
Journal of Theoretical and Applied Information Technology
15th March 2021. Vol.99. No 5
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1184

APPLICATION OF CUSTOM-MADE SIMULATOR FOR
TRAINING IN ROBOTIC NAVIGATION STRATEGIES

1JORGE DUARTE, 2YEISSON TRIVIÑO, 3FREDY MARTÍNEZ
1,2,3Facultad Tecnológica, Universidad Distrital Francisco José de Caldas, Bogotá D.C, Colombia

E-mail: 1jaduartea@correo.udistrital.edu.co, 2yftrivinor@correo.udistrital.edu.co,
3fhmartinezs@udistrital.edu.co

ABSTRACT

The social needs that require the support of robotics are increasingly evident. Tasks such as caring for
children and the elderly in isolated, unsupervised homes have become evident following the demands of
social isolation caused by the COVID-19 pandemic. Service robotics is presented as a current and readily
available solution for the remote monitoring of people, particularly those with medical restrictions or in
education processes. However, the development of these applications requires a critical mass of
professional personnel trained in the design of these robots and their navigation and manipulation schemes.
Current robotic systems tend to be expensive, so their availability at the university level is limited. Its use
aims to be dedicated to research, leaving aside the processes of training at the undergraduate level. A very
efficient way to develop a specialized training in robotics for young researchers is through the use of
software tools that simulate existing robotic models in the laboratory. This article presents the formulation
and development of a software tool designed to train young researchers within the research group. The tool
is the first of a knowledge management system that the research group has proposed to encourage and
accelerate research in service robotics. This first tool focuses on the problem of autonomous planning of
movement in globally observable environments, similar to those normally foreseen for service robots.
Specifically, it implements the algorithm of visibility graphs to define the navigation route of a robot from a
point of origin to a point of destination. As result, it is presented the final operation of the tool, its
advantages in terms of configuration and manipulation, and its capacity to evaluate the performance in front
of different variables of the problem. This article is developed as part of the group's research in mobile
robotics and image processing, specifically related to the training of junior researchers.

Keywords: Research Process, Robotics, Self-Directed Learning, Simulation Model, Specialized Training

1. INTRODUCTION

It is widely accepted that learning activities
correspond to the most critical elements within an
educational process [1, 2, 3]. When designing a
training scheme, the first step of the process is to
define the learning objectives, which are intimately
linked to the learning process to be generated in the
students [4, 5, 6]. This is particularly important
today when many of the training needs are linked to
technological developments [7, 8]. Technology is
fundamental not only as a training concept and
strategy for the construction of teaching material
but as a general strategy in the design of an
effective and significant learning process.

Specific purpose simulators are a powerful
training tool. This software can be designed to
acquire and perfect specific skills that are difficult
or complex to develop through other specialized
laboratory strategies [9, 10, 11]. This is especially

true when the training purposes are not strictly
framed within a formal curriculum, as is the case of
advanced work within the research seedbeds of a
research group. They also turn out to be key tools
for the validation of schemes and algorithms before
their implementation on real prototypes [12, 13].
Also, they propose a training scheme that
strengthens the self-training and critical skills of the
student, since they stimulate a process in which
direct interaction between teacher and student is not
necessary [14].

One of the great strengths of the use of
simulators for training is the great adaptability that
is achieved in training, which allows consolidating
learning gaps specific to each of the students [15,
16, 17]. These gaps are difficult to identify in the
initial assessment of students but can be
autonomously solved by them when they have at
their disposal a tool configurable to their needs and
training desires. This also provides an additional

Journal of Theoretical and Applied Information Technology
15th March 2021. Vol.99. No 5
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1185

advantage, which makes the training process more
attractive to the student, given the lack of direct
linkage to training schedules and locations, in
addition to the fact of interacting with a friendly
technological tool [18]. These characteristics make
the software tools a strong and positive modifier of
study habits [19, 20]. The approach to the tool is
given by a strong influence of the student’s interest
in the subject, which ends up affecting their daily
habits, and therefore promotes the construction of a
culture of self-training.

Each student has his or her structure in terms of
how he or she learns [21, 22]. Habits, schedules,
skills, tools, and different ways to approach bodies
of knowledge. Skills such as self-management of
material, time, resources, task development, as well
as critical analysis of available information, are
aspects and skills that are encouraged and
strengthened by the targeted use of these software
tools. Students can develop their training process
according to the strategies proposed by the teachers,
but at the same time investigate functional variants
according to their interest. This undoubtedly
impacts both the student’s habits and the quality of
their learning process when building new training
strategies [23, 24, 25].

This project was developed to support the
specific training of young researchers within the
research group. The central tool of the project
corresponds to a set of simulators for specific use in
service robotics. As a prototype, the implementation
of the geometric strategy of path planning in
observable environments using the algorithm of
visibility graphs was selected. The challenge to
obtain an optimal solution in motion planning is
contemplated in two crucial parameters, path
planning (geometric) and trajectory planning
(control). The objective is to indicate the minimum
path between the initial point and the arrival point
and to calculate the point that the robot must reach
at each instant of time, respectively, achieving a
correct trajectory. Correct means that the trajectory
does not collide with the environment and that it
complies with the kinematic (and ideally dynamic)
constraints of mobile robots.

Even though the use of the software requires
dedication and supplementary guidance from expert
teachers, the continuous use of the tool not only
attacks specific deficiencies in the student but also
creates study habits because the continuous
repetition of certain practices modifies the
individual’s behavior and self-motivated
autonomous work encourages critical thinking and
self-regulation.

