒉෡ ○ 𝒓ො𝟐൯ +

𝒎ෝ 𝟐൯(mod q). (9)

We calculate a ciphertext coefficient 𝑐௜̂ of the
polynomial 𝒄ො by:

�̂�௜ = �̂�ଵ,௜ ∗ �̂�ଶ,௜ = ൫𝑝. ℎ෠௜ . �̂�ଵ,௜ + 𝑚ෝଵ,௜൯൫𝑝. ℎ෠௜ . �̂�ଶ,௜ + 𝑚ෝ ଶ,௜൯

= 𝑝. ℎ෠௜(𝑝. ℎ෠௜�̂�ଵ,௜�̂�ଶ,௜ + �̂�ଵ,௜𝑚ෝଶ,௜ + �̂�ଶ,௜𝑚ෝଵ,௜) + 𝑚ෝଵ,௜𝑚ෝଶ,௜

Our implementation computes easily the
decryption of the product of two encrypted data by
computing a polynomial 𝒂ො = 𝒄ො ○ 𝑭ෝ 𝑚𝑜𝑑 𝑞,
computing 𝒂 = 𝑖𝑛𝑣𝑁𝑇𝑇(𝒂ො), and computing 𝒎 =
𝒂 𝑚𝑜𝑑 𝑝.

Then: 𝐷𝑒𝑐(𝒄 = 𝒄𝟏 ∗ 𝒄𝟐) = 𝒎 = 𝒎𝟏 ∗ 𝒎𝟐.

The NTRUrobust_PKE decrypt exactly the
computation of two encrypted data. So, for
computing (addition, multiplication, and
combination of them) many encrypted data, our
FHE scheme apply the process Encrypt/ Compute
/Decrypt/Re-Encrypt/Iteration (ECDREI) for each
depth.

For example, if we want to encrypt m1,m2,
and m3 in c1, c2, c3 and we want the Cloud Server to
compute c1*c2*c3; the process is : the Client sends
(c1, c2) to the Cloud Server; the Cloud Server
computes c=c1*c2 and sends it to Client; the Client

decrypts c in m=m1*m2 and re-encrypt it in c; the
next step the Client send c and c3 and the Cloud
Server computes c= c*c3 and return it to Client
who decrypts it in m=m*m3= m1*m2*m3.

Figure.2: Iterative computation of three encrypted data.

In the subsections below we will present
the Additive Homomorphic Encryption
(AdditiveHE) algorithm, the Multiplicative
Homomorphic Encryption (MultiplicativeHE)
algorithm, and the combination of both Additive
and Multiplicative Homomorphic Encryption
(AddMulFHE) Algorithm that computes:
Dec(𝐚𝟏 ∗ 𝐛𝟏 + 𝐜𝟏 ∗ 𝐝𝟏) = 𝐦𝐚𝟏 ∗ 𝐦𝐛𝟏 + 𝐦𝐜𝟏 ∗
𝐦𝐝𝟏.

With 𝐚𝟏, 𝐛𝟏, 𝐜𝟏, and 𝐝𝟏, the encrypted data
respectively of the messages 𝐦𝐚𝟏, 𝐦𝐛𝟏 , 𝐦𝐜𝟏,
𝐚𝐧𝐝 𝐦𝐝𝟏.

4.1 Additive Homomorphic Encryption

In algorithm.5, we suppose that a ClientA
send the encrypted data ci of the messages mi, and

the Cloud Server computes ∑ 𝒄
𝒊ୀ𝒅𝒆𝒑𝒕𝒉
𝒊ୀ𝟏 𝒊

 ; and then

the ClientA obtains the result of the
sum ∑ 𝒎𝒊

𝒊ୀ𝒅𝒆𝒑𝒕𝒉
𝒊ୀ𝟏 . NTRUrobust_PKE cryptosystem

performs the AdditiveHE, by computing iteratively
the addition of many encrypted data, and following

the process Encrypt/ Compute /Decrypt/Re-
Encrypt/Iteration (ECDREI) for each depth.

