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ABSTRACT 
 

The social needs that require the support of robotics are increasingly evident. Tasks such as caring for 
children and the elderly in isolated, unsupervised homes have become evident following the demands of 
social isolation caused by the COVID-19 pandemic. Service robotics is presented as a current and readily 
available solution for the remote monitoring of people, particularly those with medical restrictions or in 
education processes. However, the development of these applications requires a critical mass of 
professional personnel trained in the design of these robots and their navigation and manipulation schemes. 
Current robotic systems tend to be expensive, so their availability at the university level is limited. Its use 
aims to be dedicated to research, leaving aside the processes of training at the undergraduate level. A very 
efficient way to develop a specialized training in robotics for young researchers is through the use of 
software tools that simulate existing robotic models in the laboratory. This article presents the formulation 
and development of a software tool designed to train young researchers within the research group. The tool 
is the first of a knowledge management system that the research group has proposed to encourage and 
accelerate research in service robotics. This first tool focuses on the problem of autonomous planning of 
movement in globally observable environments, similar to those normally foreseen for service robots. 
Specifically, it implements the algorithm of visibility graphs to define the navigation route of a robot from a 
point of origin to a point of destination. As result, it is presented the final operation of the tool, its 
advantages in terms of configuration and manipulation, and its capacity to evaluate the performance in front 
of different variables of the problem. This article is developed as part of the group's research in mobile 
robotics and image processing, specifically related to the training of junior researchers. 
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1. INTRODUCTION  
 

It is widely accepted that learning activities 
correspond to the most critical elements within an 
educational process [1, 2, 3]. When designing a 
training scheme, the first step of the process is to 
define the learning objectives, which are intimately 
linked to the learning process to be generated in the 
students [4, 5, 6]. This is particularly important 
today when many of the training needs are linked to 
technological developments [7, 8]. Technology is 
fundamental not only as a training concept and 
strategy for the construction of teaching material 
but as a general strategy in the design of an 
effective and significant learning process. 

Specific purpose simulators are a powerful 
training tool. This software can be designed to 
acquire and perfect specific skills that are difficult 
or complex to develop through other specialized 
laboratory strategies [9, 10, 11]. This is especially 

true when the training purposes are not strictly 
framed within a formal curriculum, as is the case of 
advanced work within the research seedbeds of a 
research group. They also turn out to be key tools 
for the validation of schemes and algorithms before 
their implementation on real prototypes [12, 13]. 
Also, they propose a training scheme that 
strengthens the self-training and critical skills of the 
student, since they stimulate a process in which 
direct interaction between teacher and student is not 
necessary [14]. 

One of the great strengths of the use of 
simulators for training is the great adaptability that 
is achieved in training, which allows consolidating 
learning gaps specific to each of the students [15, 
16, 17]. These gaps are difficult to identify in the 
initial assessment of students but can be 
autonomously solved by them when they have at 
their disposal a tool configurable to their needs and 
training desires. This also provides an additional 
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advantage, which makes the training process more 
attractive to the student, given the lack of direct 
linkage to training schedules and locations, in 
addition to the fact of interacting with a friendly 
technological tool [18]. These characteristics make 
the software tools a strong and positive modifier of 
study habits [19, 20]. The approach to the tool is 
given by a strong influence of the student’s interest 
in the subject, which ends up affecting their daily 
habits, and therefore promotes the construction of a 
culture of self-training. 

Each student has his or her structure in terms of 
how he or she learns [21, 22]. Habits, schedules, 
skills, tools, and different ways to approach bodies 
of knowledge. Skills such as self-management of 
material, time, resources, task development, as well 
as critical analysis of available information, are 
aspects and skills that are encouraged and 
strengthened by the targeted use of these software 
tools. Students can develop their training process 
according to the strategies proposed by the teachers, 
but at the same time investigate functional variants 
according to their interest. This undoubtedly 
impacts both the student’s habits and the quality of 
their learning process when building new training 
strategies [23, 24, 25]. 

This project was developed to support the 
specific training of young researchers within the 
research group. The central tool of the project 
corresponds to a set of simulators for specific use in 
service robotics. As a prototype, the implementation 
of the geometric strategy of path planning in 
observable environments using the algorithm of 
visibility graphs was selected. The challenge to 
obtain an optimal solution in motion planning is 
contemplated in two crucial parameters, path 
planning (geometric) and trajectory planning 
(control). The objective is to indicate the minimum 
path between the initial point and the arrival point 
and to calculate the point that the robot must reach 
at each instant of time, respectively, achieving a 
correct trajectory. Correct means that the trajectory 
does not collide with the environment and that it 
complies with the kinematic (and ideally dynamic) 
constraints of mobile robots. 