2. RELATED WORK

The traditional strategy used in most of the
courses related to robotics is centered on lectures,
master classes, and practical laboratory activities
[26]. Under this scheme, and according to the
limitations of the laboratory, it is created a learning
gap in the student when he tries to bring down the
theoretical concepts in his laboratory practices. In
the laboratory, the student has access to real robots
on which it is expected to implement strategies and
algorithms, but in principle, the implementation of
such algorithms on the real platforms is not direct
or easy, which makes it difficult to derive the
theoretical conclusions on a functional prototype.
The tool more powerful and versatile commonly
used to close this gap is the simulators software,
tools of special-purpose capable of facilitating the
implementation of the algorithms and to project in a
virtual environment the scenario of performance of
the robot under the specific programmed conditions
[27]. These tools also reduce the time spent on
applied research, since they allow a rapid validation
of algorithms before programming in real platforms
[28]. Masterclasses and lectures do not bring the
student closer to the real problems they face when
working a given algorithm on the robot, making the
laboratory practices focus much of the activity on
the knowledge and handling of equipment, rather
than on the implementation and evaluation of
algorithms. A simulator can greatly reduce these
problems, in addition to allowing the student to
work in a safe environment that leads to personal
experimentation.

The existing simulators in robotics for use in
education and research can be separated into two
categories [28]. On the one hand, there are the
commercial simulators, characterized by a closed
code development oriented to commercial use of
the tool. On the other hand, there are open-source
projects, which include a large number of initiatives
from research centers and groups. The problem with
commercial tools lies in their high cost and the
impossibility of modifying their internal code to
suit the training and/or research process. Many
higher education institutions cannot afford the high
cost of commercial software, even more, when it is
necessary to think about the number of licenses
according to the student population, and annual
updates of the same. In many cases, the choice is to
invest in hardware and software tools that benefit
the majority of the student population, so special-
purpose simulators are not usually viable options.
Furthermore, in applied research, it is a requirement
to be able to access the routines of a tool to adapt

Journal of Theoretical and Applied Information Technology
15th March 2021. Vol.99. No 5
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1186

them to the particular conditions of the experiment,
which is impossible in a commercial tool.

In the commercial category, three platforms can
be easily identified: Webots [29, 30], MATLAB
[31, 32], and Easy-Rob [33, 34]. Webots is a
simulator from Cyberbotics Ltd. developed for
three-dimensional environments. Although it was
born as a closed-source commercial platform, today
it is an open-source tool, the commercial business
was oriented towards industrial and academic
support. A robot in Webots can be equipped with
physical characteristics similar to those of the real
robot, including a wide variety of sensors and
actuators. The control code can be written in C,
C++, Java, Python, and Matlab. The tool is
compatible with ROS (Robot Operating System), as
well as commercial robotic platforms such as
Epuck, Pioneer, Lego Mindstorm, Sony AIBO, and
Fujitsu HOAP-2. One of the most outstanding
features of Webots is that it allows the user to
interact with his robot throughout the simulation.

MATLAB is perhaps the most widespread and
well-known academic tool. It is developed and
marketed by MathWorks and is structured around
the concept of MATrix LABoratory and a
proprietary programming language. It has a large
number of add-ons called Toolboxes that extend the
capabilities of the software in specific domains.
Some of these Toolboxes are Simulink, Robotics,
and SimMechanics which allow the kinematic and
dynamic simulation of any robotic structure.
However, the problem of this tool is precisely its
commercial nature, this feature makes it complex to
use outside the restrictions of its license, which
prevents the free dissemination of code developed
with it, even for the documentation of research
articles. Finally, Easy-Rob is developed and
marketed by EASY-ROB Software GmbH and is
intended to be a complete low-cost simulation
solution. This tool is oriented towards the planning
and verification of work cells, which does not
exclude that other types of platforms can be
simulated within their three-dimensional
environment.

Within the open-source options the most
important, and open distribution are Player/Stage
[35, 36, 37], Gazebo [32, 27, 38], Robot Operating
System (ROS) [27, 38, 39], Simbad [40, 41],
Carnegie Mellon Robot Navigation Toolkit
(CARMEN) [42, 43], Unified System for
Automation and Robot Simulation (USARSim) [44,
45], Microsoft Robotics Developer Studio (MRDS)
[46, 47], and MissionLab [48, 49].

Player/Stage is a tool designed to replicate the
behavior of a robot according to the interaction of
its sensors and actuators. It was developed by the
International Team of Robotics Researchers and has
a server/client structure that allows configuring
multiple capacities to the robot using the
communication with the server. The Player module
is the interface for the definition of the robots
(Hardware Abstraction Layer, HAL), while Stage
provides the two-dimensional simulation
environment (Robot OS). Gazebo is a simulator of
three-dimensional environments originally
developed as a component of Player/Stage, but
currently is a standalone tool supported by Willow
Garage. The simulator is capable of performing
realistic renderings of environments, as well as
modeling sensors that identify the simulated
environment. The objects simulated in Gazebo have
mass and other physical attributes such as friction
or contact.

Robot Operating System (ROS) is a framework
developed by the Stanford Artificial Intelligence
Laboratory, with current development by Willow
Garage, which works as an operating system to the
robot to reduce the direct control of low-level
devices of sensors and actuators. It has a large
community of support and allows the development
in C, C++, Python, Octave, and LISP. Simbad is
another open-source tool that can simulate the
interaction of individual robots or groups of robots
in a three-dimensional environment. It is developed
in Java, but it also supports Python, and as in the
previous cases it also supports a wide variety of
sensors. This simulator was developed to
investigate the use of tools based on artificial
intelligence, so it has libraries for neural networks
and evolutionary algorithms.