 𝑫𝒆𝒄𝒓𝒚𝒑𝒕 ቀ∑ 𝒄

𝒊ୀ𝒅𝒆𝒑𝒕𝒉
𝒊ୀ𝟏 𝒊

ቁ = ∑ 𝒎𝒊
𝒊ୀ𝒅𝒆𝒑𝒕𝒉
𝒊ୀ𝟏 . (10)

Algorithm 5: AdditiveHE Algorithm.
__
Input: The public key 𝒉෡𝒂, the private key 𝑭෡𝒂, the
mapped messages mi ∈ Rଶ (binary polynomial),
and depth.

1 𝒎 ← 𝒎𝟏;
2. 𝑓𝑜𝑟(𝑖𝑛𝑡 𝑖 = 1; 𝑖 ≤ 𝑑𝑒𝑝𝑡ℎ; 𝑖 + +) 𝑑𝑜 ∶ {
3. 𝑚ෝ ← 𝑁𝑇𝑇(𝑚);
4. 𝑚ෝ ௜ ← 𝑁𝑇𝑇(𝑚௜);
5. 𝒄ො𝒂 ← 𝒆𝒏𝒄𝒓𝒚𝒑𝒕𝒊𝒐𝒏൫𝒉෡𝒂, 𝒎ෝ ൯;
6. 𝒄ො𝒊 ← 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛൫𝒉෡𝒂, 𝒎ෝ 𝒊൯;
7. 𝒄ො𝒂 ← 𝐴𝑑𝑑(𝒄ො𝒂, 𝒄ො𝒊); //Server

Journal of Theoretical and Applied Information Technology
15th March 2021. Vol.99. No 5
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1073

8. m← decryption(𝒄ො𝒂, 𝑭෡𝒂);
9. } 𝑒𝑛𝑑 𝑓𝑜𝑟;
10. return m;
Output: The Decrypted message 𝒎 =

∑ 𝒎𝒊 𝑚𝑜𝑑 𝑝
ௗ௘௣௧
௜ୀଵ in normal form.

Comment: So, in line.1 the AdditiveHE initializes
the binary polynomial m=m1 which will stores the
result; in line.2 the first iteration begins the
addition polynomial (messages); ClientA
transforms (m, m2) to NTT form (lines 3,4),
encrypts them in (𝒄ො𝒂, 𝒄ො𝟐) respectively (lines 5,6),
and sends them to the Server; the Server computes
𝒄ො𝒂=𝒄ො𝒂+𝒄ො𝟐 (line.7) and sends it to ClientA; the
ClientA decrypt 𝒄ො𝒂 in m which equal to m=m1+m2;
and so on until depth limit.

4.2 Multiplicative Homomorphic Encryption
In algorithm.6, we suppose that the

ClientA sends the encrypted data ci of the messages
mi to the Cloud Server, and the Cloud Server
computes ∏ 𝑐௜

ௗ௘௣௧௛
௜ୀଵ ; and then the ClientA obtains

the result of the product of ∏ 𝑚௜
ௗ௘௣௧௛
௜ୀଵ .

NTRUrobust_PKE cryptosystem performs the
multiplicative homomorphic encryption called
(MultiplicativeHE), by computing iteratively the
multiplication of many encrypted data by following
the process Encrypt/ Compute /Decrypt/Re-
Encrypt/Iteration (ECDREI) for each depth.

 𝐷𝑒𝑐𝑟𝑦𝑝𝑡൫∏ 𝑐௜

ௗ௘௣௧
௜ୀଵ ൯ = ∏ 𝑚௜

ௗ௘௣௧
௜ୀଵ . (11)

Algorithm 6: MultiplicativeHE Algorithm

 Input: The public key h, the mapped messages
mi ∈ Rଶ (binary polynomial), and depth.