Even though the use of the software requires 
dedication and supplementary guidance from expert 
teachers, the continuous use of the tool not only 
attacks specific deficiencies in the student but also 
creates study habits because the continuous 
repetition of certain practices modifies the 
individual’s behavior and self-motivated 
autonomous work encourages critical thinking and 
self-regulation. 

2. RELATED WORK 

The traditional strategy used in most of the 
courses related to robotics is centered on lectures, 
master classes, and practical laboratory activities 
[26]. Under this scheme, and according to the 
limitations of the laboratory, it is created a learning 
gap in the student when he tries to bring down the 
theoretical concepts in his laboratory practices. In 
the laboratory, the student has access to real robots 
on which it is expected to implement strategies and 
algorithms, but in principle, the implementation of 
such algorithms on the real platforms is not direct 
or easy, which makes it difficult to derive the 
theoretical conclusions on a functional prototype. 
The tool more powerful and versatile commonly 
used to close this gap is the simulators software, 
tools of special-purpose capable of facilitating the 
implementation of the algorithms and to project in a 
virtual environment the scenario of performance of 
the robot under the specific programmed conditions 
[27]. These tools also reduce the time spent on 
applied research, since they allow a rapid validation 
of algorithms before programming in real platforms 
[28]. Masterclasses and lectures do not bring the 
student closer to the real problems they face when 
working a given algorithm on the robot, making the 
laboratory practices focus much of the activity on 
the knowledge and handling of equipment, rather 
than on the implementation and evaluation of 
algorithms. A simulator can greatly reduce these 
problems, in addition to allowing the student to 
work in a safe environment that leads to personal 
experimentation. 

The existing simulators in robotics for use in 
education and research can be separated into two 
categories [28]. On the one hand, there are the 
commercial simulators, characterized by a closed 
code development oriented to commercial use of 
the tool. On the other hand, there are open-source 
projects, which include a large number of initiatives 
from research centers and groups. The problem with 
commercial tools lies in their high cost and the 
impossibility of modifying their internal code to 
suit the training and/or research process. Many 
higher education institutions cannot afford the high 
cost of commercial software, even more, when it is 
necessary to think about the number of licenses 
according to the student population, and annual 
updates of the same. In many cases, the choice is to 
invest in hardware and software tools that benefit 
the majority of the student population, so special-
purpose simulators are not usually viable options. 
Furthermore, in applied research, it is a requirement 
to be able to access the routines of a tool to adapt 
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them to the particular conditions of the experiment, 
which is impossible in a commercial tool. 

In the commercial category, three platforms can 
be easily identified: Webots [29, 30], MATLAB 
[31, 32], and Easy-Rob [33, 34]. Webots is a 
simulator from Cyberbotics Ltd. developed for 
three-dimensional environments. Although it was 
born as a closed-source commercial platform, today 
it is an open-source tool, the commercial business 
was oriented towards industrial and academic 
support. A robot in Webots can be equipped with 
physical characteristics similar to those of the real 
robot, including a wide variety of sensors and 
actuators. The control code can be written in C, 
C++, Java, Python, and Matlab. The tool is 
compatible with ROS (Robot Operating System), as 
well as commercial robotic platforms such as 
Epuck, Pioneer, Lego Mindstorm, Sony AIBO, and 
Fujitsu HOAP-2. One of the most outstanding 
features of Webots is that it allows the user to 
interact with his robot throughout the simulation. 

MATLAB is perhaps the most widespread and 
well-known academic tool. It is developed and 
marketed by MathWorks and is structured around 
the concept of MATrix LABoratory and a 
proprietary programming language. It has a large 
number of add-ons called Toolboxes that extend the 
capabilities of the software in specific domains. 
Some of these Toolboxes are Simulink, Robotics, 
and SimMechanics which allow the kinematic and 
dynamic simulation of any robotic structure. 
However, the problem of this tool is precisely its 
commercial nature, this feature makes it complex to 
use outside the restrictions of its license, which 
prevents the free dissemination of code developed 
with it, even for the documentation of research 
articles. Finally, Easy-Rob is developed and 
marketed by EASY-ROB Software GmbH and is 
intended to be a complete low-cost simulation 
solution. This tool is oriented towards the planning 
and verification of work cells, which does not 
exclude that other types of platforms can be 
simulated within their three-dimensional 
environment. 