Carnegie Mellon Robot Navigation Toolkit
(CARMEN) is a collection of tools designed for
robot control. With this tool, it is easy to implement
navigation strategies, path planning, and mapping.
Although its simulation environment is two-
dimensional, its simplicity and support for multiple
platforms and sensors make it a high-performance
tool when evaluating custom strategies. It supports
C and Java and is limited to use on Linux. Unified
System for Automation and Robot Simulation
(USARSim) is a three-dimensional environment
simulator based on the Unreal Tournaments game
engine. Its objective was the search and rescue
applications at the urban level, as well as the study
of the human-machine interaction. The control code
is developed using the GameBot interface, the
Mobility Open Architecture Simulation and Tools

Journal of Theoretical and Applied Information Technology
15th March 2021. Vol.99. No 5
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1187

System (MOAST), Player interface, or MATLAB
through the Toolbox USARSim.

Microsoft Robotics Developer Studio (MRDS) is
another three-dimensional environment simulator
with extensive support for robots, sensors, and
actuators. While this tool does not have its open-
source but is available to the public for free use.
The great characteristic of this simulator is that it
uses a language of programming visual (VPL) for
the control of the robot. Finally, MissionLab is a
three-dimensional tool developed by the Mobile
Robot Laboratory at Georgia Tech for Linux
systems. It is a multi-agent simulator with
individual reaction capability, and support for
multiple commercial robots. Other interesting
projects worth mentioning include the Robocup
soccer simulator, EyeSim for the EyeBot Robot,
SimBot and WoB.

3. METHODS

The training of researchers is a complex task that
is part of the activities of a research group. In our
particular case, we have detected our problems in
the understanding and application of different
schemes and algorithms in robotics. Among the
fields with major problems are those of path
planning, model construction, application of inverse
kinematics, and the study of our algorithms
proposed by the research group such as Quorum
Sensing (QS). The research group has implemented
some strategies to reduce this gap, among these
strategies is the development of customized
simulators that cover specific aspects of the
implementation of algorithms, path planning with
visibility graphs is one of the first tools under
development. This research has opted for a
configurable graphical tool since it was identified in
the students the impossibility of interacting with the
algorithms simply and reliably and under the
conditions of our laboratory and our robots. Among
the variables of interest was the student's ability to
identify the performance of a given strategy under
specific conditions, and the restrictions that each
strategy imposes on the robotic platforms available
in the laboratory.

Visibility graphs provide a geometric approach to
solving the problem of path planning. This method
operates with polygonal models of the environment.
It is a widespread method, and some algorithms
build this kind of graph. It is limited to models of
environments defined as polygons and can work
both in the plane and in space. In our research, we
use the simulation in two dimensions (2D - plane).

The plane guarantees to generate graphs that
contain the optimal path, although this does not
happen in space. They have the disadvantage of
fitting too close to obstacles, so they require a
safety expansion system. In a set of different
polygonal obstacles located in a plane, the visibility
graph will be formed by the unions of the pairs of
vertices that are seen mutually, without any
intersection with the obstacles (Figure 1) [50, 51].

Formally, a G graph consists of two finite sets
{N} and {A}. {N} is the set of graph elements, also
called vertices or nodes. {A} is a set of arcs, which
are the connections that relate the nodes to form the
graph. Arcs are also called edges, lines, or paths.
Nodes are used to represent objects, and arcs are
used to represent the relationship between them. For
example, nodes can represent countries and arcs can
represent the existence of roads that communicate
them. It is said that two nodes are adjacent or
neighbors if there is an arc that connects them [51].

Figure 1: Example of visibility graph modeling

The selection of the path among the multiple
options defined by the visibility network requires
the use of an optimization algorithm. In our first
version of the software, we have chosen to
implement Dijkstra's algorithm [52, 53]. The
algorithm is also known as the minimum path
algorithm and determines the shortest path from a
vertex or origin node to the rest of the nodes in a
graph with weight values in each path [53]. The
idea is to explore all the shortest paths from the
origin vertex to all other vertices. When the shortest
path from the origin vertex to the rest of the vertices
that make up the graph is obtained, the algorithm
stops.

Figure 2 shows the methodological sequence
applied in the research for the generation of
visibility graphs of an unknown environment with
the aim of building the optimal path. There can be
identified six fundamental stages: Determination of
the environment or workspace, establishment of the
scale of the workspace and dimensions to the robot,
indication of the initial point and the final point,
identification of the vertices of the objects in the
environment, projection of the possible solution

Journal of Theoretical and Applied Information Technology
15th March 2021. Vol.99. No 5
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1188

trajectories, and selection of the optimal path from
the Dijkstra algorithm.

All the formulation, design, and implementation
of our tool followed the principles of minimalism,
open access, and the possibility of modification and
adjustment of routines at the user's discretion, this
includes not only the programming language but
also the distribution and documentation tools. Our
simulator was developed in Python version 3.8, and
the default options are adjusted to the features of
our robotic platform ARMOS TurtleBot [54].
However, the environment is fully configurable,
which means that other platforms can be
implemented, as well as different navigation
environments can be configured. The user selects
the workspace as a graphic file in JPG and PNG
format. In this file, the two-dimensional design of
the environment, including obstacles, must be
provided. The length restriction of the obstacles of
the workspace must be higher than five pixels, that
is, the program only accepts that the obstacles will
be polygonal, it is not allowed that the workspace
contains a line thickness lower than five pixels. The
user must also indicate the scale of the workspace.
With this information, the navigation environment
within the simulator is built. The graphic
manipulation (morphological operations, labeling,
filters, and edge detection) is done through
OpenCV. We make a simplification of vertices
using the Douglas-Peucker algorithm.

After establishing the simulation environment,
the user can set in the environment the starting
point and the finishing point for the robot
navigation. The sequential form to establish the
points is the initial to the end. Due to the
configuration of the program, in the case that the
user omits to incorporate these points, the program
will not enable the route search option. The user can
define the number of nodes according to the need
and complexity of the environment, i.e., increasing
or decreasing the local minimums.