1. m←m1;
2. 𝑓𝑜𝑟(𝑖𝑛𝑡 𝑖 = 1; 𝑖 ≤ 𝑑𝑒𝑝𝑡ℎ; 𝑖 + +) 𝑑𝑜 ∶ {
3. 𝒎ෝ ← 𝑁𝑇𝑇(𝒎);
4. 𝒎ෝ ௜ ← 𝑁𝑇𝑇(𝒎𝒊);
5. 𝒄ො𝒂 ← 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛൫𝒉෡𝒂, 𝒎ෝ ൯;
6. 𝒄ො𝒊 ← 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛൫𝒉෡𝒂, 𝒎ෝ ௜൯;
7. 𝒄ො𝒂 ← 𝒄ො𝒂 ○ 𝒄ො𝒊;//Server
8. 𝒎 ← 𝒅𝒆𝒄𝒓𝒚𝒑𝒕𝒊𝒐𝒏(𝒄ො𝒂, 𝑭෡𝒂);
9. } 𝑒𝑛𝑑 𝑓𝑜𝑟;
10. return m;

Output : The Decrypted message 𝒎 =
∏ 𝑚௜ 𝑚𝑜𝑑 𝑝𝒌

𝒊ୀ𝟏 in Normal form.

Comment: In line.1 the MultiplicativeHE
initializes the binary polynomial m=m1 which will

store the result; in line.2 the first iteration begins ;
ClientA transforms (m, m2) to NTT form (𝒎ෝ , 𝒎ෝ ଶ)
(lines 3,4), encrypts them in (𝒄ො𝒂, 𝒄ො𝟐)
respectively(lines 5,6), and sends them to the
Server; the Server computes 𝒄ො𝒂 = 𝒄ො𝒂 ○ 𝒄ො𝟐
(line.7) by point-wise multiplication because they
are in NTT form; and sends 𝒄ො𝒂 to ClientA; the
ClientA decrypt 𝒄ො𝒂 in m in normal form, which
equal to m=m*m2; and so on until depth value.

4.3 Combination of Additive and Multiplicative
Homomorphic Encryption

We can combine the AdditiveHE
algorithm and MultiplicativeHE algorithm for
computing many equations that we want. For
example, we can use those algorithms for
computing the equation below:

 Dec(𝒄𝒂 ∗ 𝒄𝒃 + 𝒄𝒄 ∗ 𝒄𝒅) = (𝒂 ∗ 𝒃 + 𝒄 ∗ 𝒅) .

Where (𝒄𝒂, 𝒄𝒃, 𝒄𝒄, 𝒄𝒅) are the encrypted data
(polynomials) of (𝒂, 𝒃, 𝒄, 𝒅) respectively.

Algorithm 7 : CombineFHE Algorithm

Input: The public key 𝒉෡௔, the private key 𝑭෡௔ , and
the mapped messages (𝒂, 𝒃, 𝒄, 𝒅) in 𝑅ଶ

ସ.

1. 𝒂ෝ, 𝒃෡, 𝒄ො, 𝒅෡ ← NTT(𝒂, 𝒃, 𝒄, 𝒅); //ClientA
2. 𝒄𝒂ෞ, 𝒄𝒃෢, 𝒄𝒄ෞ, 𝒄𝒅෢ ← encrypt൫𝒉෡௔ , 𝒂ෝ, 𝒃෡, 𝒄ො, 𝒅෡ ൯;
3. 𝑪𝒂𝒃෣ ← MultipicativeHE(𝒄𝒂ෞ, 𝒄𝒃෢); //server
4. 𝑪𝒄𝒅෢ ← 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒𝐻𝐸(𝒄𝒄ෞ, 𝒄𝒅෢);//server
5. 𝑪𝑨෢ ← AdditiveHE(𝑪𝒂𝒃෣, 𝑪𝒄𝒅෢);//server
6. 𝐌𝐚 ← 𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛(𝑪𝑨෢ , 𝑭𝒂෢); // ClientA

Output: The Decrypted message
 𝑴𝒂 = (𝒂 ∗ 𝒃 + 𝒄 ∗ 𝒅).

Comment: In line.1 the ClientA transforms the
polynomials 𝒂, 𝒃, 𝒄, and 𝒅 from normal form to
NTT form respectively into 𝒂ෝ , 𝒃෡, 𝒄ො, and 𝒅෡;
encrypts them (line.2) respectively into 𝒄𝒂ෞ, 𝒄𝒃෢, 𝒄𝒄ෞ,