Within the open-source options the most 
important, and open distribution are Player/Stage 
[35, 36, 37], Gazebo [32, 27, 38], Robot Operating 
System (ROS) [27, 38, 39], Simbad [40, 41], 
Carnegie Mellon Robot Navigation Toolkit 
(CARMEN) [42, 43], Unified System for 
Automation and Robot Simulation (USARSim) [44, 
45], Microsoft Robotics Developer Studio (MRDS) 
[46, 47], and MissionLab [48, 49]. 

Player/Stage is a tool designed to replicate the 
behavior of a robot according to the interaction of 
its sensors and actuators. It was developed by the 
International Team of Robotics Researchers and has 
a server/client structure that allows configuring 
multiple capacities to the robot using the 
communication with the server. The Player module 
is the interface for the definition of the robots 
(Hardware Abstraction Layer, HAL), while Stage 
provides the two-dimensional simulation 
environment (Robot OS). Gazebo is a simulator of 
three-dimensional environments originally 
developed as a component of Player/Stage, but 
currently is a standalone tool supported by Willow 
Garage. The simulator is capable of performing 
realistic renderings of environments, as well as 
modeling sensors that identify the simulated 
environment. The objects simulated in Gazebo have 
mass and other physical attributes such as friction 
or contact. 

Robot Operating System (ROS) is a framework 
developed by the Stanford Artificial Intelligence 
Laboratory, with current development by Willow 
Garage, which works as an operating system to the 
robot to reduce the direct control of low-level 
devices of sensors and actuators. It has a large 
community of support and allows the development 
in C, C++, Python, Octave, and LISP. Simbad is 
another open-source tool that can simulate the 
interaction of individual robots or groups of robots 
in a three-dimensional environment. It is developed 
in Java, but it also supports Python, and as in the 
previous cases it also supports a wide variety of 
sensors. This simulator was developed to 
investigate the use of tools based on artificial 
intelligence, so it has libraries for neural networks 
and evolutionary algorithms. 

Carnegie Mellon Robot Navigation Toolkit 
(CARMEN) is a collection of tools designed for 
robot control. With this tool, it is easy to implement 
navigation strategies, path planning, and mapping. 
Although its simulation environment is two-
dimensional, its simplicity and support for multiple 
platforms and sensors make it a high-performance 
tool when evaluating custom strategies. It supports 
C and Java and is limited to use on Linux. Unified 
System for Automation and Robot Simulation 
(USARSim) is a three-dimensional environment 
simulator based on the Unreal Tournaments game 
engine. Its objective was the search and rescue 
applications at the urban level, as well as the study 
of the human-machine interaction. The control code 
is developed using the GameBot interface, the 
Mobility Open Architecture Simulation and Tools 
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System (MOAST), Player interface, or MATLAB 
through the Toolbox USARSim. 

Microsoft Robotics Developer Studio (MRDS) is 
another three-dimensional environment simulator 
with extensive support for robots, sensors, and 
actuators. While this tool does not have its open-
source but is available to the public for free use. 
The great characteristic of this simulator is that it 
uses a language of programming visual (VPL) for 
the control of the robot. Finally, MissionLab is a 
three-dimensional tool developed by the Mobile 
Robot Laboratory at Georgia Tech for Linux 
systems. It is a multi-agent simulator with 
individual reaction capability, and support for 
multiple commercial robots. Other interesting 
projects worth mentioning include the Robocup 
soccer simulator, EyeSim for the EyeBot Robot, 
SimBot and WoB. 

 
3. METHODS 
 

The training of researchers is a complex task that 
is part of the activities of a research group. In our 
particular case, we have detected our problems in 
the understanding and application of different 
schemes and algorithms in robotics. Among the 
fields with major problems are those of path 
planning, model construction, application of inverse 
kinematics, and the study of our algorithms 
proposed by the research group such as Quorum 
Sensing (QS). The research group has implemented 
some strategies to reduce this gap, among these 
strategies is the development of customized 
simulators that cover specific aspects of the 
implementation of algorithms, path planning with 
visibility graphs is one of the first tools under 
development. This research has opted for a 
configurable graphical tool since it was identified in 
the students the impossibility of interacting with the 
algorithms simply and reliably and under the 
conditions of our laboratory and our robots. Among 
the variables of interest was the student's ability to 
identify the performance of a given strategy under 
specific conditions, and the restrictions that each 
strategy imposes on the robotic platforms available 
in the laboratory. 