The grouping of the vertices of the obstacles is
defined within a vector. This simplifies the handling
of coordinates, particularly for the initial and target
points (Figure 3). The design of the user interface
(GUI) was developed with Tkinter. The
vectorization of information from the navigation
environment also facilitated the graphic design in
Tkinter. From the width and length of the
workspace, an image matrix is established where
each of the coefficients is determined by the value
of each pixel in grayscale to 8 bits.

Figure 2: Chart of implemented methodology

Figure 3: Encoding of navigation environment
information, this example includes an obstacle, and the
start and target points

According to the theory of visibility graphs, each
of the vertices of the obstacles in the environment is
obtained, and the lines of the graph are projected.
These lines are divided into three groups:

 Obstacle action lines: These are the lines that
join the vertices of the same obstacle.

 Lines of action between obstacles: These are
the lines that join the vertices of obstacle i
with obstacle j.

Journal of Theoretical and Applied Information Technology
15th March 2021. Vol.99. No 5
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1189

 Lines of action between points and obstacles:
Are the lines that join the obstacles of the
workspace with the initial and target points.

These lines of action overlap the obstacles, so it
is necessary to segment them according to the
location of the obstacles, this is done with the
Bresenham algorithm.

Finally, with the corresponding grouping, the
assignment of the weight matrix, and facilitating the
verification of adjacent nodes in the system, we use
the obstacle matrix to obtain the optimal trajectory
through Dijkstra's algorithm. In Tkinter's interface,
the optimal trajectory is highlighted, joining the
starting point with the arrival point.

4. RESULTS

The results of the tool were measured and
evaluated from two perspectives, firstly from its
ability to meet the design profile defined by the
research group, and secondly, in the medium term,
according to its capacity to effectively shape a
specific training tool that helps young researchers to
reduce conceptual problems while facilitating the
transition to real platforms and proposing an
evaluation scheme for novel strategies. Most of the
results shown in this section correspond to the first
perspective, however, we already have some results
from its use with students that derive into possible
future adjustments of the tool.

The simulator has a clean and simple interface
with the basic options at the file level: Open, Save,
Delete, and Exit (Figure 4). The simulator has a set
of basic environments in graphic format, but the
user can load his designs. These designs are opened
from the Open option, the Save option allows to
store the information of the optimal path calculated
in a simulation.

The graphic file corresponding to the selected
navigation environment is shown in the central part
of the simulator (Figure 5). To the image of the
environment is added the dimensional information
of the robot, real physical constraints of the robot,
which are represented by circles. The circular
geometric models of the robot are placed bordered
the obstacles of the environment to establish the
real free space, and to guarantee the not collision of
the robot. After loading the environment, it is
proceeded to adjust the parameters of the
simulation, this is carried out in the section Settings.
This stage is fundamental for the simulation and its
analysis. The conditions of the scale of the space of
work and dimensions of the robot are introduced.

Figure 4: Simulator graphic interface

Figure 5: Workspace treatment

In the Analyze section, there are options to define
the initial navigation point, the target point, the
option to start the route search, and the selection of
the strategy to define the shortest route. The
program gives the freedom to drag the initial and
final point, to be user friendly, without the need to
insert the coordinates of each point. Once the points
are indicated, the user must start the calculation of
the possible solution routes.

When the option to search for routes is selected,
the program draws a dotted line border over the
navigation environment (Figure 6). When the
software finds the optimal route, the path is
displayed in the environment by linking the start
and end points (Figure 7).

Journal of Theoretical and Applied Information Technology
15th March 2021. Vol.99. No 5
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1190

Figure 6: Simulator looking for possible navigation
routes

Figure 7: Simulator indicating the optimal route after
applying visibility graphs and Dijkstra

For performance evaluation, we use different
navigation environments and different robotic
platforms (different sizes and travel speeds). In the
first case we used a robot of 0.2 m by 0.2 m, the
starting point was placed in the upper left, behind
the two large obstacles, and the end point in the
center right, again behind a third obstacle (Figure
8). The optimal route found by the simulator is
shown in Figure 9. The figure shows how, in this
case, it manages to define a path along with the
narrow space between the two obstacles.

Figure 8: Environment setting for the first
performance test

Figure 9: First performance test result

For the second test we used the same
environment, and the same initial and final points,
but we changed the robot utilized. In this second
case, we used a 50% larger robot, for size of 0.3 m
by 0.3 m. This new robot cannot pass between the
two big obstacles on the left like the first robot did,
so a new route is expected for it. In Figure 10 it is
observed the new behavior of the solution.
Although the software establishes the same routes
from the visibility graph, the dimensional
constraints applied to the strategy make the two
responses different, and in both cases correct.

Journal of Theoretical and Applied Information Technology
15th March 2021. Vol.99. No 5
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1191

Figure 10: Second performance test result

The third performance test consisted of
increasing the size of the robot again while keeping
the other parameters constant. In this new case, the
robot was dimensioned to 0.4 m by 0.4 m, a size
with which we expect to be impossible to reach
from the initial point to the final point. The new
size of the robot is superior to the spaces between
obstacles, and between obstacles and boundaries of
the environment, for it is not waiting for a result
optimum. Figure 11 shows the result thrown by our
simulator. This event of not tracing the dotted lines
in the option of searching routes makes understand
to the user that it is not possible to obtain a route
optimal because the dimensions of the robot exceed
the free space, for it, not project any route optimal.

Consequently, unlike the basic scheme of
visibility graphs, our simulator considers the real
dimensions of the robot and adjusts its search
according to the real behavior of the robot in the
environment. The most important contribution of
our tool is the facility it has to incorporate new
robots, considering in the simulation strategy the
real dimensions of the machine. By default, the
simulator incorporates the parameters of our
ARMOS TurtleBot, which allows an easy approach
to our robotic platform, but also allows us to define
the characteristics of the robots developed by the
students, turning it into an important tool for
verification and development.