and 𝒄𝒅෢ ; and sends them to the Cloud Server, who
in line.3 and line.4 calls the MultiplicativeHE
algorithm for computing 𝒄𝒂ෞ ○ 𝒄𝒃෢ and 𝒄𝒄ෞ ○ 𝒄𝒅෢
respectively into 𝑪𝒂𝒃෣ 𝑎𝑛𝑑 𝑪𝒄𝒅෢ ; in line.5 the
Cloud Server calls the AdditiveHE algorithm for
computing the sum of 𝑪𝒂𝒃෣ 𝑎𝑛𝑑 𝑪𝒄𝒅෢ into 𝑪𝑨෢
obtained in NTT form and return it to ClientA;
finally, ClientA decrypts the encrypted message CA෢
into 𝐌𝐚, which is computed in normal form, and
represent the final result 𝐌𝐚 = (𝒂 ∗ 𝒃 + 𝒄 ∗ 𝒅).
If we have to compute the sum or the product of
𝐌𝐚 for many times, we should call iteratively this
algorithm until the pre-defined depth.

Journal of Theoretical and Applied Information Technology
15th March 2021. Vol.99. No 5
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1074

5. RESULT ANALYSIS

We note that all implementations are
performed on a PC-TOSHIBA with an Intel(R)
Core(TM) i7-2630QM CPU, 2 GHz processor,
RAM 8 GO, under environment Windows 7-32 bits
and Dev-C++ 4.9.9.2; and the speed of the
algorithms are given in milliseconds (ms).

5.1 Performance of our NTRUrobust_PKE

In this subsection we present the
performance results of our NTRUrobust_PKE using
(NTT&FMMA) compared to the same NTRU
scheme but implemented with convolution
multiplication, we called it NTRU_CONV.

Both implementations use the same
parameters set {n=1024, q=65537, p=2}. We
choose this sequence parameters for targeting the
high security level that meets the category 5
defined by NIST, and the Fermat prime number
$q=2^16+1=65537$, allows the modular
multiplication to be fast by using our FMMA
algorithm.

We built the two software on the same
machine cited above, and we report the median
performance results of 100 runs in Table
1(Figure.3).

Table 1: Speed performance benchmarking (ms)

Figure 3: Performance benchmarking between
NTRUrobust and NTRU_CONV. The result values are
given in milliseconds (ms).

Comment: In this result, we remark that we did
better, by speeding-up the key generation by a
factor up to 87 times, the encryption by a factor up
to 35 times, and the decryption by a factor up to 47
times.

The implementation of NTRUrobust_PKE
release described in this paper is available on the
Google Drive website at [20]; and the NTRU,
implementations are available on the NIST website
at [21].

5.2 Performance of our FHE scheme

In this subsection, we present the
performance of our FHE scheme, by performing the
AdditiveHE algorithm and the MultiplicativeHE
algorithm for some value of depth. For example, we
choose the depth value {100, 200, 400, 800, 1000};
we test both algorithms by those values, that allows
us to be confident about the speed performance and
the correctness of the decryption after many
computation of encrypted data.

We reported the result in Milliseconds
(ms), as indicated in Table.2, and Figure.4 below.

Table 2: Speed performance of our FHE algorithms
(ms)
depth 100 200 400 800 1000

MultiplicativeHE 124 256 516 1030 1201

AdditiveHE 109 234 453 904 1138

Figure 4: Complexity time(ms) evolution of the
AdditiveHE and MultiplicativeHE in function of depth
value. The result values are given in milliseconds.

Comment: We did those tests with large depths to
prove the efficiency of AdditiveHE and
MultiplicativeHE algorithms of our FHE scheme
based on the process Encrypt/ Compute
/Decrypt/Re-Encrypt/Iteration (ECDREI). Thanks
to our NTRUrobst_PKE cryptosystem, we obtain
the perfect correctness of the decryption function

0

500

1000

1500

100 200 400 800 1000

MultiplicativeHE
AdditiveHE

depth

ms

Schemes KeysGen
(ms)

Encrypt
(ms)

Decrypt
(ms)

NTRU _CONV 109 16 15

NTRUrobust
NTT+FMMA

1.25 0.46 0.32

Speed-up
Factor (X)

87 times 35 times 47 times

Journal of Theoretical and Applied Information Technology
15th March 2021. Vol.99. No 5
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1075

for all tests, which gives us great confidence in our
implementation.