Visibility graphs provide a geometric approach to 
solving the problem of path planning. This method 
operates with polygonal models of the environment. 
It is a widespread method, and some algorithms 
build this kind of graph. It is limited to models of 
environments defined as polygons and can work 
both in the plane and in space. In our research, we 
use the simulation in two dimensions (2D - plane). 

The plane guarantees to generate graphs that 
contain the optimal path, although this does not 
happen in space. They have the disadvantage of 
fitting too close to obstacles, so they require a 
safety expansion system. In a set of different 
polygonal obstacles located in a plane, the visibility 
graph will be formed by the unions of the pairs of 
vertices that are seen mutually, without any 
intersection with the obstacles (Figure 1) [50, 51]. 

Formally, a G graph consists of two finite sets 
{N} and {A}. {N} is the set of graph elements, also 
called vertices or nodes. {A} is a set of arcs, which 
are the connections that relate the nodes to form the 
graph. Arcs are also called edges, lines, or paths. 
Nodes are used to represent objects, and arcs are 
used to represent the relationship between them. For 
example, nodes can represent countries and arcs can 
represent the existence of roads that communicate 
them. It is said that two nodes are adjacent or 
neighbors if there is an arc that connects them [51]. 

 

Figure 1: Example of visibility graph modeling 

The selection of the path among the multiple 
options defined by the visibility network requires 
the use of an optimization algorithm. In our first 
version of the software, we have chosen to 
implement Dijkstra's algorithm [52, 53]. The 
algorithm is also known as the minimum path 
algorithm and determines the shortest path from a 
vertex or origin node to the rest of the nodes in a 
graph with weight values in each path [53]. The 
idea is to explore all the shortest paths from the 
origin vertex to all other vertices. When the shortest 
path from the origin vertex to the rest of the vertices 
that make up the graph is obtained, the algorithm 
stops. 

Figure 2 shows the methodological sequence 
applied in the research for the generation of 
visibility graphs of an unknown environment with 
the aim of building the optimal path. There can be 
identified six fundamental stages: Determination of 
the environment or workspace, establishment of the 
scale of the workspace and dimensions to the robot, 
indication of the initial point and the final point, 
identification of the vertices of the objects in the 
environment, projection of the possible solution 
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trajectories, and selection of the optimal path from 
the Dijkstra algorithm. 

All the formulation, design, and implementation 
of our tool followed the principles of minimalism, 
open access, and the possibility of modification and 
adjustment of routines at the user's discretion, this 
includes not only the programming language but 
also the distribution and documentation tools. Our 
simulator was developed in Python version 3.8, and 
the default options are adjusted to the features of 
our robotic platform ARMOS TurtleBot [54]. 
However, the environment is fully configurable, 
which means that other platforms can be 
implemented, as well as different navigation 
environments can be configured. The user selects 
the workspace as a graphic file in JPG and PNG 
format. In this file, the two-dimensional design of 
the environment, including obstacles, must be 
provided. The length restriction of the obstacles of 
the workspace must be higher than five pixels, that 
is, the program only accepts that the obstacles will 
be polygonal, it is not allowed that the workspace 
contains a line thickness lower than five pixels. The 
user must also indicate the scale of the workspace. 
With this information, the navigation environment 
within the simulator is built. The graphic 
manipulation (morphological operations, labeling, 
filters, and edge detection) is done through 
OpenCV. We make a simplification of vertices 
using the Douglas-Peucker algorithm. 

After establishing the simulation environment, 
the user can set in the environment the starting 
point and the finishing point for the robot 
navigation. The sequential form to establish the 
points is the initial to the end. Due to the 
configuration of the program, in the case that the 
user omits to incorporate these points, the program 
will not enable the route search option. The user can 
define the number of nodes according to the need 
and complexity of the environment, i.e., increasing 
or decreasing the local minimums. 