Some aspects were not considered as part of the
strategy of navigation, as the fact of defining angles
of safe turn for the robots. These parameters were
not incorporated in our simulator because they are
difficult to establish for the robots. In any case, our

research raises this (a criterion that is already being
incorporated into the code is the definition of a
minimum angle of rotation of the robot, which will
be a restriction in the simulator) and other
improvements to the software in a later design
stage. Even so, the software can calculate the actual
total time the robot takes to develop the route
calculated by the strategy from the nominal speed
of the machine, even considering the time of the
turns. This information can be saved for comparison
both graphically and in a plain text file from which
it is possible to reconstruct all the simulation
information (map, robot characteristics, starting
point, target point, and coordinates of the whole
path). These files facilitate the analysis of different
strategies for the same robot, which in the
development of navigation strategies corresponds to
a key performance comparison.

Figure 11: Third performance test result

An important feature of our simulator is that it

allows, during image processing, to adjust the
sensitivity of the number of nodes to be analyzed
for each obstacle in the workspace. Obstacles are
abstractions of real objects, and according to the
desired sensitivity of the analysis or the desired
simplification of the problem, different solutions
can be obtained for the same problem. The greater
the number of nodes, the greater the number of
possibilities with a higher computational cost.
Figures 13 and 14 show the effects on the nodes of
two different sensitivity values for the same
problem.

Journal of Theoretical and Applied Information Technology
15th March 2021. Vol.99. No 5
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1192

Figure 12: Identification of highly sensitive nodes in
the workspace

Figure 13: Identification of nodes with low sensitivity
in the working space

5. DIFFERENCES FROM PREVIOUS WORK

From previously published work, we can identify
the following pros of our tool:

 Our tool is an open-source simulator with a
high capacity for user integration and
modification. The basic code can be modified
to incorporate functionalities, algorithms,
optimization schemes, and even add new
modules. This is a limitation of commercial
tools since they generally do not allow
internal code modification.

 It does not require a commercial license, so it
can be freely distributed as source code, and
the information collected from it can be
documented without problems in scientific
articles without infringing copyright and

facilitating the duplication of the experiments
by the readers.

 It is intended for any user interested in the
subject. It requires no special training or
specialized knowledge to use, and the initial
learning curve is very flat.

 The configuration of the working environment
can be easily done from an image. Similarly,
the configuration of the robot is very simple,
and only requires some physical and
functional parameters of the machine.

In the same way, compared to other equivalent
tools, there are some disadvantages of our
simulator:

 It is in the development stage, so its results
cannot yet be considered for applications in
the production stage, only as a training tool
and primary evaluation of schemes.

 Due to its simplicity of use and training
approach, the tool does not consider precise
odometry parameters, which can lead to errors
in the final performance of the robots. The
relevance of this limitation is low since the
purpose of the tool is training and research,
not production.

 A comprehensive evaluation of the simulator
that would allow proposing adjustments and
improvements has not yet been developed. It
is expected that the use of the tool in the
medium term will provide functional metrics
and approaches for future development.

 Limited distribution. Although the tool is open
source and freely distributed, it is currently
only available to our research group.

6. CONCLUSION

This article documents the development of
a custom-made simulator for the training of young
researchers in robotic navigation strategies. Initial
tests with members of the research group point to
the fact that the software supports the processes of
cognitive appropriation of basic strategies.

In its first stage, the software implements
the visibility graph algorithm for a robot in
conjunction with Dijkstra's algorithm as support for
the definition of the optimal route. The algorithm
implements the traditional strategy but allows the
user to define some real-world constraints such as
the actual size of the robot, and the design of the
navigation environment and its obstacles. In their
development, it was considered so many technical

Journal of Theoretical and Applied Information Technology
15th March 2021. Vol.99. No 5
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1193

aspects related to the characteristics of the
algorithms, and the robots of the group of
investigation, as pedagogical related to the
formation of intrinsic and extrinsic motivators in
the students to develop a support tool in the
specialized self-training. The article presents details
of its development both in terms of structure and
graphic interface level. It is also shown how
through the graphic interface the user can specify
the simulation environment, the characteristics of
the robot, and the navigation requirements. It is also
shown how this information is digitized and
processed by the simulator to define the possible
routes and finally establish the optimal route.

From the performance tests performed by
our students, we can show the ability of the
simulator to both replicate the behavior of the
algorithm and to develop active learning in
students. The students were able, even those with
low knowledge in robotics, to correctly handle the
simulator, and understand the behavior of the
planning strategy. In the final stage of the project,
improvements to the tool are proposed that include
the incorporation of a greater number of navigation
strategies and search algorithms.

6. LIMITATIONS AND FUTURE RESEARCH

The previous results of this research allow us to
propose future directions of the research, both in the
improvement of the simulator and in the
strengthening of the knowledge management
system in which its use is framed. Below we detail
the most important branches.

There are functions in the tool that can and
should be complemented with new algorithms. In
particular, the scheme used for the weighting and
selection of the optimal route between the feasible
paths should be complemented with a greater
number of strategies. Classic informed and
uninformed search algorithms should be
implemented, such as A* style heuristic searches,
graph searches as first in width, or first in-depth,
gradient searches as simulated annealing, as well as
randomized search algorithms such as genetic
algorithms, or ant colony.

During the design of the simulator, an image
processing training was used, in which a total of
100 images were randomly taken, and its
performance/efficiency was 96%. It was identified
that the images containing figures, and objects
(obstacles), when their color composition was clear
(beige, pink), the OpenCV module, cannot identify
the obstacle, causing trajectories on itself. The

recommendation to the user is to adjust the color of
the obstacle in such a way that it generates a high
contrast with the workspace so that the OpenCV
module processes the recognition of the image
properly.

Greater restrictions must be incorporated in the
movement of the robot according to the real
capacities of the robots. The more important of
these restrictions are related to the safe movement
of the robot, for a real robot it is impossible to make
any type of turn, since some of these or are
physically impossible, or they put at risk the
stability of the machine.