We remark, in figure.4, that the evolution is in
linear time with depth's values. The complexity of
the AdditiveHE and MultiplicativeHE algorithms
are almost the same, which proves the efficiency of
our Fully Homomorphic Encryption scheme.
Whereas Gentry’s homomorphic cryptosystem is
not applicable given the increased noise for
addition and the multiplication; DGHV,
Homomorphic cryptosystem, the encryption-
decryption time remains very large; and for NTRU-
multi-Keys FHE will be very complicated when the
depth value is large. For example, with the
depth=100, we should create 100 private keys and
100 public keys.

Our FHE scheme over our
NTRUrobust_PKE is very efficient; we create only
one private key and one public key for unbounded
depth.

5.3 NTRUrobust_PKE Security

Many cryptanalysis works are performed;
their principal goal was to check the robustness of
the Lattices-Based Cryptography by posing the
hardest problems on point lattice in ℝ𝑛. The best
tools used to prove the security is Lattice reduction
by the algorithms (Gram-Schmidt, LLL, BKZ
algorithms) and Meet-in-The-Middle attack
(MIM)[4] [12].

We used Martin R. Albrecht et al. [22] tool
to estimate the security level of NTRUrobust_PKE
release, by solving the uSVP (primal attack) with
BKZ cost model of size c=20,292b for the classical
security and decreasing this size to c=20,265b for
quantum security (b is the block size used by the
BKZ algorithm). This tool used the quantum
sieving algorithm to consider potential Grover
speed-ups [14]. Our release achieves 2230 for the
classical security level and 2208 for the quantum
security level.

NIST states its report [8240] that “the
security of NTRU is based on stronger assumption
than LWE or RLWE schemes also based on
Lattices” [13].

6. CONCLUSION

In this paper, we purpose complementary
works; we contribute by creating
NTRUrobust_PKE post-quantum (Public Key
Encryption), with an excellent performance in
terms of speed as well as in terms of security (the
parameters set meets Category 5 security level

defined by NIST). And then we create over it an
efficient FHE scheme that performs the principle
operations, the Additive Homomorphic encryption
and the Multiplicative Homomorphic encryption,
with a perfect correctness of decryption function
and for unbounded depth.

Thanks to our Fast Modular Multiplication
Algorithm (FMMA) with the NTT algorithm, we
obtain this drastic result. Our FHE scheme is very
helpful to Cloud Services providers, Industrials,
and companies that exchange sensitive data.

The inconvenient of our FHE scheme is
that the communication time between the Client
and the Cloud Server increase linearly for each
level of $depth$, because the Client should
decrypts and re-encrypt the result of the
computation (Addition or Multiplication of
encrypted data) for each level of $depth$.

For our future works, we hope to
implement our NTRUrobust_PKE and our FHE
scheme to the banking systems and adapting our
scheme for other industrial domains like the health
domain.

REFERENCES:

[1] Martin Albrecht, Melissa Chase, Hao Chen,
Jintai Ding, Shafi Goldwasser, Sergey
Gorbunov, Jeffrey Hoffstein, Kristin Lauter,
Satya Lokam, Daniele Micciancio, Dustin
Moody, Travis Morrison, Amit Sahai, Vinod
Vaikuntanathan, “Homomorphic Encryption
Standard”. NIST USA 2018.

[2] Craig Gentry, “A FULLY HOMOMORPHIC
ENCRYPTION SCHEME”, STANFORD
UNIVERSITY, USA 2009.

[3] Laaji El Hassane, Azizi Abdelmalek, “New
Efficient and Robust NTRU post-quantum
key Exchange-NTRUrobust-“, Mohammed
First University, Morocco 2020.

[4] Cong Chen, Oussama Danba, Jeffrey Hoffstein,
Andreas Hulsing, Joost Rijneveld, John M.
Schanck, Peter Schwabe, William Whyte,
Zhenfei Zhang, ”Algorithm Specifications
And Supporting Documentation”,
Wilmington USA, 2019.

[5] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel
Apon, David Cooper, Quynh Dang, John
Kelsey, Yi-Kai Liu, Carl Miller, Dustin
Moody, Rene Peralta, Ray Perlner, Angela
Robinson, Daniel Smith-Tone, “NISTIR
8309- Status Report on the Second Round of
the NIST Post-Quantum Cryptography
Standardization Process,” NIST, USA 2020.