The grouping of the vertices of the obstacles is 
defined within a vector. This simplifies the handling 
of coordinates, particularly for the initial and target 
points (Figure 3). The design of the user interface 
(GUI) was developed with Tkinter. The 
vectorization of information from the navigation 
environment also facilitated the graphic design in 
Tkinter. From the width and length of the 
workspace, an image matrix is established where 
each of the coefficients is determined by the value 
of each pixel in grayscale to 8 bits. 

 

Figure 2: Chart of implemented methodology 

 

 

Figure 3: Encoding of navigation environment 
information, this example includes an obstacle, and the 
start and target points 

According to the theory of visibility graphs, each 
of the vertices of the obstacles in the environment is 
obtained, and the lines of the graph are projected. 
These lines are divided into three groups: 

 Obstacle action lines: These are the lines that 
join the vertices of the same obstacle. 

 Lines of action between obstacles: These are 
the lines that join the vertices of obstacle i 
with obstacle j.  
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 Lines of action between points and obstacles: 
Are the lines that join the obstacles of the 
workspace with the initial and target points. 

These lines of action overlap the obstacles, so it 
is necessary to segment them according to the 
location of the obstacles, this is done with the 
Bresenham algorithm. 

Finally, with the corresponding grouping, the 
assignment of the weight matrix, and facilitating the 
verification of adjacent nodes in the system, we use 
the obstacle matrix to obtain the optimal trajectory 
through Dijkstra's algorithm. In Tkinter's interface, 
the optimal trajectory is highlighted, joining the 
starting point with the arrival point. 

 

4. RESULTS 

The results of the tool were measured and 
evaluated from two perspectives, firstly from its 
ability to meet the design profile defined by the 
research group, and secondly, in the medium term, 
according to its capacity to effectively shape a 
specific training tool that helps young researchers to 
reduce conceptual problems while facilitating the 
transition to real platforms and proposing an 
evaluation scheme for novel strategies. Most of the 
results shown in this section correspond to the first 
perspective, however, we already have some results 
from its use with students that derive into possible 
future adjustments of the tool. 

The simulator has a clean and simple interface 
with the basic options at the file level: Open, Save, 
Delete, and Exit (Figure 4). The simulator has a set 
of basic environments in graphic format, but the 
user can load his designs. These designs are opened 
from the Open option, the Save option allows to 
store the information of the optimal path calculated 
in a simulation. 

The graphic file corresponding to the selected 
navigation environment is shown in the central part 
of the simulator (Figure 5). To the image of the 
environment is added the dimensional information 
of the robot, real physical constraints of the robot, 
which are represented by circles. The circular 
geometric models of the robot are placed bordered 
the obstacles of the environment to establish the 
real free space, and to guarantee the not collision of 
the robot. After loading the environment, it is 
proceeded to adjust the parameters of the 
simulation, this is carried out in the section Settings. 
This stage is fundamental for the simulation and its 
analysis. The conditions of the scale of the space of 
work and dimensions of the robot are introduced. 

 

Figure 4: Simulator graphic interface 

 

 

Figure 5: Workspace treatment 

In the Analyze section, there are options to define 
the initial navigation point, the target point, the 
option to start the route search, and the selection of 
the strategy to define the shortest route. The 
program gives the freedom to drag the initial and 
final point, to be user friendly, without the need to 
insert the coordinates of each point. Once the points 
are indicated, the user must start the calculation of 
the possible solution routes. 

When the option to search for routes is selected, 
the program draws a dotted line border over the 
navigation environment (Figure 6). When the 
software finds the optimal route, the path is 
displayed in the environment by linking the start 
and end points (Figure 7). 
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Figure 6: Simulator looking for possible navigation 
routes 

 

Figure 7: Simulator indicating the optimal route after 
applying visibility graphs and Dijkstra 

For performance evaluation, we use different 
navigation environments and different robotic 
platforms (different sizes and travel speeds). In the 
first case we used a robot of 0.2 m by 0.2 m, the 
starting point was placed in the upper left, behind 
the two large obstacles, and the end point in the 
center right, again behind a third obstacle (Figure 
8). The optimal route found by the simulator is 
shown in Figure 9. The figure shows how, in this 
case, it manages to define a path along with the 
narrow space between the two obstacles. 