It should be included in the tool other traditional
strategies of movement planning. These new
strategies should allow a form of work similar in
terms of the configuration of the environment of
navigation and the robots to facilitate the
comparisons of performance. As well as the design
of this simulator, the new modules must allow the
continuous integration of features and functions.

It is necessary to use the initial results of the use
of the tool related to the learning habits of the users,
as well as their working method to re-design the
interface and the usability of the software. The
simulator can and should be improved to improve
the learning process of the student population to
which the tool is directed. This improvement must
be continuous since study habits tend to be
dynamic.

7. ACKNOWLEDGMENT

This study was granted by the Facultad
Tecnológica, Universidad Distrital Francisco José
de Caldas, Colombia. The trials and evaluations
were developed by researchers from the ARMOS
research group.

REFRENCES

[1] P. Ibañez, C. Villalonga, and L. Nuere.

Exploring Student Activity with Learning
Analytics in the Digital Environments of the
Nebrija University. Technology, Knowledge
and Learning, 25(4):769–787, 2020. doi:
10.1007/s10758-019-09419-4.

[2] N. Nordin, N. Majid, and N. Zainal. Mobile
augmented reality using 3d ruler in a robotic
educational module to promote stem learning.
Bulletin of Electrical Engineering and
Informatics, 9(6):2499–2506, 2020. doi:
10.11591/eei.v9i6.2235.

Journal of Theoretical and Applied Information Technology
15th March 2021. Vol.99. No 5
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1194

[3] S. Djabbarova, M. Tadjieva, R. Mardonova, and
G. Turaeva. Problem based learning and its
efficiency in teaching process. European
Journal of Molecular and Clinical Medicine,
7(2):291–296, 2020.

[4] H. Tinmaz and J. Lee. An analysis of users’
preferences on learning management systems: A
case on German versus Spanish students. Smart
Learning Environments, 7(1), 2020. doi:
10.1186/s40561-020-00141-8.

[5] K. Chrysafiadi, C. Troussas, and M. Virvou.
Combination of fuzzy and cognitive theories for
adaptive e-assessment. Expert Systems with
Applications, 161, 2020. doi:
10.1016/j.eswa.2020.113614.

[6] K. Zuza, M. De Cock, P. Van Kampen, T. Kelly,
and J. Guisasola. Guiding students towards an
understanding of the electromotive force
concept in electromagnetic phenomena through
a teaching-learning sequence. Physical Review
Physics Education Research, 16(2), 2020. doi:
10.1103/PhysRevPhysEducRes.16.020110.

[7] D. Jiménez-Hernández, V. González-Calatayud,
A. Torres-Soto, A. Mayoral, and J. Morales.
Digital competence of future secondary school
teachers: Differences according to gender, age,
and branch of knowledge. Sustainability
(Switzerland), 12(22):1–16, 2020. doi:
10.3390/su12229473.

[8] A. Mishina, G. Batyrshina, Z. Yavgildina, and I.
Avramkova. Personalization of Art Students’
Training in the Context of the Transition to the
Digital Economy. International Journal of
Criminology and Sociology, 9:931–935, 2020.
doi: 10.6000/1929-4409.2020.09.97.

[9] S. Scott, T. Dalsgaard, J. Jepsen, C. von
Buchwald, and S. Andersen. Design and
validation of a cross-specialty simulation-based
training course in basic robotic surgical skills.
International Journal of Medical Robotics and
Computer Assisted Surgery, 16(5):1–10, 2020.
doi: 10.1002/rcs.2138.

[10] J. Blevins, K. Felix, D. Ling, P. Sculco, M.
McCarthy, C.A. Demetracopoulos, A.S.
Ranawat, and D.T. Fufa. Surgical Games: A
Simulation-Based Structured Assessment of
Orthopedic Surgery Resident Technical Skill.
Journal of Surgical Education, 77(6):1605–
1614, 2020. doi: 10.1016/j.jsurg.2020.05.009.

[11] E. Jokinen, T. Mikkola, and P. Härkki.
Simulator training and residents’ first
laparoscopic hysterectomy: A randomized
controlled trial. Surgical Endoscopy,

34(11):4874–4882, 2020. doi: 10.1007/s00464-
019-07270-3.

[12] Q. Deng, J. Wang, K. Hillebrand, C. Benjamin,
and D. Soffker. Prediction Performance of Lane
Changing Behaviors: A Study of Combining
Environmental and Eye-Tracking Data in a
Driving Simulator. IEEE Transactions on
Intelligent Transportation Systems, 21(8):3561–
3570, 2020. doi: 10.1109/TITS.2019.2937287.

[13] C. De Oliveira, M. De Aguiar, A. De Castro, P.
Guazzelli, W. De Andrade Pereira, and J. De
Almeida Monteiro. High-Accuracy Dynamic
Load Emulation Method for Electrical Drives.
IEEE Transactions on Industrial Electronics,
67(9):7239–7249, 2020. doi:
10.1109/TIE.2019.2942566.

[14] A. Bernard, P. Chemaly, F. Dion, S. Laribi, F.
Remerand, D. Angoulvant, and F. Ivanes.
Evaluation of the efficacy of a self-training
programme in focus cardiac ultrasound with
simulator. Archives of Cardiovascular Diseases,
112(10):576–584, 2019. doi:
10.1016/j.acvd.2019.06.001.

[15] A. Akalin and S. Sahin. The impact of high-
fidelity simulation on knowledge, critical
thinking, and clinical decision-making for the
management of pre-eclampsia. International
Journal of Gynecology and Obstetrics,
150(3):354–360, 2020. doi: 10.1002/ijgo.13243.

[16] A. Wahl. Expanding the concept of simulator
fidelity: The use of technology and
collaborative activities in training maritime
officers. Cognition, Technology and Work,
22(1):209–222, 2020. doi: 10.1007/s10111-019-
00549-4.