Journal of Theoretical and Applied Information Technology
15th March 2021. Vol.99. No 5
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1076

[6] P. Ribenboim. “The New Book of Prime
Number Records”, New York, Springer-
Verlag, 1996.

 [7] Longa, P. and Naehrig, M, “Speeding up the
Number Theoretic Transform for Faster Ideal

Lattice-Based Cryptography”, Microsoft Research
USA 2019.

 [8] Nayuki Project, ”Number-Theoric-Transform
(Integer DFT)”. Link:
https://www.nayuki.io/page/number-theoretic-
transform-integer-dft

[9] Z.Xiaojun, X.Chunxiang, j.Chunhua, X.Run,
Z.Jining, “Efficient fully homomorphic
encryption from RLWE with an extension to a
threshold encryption scheme”, School of
Computer Science and Engineering,
University of Electronic Science and
Technology of China 2014.

[10] Adriana L´opez-Alt, Eran Tromer, Vinod
Vaikuntanathan, “On-the-Fly Multiparty
Computation on the Cloud via Multikey Fully
Homomorphic Encryption”, New York
University USA 2013.

[11] Jeffrey Hoffstein, J. Pipher, and J. H.
Silverman, ”Introduction Mathematics and
Cryptography NTRU” Wilmington USA
1998.

 [12]. Jill Pipher, J. Hofstein, John M. Schanck,
Joseph H. Silverman, William Whyte, and
Zhenfei Zhang, ”Choosing Parameters for
NTRUEncrypt” , Wilmington USA 2016.

 [13] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel
Apon, David Cooper, Quynh Dang, John
Kelsey, Yi-Kai Liu, Carl Miller, Dustin
Moody, Rene Peralta, Ray Perlner, Angela
Robinson, Daniel Smith-Tone,. Status Report
NISTIR 8240 on the First Round of the NIST
Post-Quantum Cryptography Standardization
Process. NIST, USA 2019.

[14] Alkim, E. Ducas, Poppelman, T. and Schwabe,
P. “Post-quantum key exchange-NewHope”,
Department of Mathematics, Ege University,
USA, 2019.

[15] Mohan Rao Mamdikar, Vinay Kumar and D.
Ghosh, ” Enhancement of NTRU public key”
National Institute of Technology, Durgapur
2013.

[16] G.Assche, G.Bertoni, J.Daemen, P.Peters, and
R.Van, “Keccak Hash algorithm. Radboud
University,Nederlands 2016.

[17] J.Scham, NTRU team “Decryption failure
script”, link:
https://github.com/jschanck/ntru-ephem-dfr.
USA 2019.

[18] N.Howgrave Graham, N.Phong ,
D.Pointcheval, J.Proos, Jill Silverman,
A.Singer, William Whyte, “The Impact of
Decryption Failures on the Security of NTRU
Encryption”, NTRU Cryptosystems”.
Burlington, CNRS France, University of
Waterloo, Canada 2019.

[19] Daniel J. Bernstein, "Comparing proofs of
security for lattice-based encryption",
Department of Computer Science, University
of Illinois at Chicago, Chicago, IL 60607 -
7045, USA2, Horst Gortz Institute for IT
Security, Ruhr University Bochum, Germany
djb.at.cr.yp.to, 2019.

[20] Laaji El Hassane, Azizi Abdelmalek, Taoufi
Serraj, “Link Google drive of NTRUrobust
implementation”

https://drive.google.com/file/d/1Jg4C9gjAbUJxci8
mLjkS6DKcJcFdk77U/view?usp=sharing
Mohammed first University Morocco 2020.

[21] NIST link website of NTRU post-quantum
cryptosystem implementation.
https://csrc.nist.gov/projects/post-quantum-
cryptography/round-2-submissions

[22] Martin R. Albrecht, Benjamin R. Curtis, Amit
Deo, Alex Davidson, Rachel Player, Eamonn
W. Postlethwaite, Fernando Virdia, and
Thomas Wunderer, “Estimate all the {LWE,
NTRU} schemes”, In Security and
Cryptography for Networks - 11th
International Conference, SCN 2018, volume
11035 of Lecture Notes in Computer Science,
pages 351-367. Springer, 2018.