 

Figure 8: Environment setting for the first 
performance test 

 

Figure 9: First performance test result 

For the second test we used the same 
environment, and the same initial and final points, 
but we changed the robot utilized. In this second 
case, we used a 50% larger robot, for size of 0.3 m 
by 0.3 m. This new robot cannot pass between the 
two big obstacles on the left like the first robot did, 
so a new route is expected for it. In Figure 10 it is 
observed the new behavior of the solution. 
Although the software establishes the same routes 
from the visibility graph, the dimensional 
constraints applied to the strategy make the two 
responses different, and in both cases correct. 



Journal of Theoretical and Applied Information Technology 
15th March 2021. Vol.99. No 5 
© 2021 Little Lion Scientific 

 
ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
1191 

 

 

Figure 10: Second performance test result 

The third performance test consisted of 
increasing the size of the robot again while keeping 
the other parameters constant. In this new case, the 
robot was dimensioned to 0.4 m by 0.4 m, a size 
with which we expect to be impossible to reach 
from the initial point to the final point. The new 
size of the robot is superior to the spaces between 
obstacles, and between obstacles and boundaries of 
the environment, for it is not waiting for a result 
optimum. Figure 11 shows the result thrown by our 
simulator. This event of not tracing the dotted lines 
in the option of searching routes makes understand 
to the user that it is not possible to obtain a route 
optimal because the dimensions of the robot exceed 
the free space, for it, not project any route optimal. 

Consequently, unlike the basic scheme of 
visibility graphs, our simulator considers the real 
dimensions of the robot and adjusts its search 
according to the real behavior of the robot in the 
environment. The most important contribution of 
our tool is the facility it has to incorporate new 
robots, considering in the simulation strategy the 
real dimensions of the machine. By default, the 
simulator incorporates the parameters of our 
ARMOS TurtleBot, which allows an easy approach 
to our robotic platform, but also allows us to define 
the characteristics of the robots developed by the 
students, turning it into an important tool for 
verification and development. 

Some aspects were not considered as part of the 
strategy of navigation, as the fact of defining angles 
of safe turn for the robots. These parameters were 
not incorporated in our simulator because they are 
difficult to establish for the robots. In any case, our 

research raises this (a criterion that is already being 
incorporated into the code is the definition of a 
minimum angle of rotation of the robot, which will 
be a restriction in the simulator) and other 
improvements to the software in a later design 
stage. Even so, the software can calculate the actual 
total time the robot takes to develop the route 
calculated by the strategy from the nominal speed 
of the machine, even considering the time of the 
turns. This information can be saved for comparison 
both graphically and in a plain text file from which 
it is possible to reconstruct all the simulation 
information (map, robot characteristics, starting 
point, target point, and coordinates of the whole 
path). These files facilitate the analysis of different 
strategies for the same robot, which in the 
development of navigation strategies corresponds to 
a key performance comparison. 

 

Figure 11: Third performance test result 

 
An important feature of our simulator is that it 

allows, during image processing, to adjust the 
sensitivity of the number of nodes to be analyzed 
for each obstacle in the workspace. Obstacles are 
abstractions of real objects, and according to the 
desired sensitivity of the analysis or the desired 
simplification of the problem, different solutions 
can be obtained for the same problem. The greater 
the number of nodes, the greater the number of 
possibilities with a higher computational cost. 
Figures 13 and 14 show the effects on the nodes of 
two different sensitivity values for the same 
problem. 
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Figure 12: Identification of highly sensitive nodes in 
the workspace 

 

Figure 13: Identification of nodes with low sensitivity 
in the working space 

5. DIFFERENCES FROM PREVIOUS WORK 
 

From previously published work, we can identify 
the following pros of our tool: 

 Our tool is an open-source simulator with a 
high capacity for user integration and 
modification. The basic code can be modified 
to incorporate functionalities, algorithms, 
optimization schemes, and even add new 
modules. This is a limitation of commercial 
tools since they generally do not allow 
internal code modification. 

 It does not require a commercial license, so it 
can be freely distributed as source code, and 
the information collected from it can be 
documented without problems in scientific 
articles without infringing copyright and 

facilitating the duplication of the experiments 
by the readers. 

 It is intended for any user interested in the 
subject. It requires no special training or 
specialized knowledge to use, and the initial 
learning curve is very flat. 

 The configuration of the working environment 
can be easily done from an image. Similarly, 
the configuration of the robot is very simple, 
and only requires some physical and 
functional parameters of the machine. 