[17] S. Guraya, S. Guraya, and M. Al-Qahtani.
Developing a framework of simulation-based
medical education curriculum for effective
learning. European Journal of Anatomy,
24(4):323–331, 2020.

[18] Á. Arnaiz-González, J. Díez-Pastor, I. Ramos-
Pérez, and C. García-Osorio. Seshat - a web-
based educational resource for teaching the
most common algorithms of lexical analysis.
Computer Applications in Engineering
Education, 26(6):2255–2265, 2018. doi:
10.1002/cae.22036.

[19] A. Megías, A. Cortes, A. Maldonado, and A.
Cándido. Using negative emotional feedback to
modify risky behavior of young moped riders.
Traffic Injury Prevention, 18(4):351–356, 2017.
doi: 10.1080/15389588.2016.1205189.

[20] H. Chen, H. Park, and C. Breazeal. Teaching
and learning with children: Impact of reciprocal

Journal of Theoretical and Applied Information Technology
15th March 2021. Vol.99. No 5
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1195

peer learning with a social robot on children’s
learning and emotive engagement. Computers
and Education, 150, 2020. doi:
10.1016/j.compedu.2020.103836.

[21] B. Adewale, F. Jegede, P. Aderonmu, O.
Fulani, E. Erebor, and O. Joshua. The
Relationship between teacher’s/students’
characteristics and their learning styles in a
visual communication class. International
Journal of Civil Engineering and Technology,
9(9):782–791, 2018.

[22] N. Harihara Sudhan, S. Shriram, M. Anand, and
R. Sujeetha. Game environment exploration
using curiosity-driven learning. International
Journal of Recent Technology and Engineering,
7(6):715–718, 2019.

[23] A. Townsend-Nicholson. Educating and
engaging new communities of practice with
high performance computing through the
integration of teaching and research: Using
technology to transform learning. Interface
Focus, 10(6), 2020. doi:
10.1098/rsfs.2020.0003rsfs20200003.

[24] C. Schuster, F. Stebner, D. Leutner, and J.
Wirth. Transfer of metacognitive skills in self-
regulated learning: An experimental training
study. Metacognition and Learning, 15(3):455–
477, 2020. doi: 10.1007/s11409-020-09237-5.

[25] M. Macías García, A. Izaguirre Alegría. and A.
Cortés Pérez. Cyber-Physical Labs to enhance
engineering training and education.
International Journal on Interactive Design and
Manufacturing, 14(4):1253–1269, 2020. doi:
10.1007/s12008-020-00704-6.

[26] I. Gaudiello and E. Zibetti. Learning Robotics,
with Robotics, by Robotics: Educational
Robotics. Wiley, 2016.

[27] J. Cañas, E. Perdices, L. García-Pérez, and J.
Fernández-Conde. A ROS-based open tool for
intelligent robotics education. Applied Sciences
(Switzerland), 10(21):1–20, 2020. doi:
10.3390/app10217419.

[28] A. Staranowicz and G. Mariottini. A survey and
comparison of commercial and open-source
robotic simulator software. In Proceedings of
the 4th International Conference on PErvasive
Technologies Related to Assistive
Environments, PETRA ’11, pages 1–8, New
York, NY, USA, 2011. Association for
Computing Machinery. ISBN 978-1-4503-
0772-7. doi: 10.1145/2141622.2141689.

[29] V. Carbonell and R. Estepa. Simulation of a
quadrupedal bioinspired modular robot using
webots. International Review on Modelling and

Simulations, 12 (2):94–102, 2019. doi:
10.15866/iremos.v12i2.16349.

[30] Ó. Avilés, O. Rubiano, M. Mauledoux, A.
Valencia, and R. Moreno. Simulation of a
mobile manipulator on webots. International
Journal of Online Engineering, 14(2):90–102,
2018. doi: 10.3991/ijoe.v14i02.7789.

[31] E. Neha, M. Suhaib, S. Asthana, and S.
Mukherjee. Grasp analysis of a four-fingered
robotic hand based on matlab simmechanics.
Journal of Computational and Applied Research
in Mechanical Engineering, 9 (2):169–182,
2020. doi: 10.22061/jcarme.2019.3427. 1390.

[32] M. Sarkar, A. Homaifar, B. Erol, M.
Behniapoor, and E. Tunstel. PIE: A Tool for
Data-Driven Autonomous UAV Flight Testing.
Journal of Intelligent and Robotic Systems:
Theory and Applications, 98(2):421–438, 2020.
doi: 10.1007/s10846-019-01078-y.

[33] A. Brunete, E. Gambao, J. Koskinen, T.
Heikkilä, K. Kaldestad, I. Tyapin, G. Hovland,
D. Surdilovic, M. Hernando, A. Bottero, and S.
Anton. Hard material small-batch industrial
machining robot. Robotics and Computer-
Integrated Manufacturing, 54:185–199, 2018.
ISSN 0736-5845. doi: 10.1016/j.rcim.2017.11.
004.

[34] W. Dong, F. Palmquist, and S. Lidholm. A
Simple and Effective Emulation Tool Interface
Development for Tricept Application. page 5,
2002.

[35] A. Hentout, A. Maoudj, N. Kaid-Youcef, D.
Hebib, and B. Bouzouia. Distributed Multi-
agent Bidding-Based Approach for the
Collaborative Mapping of Unknown Indoor
Environments by a Homogeneous Mobile Robot
Team. Journal of Intelligent Systems, 29(1):84–
99, 2020. doi: 10.1515/jisys-2017-0255.

[36] J. Song and S. Gupta. E ∗ : An Online Coverage
Path Planning Algorithm. IEEE Transactions on
Robotics, 34(2):526–533, 2018. doi:
10.1109/TRO.2017.2780259.

[37] L. Peng, F. Guan, L. Perneel, H. Fayyad-Kazan,
and M. Timmerman. Decentralized Multi-Robot
Formation Control with Communication Delay
and Asynchronous Clock. Journal of Intelligent
and Robotic Systems: Theory and Applications,
89(3-4):465–484, 2018. doi: 10.1007/s10846-
017-0557-y.

[38] C. Liang, V. Kamat, and C. Menassa. Teaching
robots to perform quasi-repetitive construction
tasks through human demonstration.
Automation in Construction, 120, 2020. doi:
10.1016/j.autcon.2020.103370.

Journal of Theoretical and Applied Information Technology
15th March 2021. Vol.99. No 5
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1196

[39] S. Abdulredah and D. Kadhim. Developing a
real time navigation for the mobile robots at
unknown environments. Indonesian Journal of
Electrical Engineering and Computer Science,
20(1):500–509, 2020. doi:
10.11591/ijeecs.v20.i1.pp500-509.

[40] L. Hugues and N. Bredeche. Simbad: An
Autonomous Robot Simulation Package for
Education and Research. In S. Nolfi, G.
Baldassarre, R. Calabretta, J. Hallam, D.
Marocco, J. Meyer, O. Miglino, and D. Parisi,
editors, From Animals to Animats 9, Lecture
Notes in Computer Science, pages 831–842,
Berlin, Heidelberg, 2006. Springer. ISBN 978-
3-540-38615-5. doi: 10.1007/11840541_68.

[41] B. Rachid and M. Benmohamed. Global
Localization and Concurrent Mapping for
Mobile Robot on the robotic simulator
“SIMBAD”. AIP Conference Proceedings,
1107(1):368–372, 2009. ISSN 0094-243X. doi:
10.1063/1.3106505.

[42] M. Montemerlo, N. Roy, and S. Thrun.
Perspectives on standardization in mobile robot
programming: The Carnegie Mellon Navigation
(CARMEN) Toolkit. In Proceedings 2003
IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2003)
(Cat. No.03CH37453), volume 3, pages 2436–
2441 vol.3, 2003. doi:
10.1109/IROS.2003.1249235.

[43] J. Pineau and A. Atrash. SmartWheeler: A
Robotic Wheelchair Test-Bed for Investigating
New Models of Human-Robot Interaction. In
AAAI Spring Symposium, pages 1–6, 2007.

[44] S. Carpin, M. Lewis, J. Wang, S. Balakirsky,
and C. Scrapper. USARSim: A robot simulator
for research and education. In IEEE
International Conference on Robotics and
Automation, page 1405, 2007. doi:
10.1109/ROBOT.2007.363180.

[45] S. Balakirsky and Z. Kootbally.
USARSim/ROS: A Combined Framework for
Robotic Control and Simulation. In
ASME/ISCIE 2012 International Symposium
on Flexible Automation, pages 101–108.
American Society of Mechanical Engineers
Digital Collection, 2013. doi:
10.1115/ISFA2012-7179.

[46] D. Michal and L. Etzkorn. A comparison of
Player/Stage/Gazebo and Microsoft Robotics
Developer Studio. In Proceedings of the 49th
Annual Southeast Regional Conference, ACM-
SE ’11, pages 60–66, New York, NY, USA,
2011. Association for Computing Machinery.

ISBN 978-1-4503-0686-7. doi:
10.1145/2016039.2016062.

[47] Antonio Matta-Gómez, J. Del Cerro, and A.
Barrientos. Multi-robot data mapping
simulation by using microsoft robotics
developer studio. Simulation Modelling Practice
and Theory, 49:305–319, December 2014. ISSN
1569-190X. doi: 10.1016/j.simpat.2014.10.003.

[48] F. Serrano, B. Diego, V. Rodilla, J. Rodriguez-
Aragon, R. Santos, and C. Fernandez-Carames.
The complete integration of MissionLab and
CARMEN. International Journal of Advanced
Robotic Systems, 14(3): 1729881417703565,
2017. ISSN 1729-8814. doi:
10.1177/1729881417703565.

[49] A. Chella, R. Sorbello, S. Siniscalchi, and S.
Vitabile. MIP: A New Hybrid Multi-Agent
Architecture for the Coordination of a Robot
Colony Activities. In 15th Eureopean
Conference on Artificial Intelligence
ECAI’2002, pages 1–5, 2002.

[50] F. Martínez, F. Martínez, and H. Montiel.
Hybrid Free-Obstacle Path Planning Algorithm
using Image Processing and Geometric
Techniques. ARPN Journal of Engineering and
Applied Sciences, 14(18):3135-3139, 2019.

[51] A. Montes. Planificación de Caminos basada en
Modelo Combinando Algoritmos de Búsqueda
en Grafo, derivados de RRT y RRT*. Escuela
Técnica Superior de Ingeniería. Universidad de
Sevilla, 2017.

[52] E. Jacinto, F. Martínez, and F. Martínez. A
comparative study of geometric path planning
methods for a mobile robot: Potential field and
Voronoi diagrams. A Comparative Study of
Geometric Path Planning Methods for a Mobile
Robot: Potential Field and Voronoi Diagrams,
pages 1-6, 2013.

[53] W. Huijuan, Y. Yuan, and Y. Quanbo.
Application of Dijkstra algorithm in robot path-
planning. 2011 Second International Conference
on Mechanic Automation and Control
Engineering, 2011. doi:
10.1109/MACE.2011.5987118.

[54] C. Penagos, L. Pacheco, and F. Martínez.
ARMOS TurtleBot 1 Robotic Platform:
Description, Kinematics and Odometric
Navigation. International Journal of
Engineering and Technology (IJET), 10(5):
1402-1409, 2018, doi:
10.21817/ijet/2018/v10i5/181005043.