In the same way, compared to other equivalent 
tools, there are some disadvantages of our 
simulator: 

 It is in the development stage, so its results 
cannot yet be considered for applications in 
the production stage, only as a training tool 
and primary evaluation of schemes. 

 Due to its simplicity of use and training 
approach, the tool does not consider precise 
odometry parameters, which can lead to errors 
in the final performance of the robots. The 
relevance of this limitation is low since the 
purpose of the tool is training and research, 
not production. 

 A comprehensive evaluation of the simulator 
that would allow proposing adjustments and 
improvements has not yet been developed. It 
is expected that the use of the tool in the 
medium term will provide functional metrics 
and approaches for future development. 

 Limited distribution. Although the tool is open 
source and freely distributed, it is currently 
only available to our research group. 

6. CONCLUSION 
 

This article documents the development of 
a custom-made simulator for the training of young 
researchers in robotic navigation strategies. Initial 
tests with members of the research group point to 
the fact that the software supports the processes of 
cognitive appropriation of basic strategies. 

In its first stage, the software implements 
the visibility graph algorithm for a robot in 
conjunction with Dijkstra's algorithm as support for 
the definition of the optimal route. The algorithm 
implements the traditional strategy but allows the 
user to define some real-world constraints such as 
the actual size of the robot, and the design of the 
navigation environment and its obstacles. In their 
development, it was considered so many technical 
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aspects related to the characteristics of the 
algorithms, and the robots of the group of 
investigation, as pedagogical related to the 
formation of intrinsic and extrinsic motivators in 
the students to develop a support tool in the 
specialized self-training. The article presents details 
of its development both in terms of structure and 
graphic interface level. It is also shown how 
through the graphic interface the user can specify 
the simulation environment, the characteristics of 
the robot, and the navigation requirements. It is also 
shown how this information is digitized and 
processed by the simulator to define the possible 
routes and finally establish the optimal route. 

From the performance tests performed by 
our students, we can show the ability of the 
simulator to both replicate the behavior of the 
algorithm and to develop active learning in 
students. The students were able, even those with 
low knowledge in robotics, to correctly handle the 
simulator, and understand the behavior of the 
planning strategy. In the final stage of the project, 
improvements to the tool are proposed that include 
the incorporation of a greater number of navigation 
strategies and search algorithms. 
 
6. LIMITATIONS AND FUTURE RESEARCH 
 

The previous results of this research allow us to 
propose future directions of the research, both in the 
improvement of the simulator and in the 
strengthening of the knowledge management 
system in which its use is framed. Below we detail 
the most important branches. 

There are functions in the tool that can and 
should be complemented with new algorithms. In 
particular, the scheme used for the weighting and 
selection of the optimal route between the feasible 
paths should be complemented with a greater 
number of strategies. Classic informed and 
uninformed search algorithms should be 
implemented, such as A* style heuristic searches, 
graph searches as first in width, or first in-depth, 
gradient searches as simulated annealing, as well as 
randomized search algorithms such as genetic 
algorithms, or ant colony. 

During the design of the simulator, an image 
processing training was used, in which a total of 
100 images were randomly taken, and its 
performance/efficiency was 96%. It was identified 
that the images containing figures, and objects 
(obstacles), when their color composition was clear 
(beige, pink), the OpenCV module, cannot identify 
the obstacle, causing trajectories on itself. The 

recommendation to the user is to adjust the color of 
the obstacle in such a way that it generates a high 
contrast with the workspace so that the OpenCV 
module processes the recognition of the image 
properly. 

Greater restrictions must be incorporated in the 
movement of the robot according to the real 
capacities of the robots. The more important of 
these restrictions are related to the safe movement 
of the robot, for a real robot it is impossible to make 
any type of turn, since some of these or are 
physically impossible, or they put at risk the 
stability of the machine. 

It should be included in the tool other traditional 
strategies of movement planning. These new 
strategies should allow a form of work similar in 
terms of the configuration of the environment of 
navigation and the robots to facilitate the 
comparisons of performance. As well as the design 
of this simulator, the new modules must allow the 
continuous integration of features and functions. 

It is necessary to use the initial results of the use 
of the tool related to the learning habits of the users, 
as well as their working method to re-design the 
interface and the usability of the software. The 
simulator can and should be improved to improve 
the learning process of the student population to 
which the tool is directed. This improvement must 
be continuous since study habits tend to be 
dynamic. 
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