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ABSTRACT 
 

Optimal power flow (OPF) is known as one of the most important planning and scheduling tools in 
electrical power systems. The OPF problem is a non-convex optimization problem, therefore, the 
applications of meta-heuristic algorithms in the OPF problem have been gained more attentions in recent 
years. In this paper, a modified cuckoo search algorithm (MCSA) is proposed to solve OPF problem. The 
proposed method has been developed on the original cuckoo search algorithm to improve the quality of the 
optimal solutions. Modifications include additional information exchanges between the top eggs, or the best 
solutions. The new algorithm is implemented to the OPF problem so as to minimize the total generation 
cost when considering the equality and inequality constraints. In order to validate of the proposed 
algorithm, it is applied to the standard IEEE 30-bus and IEEE 57-bus test systems. The results show that the 
proposed technique provides better solutions than other heuristic techniques reported in literature.   

Keywords: Modified cuckoo search algorithm, Optimization, Optimal power flow, Power system 
 
1. INTRODUCTION  

 
Modern power system consists of a set of 

connections in which the energy can be transmitted 
from generators to load. In an interconnected power 
system, the objective function is to find the real and 
reactive power scheduling of each power plant in 
such a way as to minimize the operating cost. The 
optimal power flow (OPF) problem has become an 
essential for operation, planning and control of 
power systems. It was proosed first time in 1968 by 
Dommel and Tinney [1]. The main goal of OPF 
problem is to optimize a selected objective function 
such as fuel cost, power loss etc. In solving OPF 
problem, objective function is optimized by 
adjusting system control variable while satisfying 
the equality constraints and inequality constraints. 
The equality constraints normally power flow 
equations and inequality constraints which are 
limits on control variables and limits of power 
system dependent variables. Many conventional 
techniques such as gradient-based method, Newton 
method, linear programming, and quadratic 
programming have been employed for the solution 
of OPF problem [2-4]. But these methods cannot 
find a global optimization solution in OPF problems 
which have nonlinear constraints and objective 
function. Recently, numerous heuristic algorithms 
have been developed and have been implemented to 
successfully generate OPF solution such as tabu 

search (TS) [5], genetic algorithm (GA) [6-8], 
evolutionary programming (EP) [9], artificial bee 
colony (ABC) algorithm [10-12], differential 
evolution (DE) [13-16], teaching learning-based 
optimization (TLBO) [17-19], biogeography-based 
optimization (BBO) [20-22], particle swarm 
optimization (PSO) [23-25], and gravitational 
search algorithm (GSA) [26].  

In cuckoo search algorithm (CSA) the Lévy 
flight was used to achieve good optimization 
performance [27, 28]. Although the optimization 
performance of CSA is good based on the Lévy 
flight some complicated mathematical operations 
should be used to realize the Lévy flight such as 
trigonometric function, gamma function and 
exponential functions, which limited the application 
of the cuckoo search algorithm especially there is 
high requirement about computation complex like 
the realization in the embedded systems. Hence the 
Lévy flight function can be replaced and some other 
techniques can be used to improve the optimization 
performance. In this paper, a modified cuckoo 
search algorithm (MCSA) which in an improved 
version of CSA has been applied to solve the OPF 
problems. The performance of the proposed 
approach has been demonstrated on the standard 
IEEE 30-bus and IEEE 57-bus test systems. 
Simulation results demonstrate that the proposed 
method provides better results than other heuristic 
optimization techniques.  
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The remainder of this paper is structured as 
follows. Section 2 describes the preliminary 
knowledge about cuckoo search algorithm. The 
MCSA is presented in Section 3. Simulation results 
are presented in Section 4 and Section 5 provides a 
conclusion.   
 
2. PROBLEM FORMULATION 

 
The optimal power flow problem solution aims to 

optimize a selected objective function via optimal 
adjustment of the power system control variables, 
while at the same time satisfying various equality 
and inequality constraints. Generally, the OPF 
problem can be mathematically written as follows: 
      Min  uxJ ,                                    (1) 

        Subject to 

        
 
  0,

0,




uxh

uxg
                                   (2)         

where J  is objective function to be minimized, g is 
the equality constraints represent typical load flow 
equations, h is the inequality constraints represent 
the system operating constraints, x is the vector of 
dependent variables or state vector consisting of: 
(1)  Active power of generators at slack bus PG1.     
(2)  Load bus voltage VL.        
(3)  Generator reactive power output QG. 
(4)  Transmission line loading (line flow) Sl. 

Hence, x can be expressed as: 
         nl1NG1NL11 ,,, llGGLLG

T SSQQVVPx   (3) 

where NG, NL, and nl are the number of 
generators, number of load buses, and number of 
transmission lines, respectively. u is the vector of 
independent variables or control variables 
consisting of: 
(1)  Generator voltage VG at PV bus.                          
(2) Generator real power output PG at PV buses 

except at the slack bus PG1.                  
(3)  Transformer tap setting T. 
(4)  Shunt VAR compensation (or reactive power of 

switchable VAR sources) Qc. 

Hence, u can be expressed as: 

 NT1Nc1NG1NG2 ,,, TTQQVVPPu ccGGGG
T 

             (4) 
where NT and NC are the number of the regulating 
transformer and VAR compensators, respectively.  

2.1  Objective Function 

The objective function for the OPF reflects the 
cost associated with generating in power system. 
The objective function for the whole power system 
can then be written as the sum of the fuel cost 
model for each generator: 

       



NG

1i
iFJ             (5) 

where Fi  indicate the fuel cost of the i-th generator. 
The fuel cost curve for any unit is assumed to be 

approximated by segments of quadratic functions of 
the active power output of the generator as: 
        2

GiiGiiii PcPbaF             (6) 

where ai, bi, and ci are the cost coefficient of the i-
th generator, PGi is the power generated by the i-th 
unit and NG is the number of generators. 
 
2.2 Equality Constraints 

These constraints are specific load flow 
equations which can be described as follows: 

     0sincos
NB

1

 


jiijjiij
j

jiDiGi BGVVPP   

           (7) 

      0cossin
NB

1

 


jiijjiij
j

jiDiGi BGVVQQ   

           (8) 
where, i=1,…, NB, NB is the number of buses; PG 
is the active power generated, QG is the reactive 
power generated, PD is the load active power, QD is 
the load reactive power, Gij and Bij respectively 
indicate the real part and imaginary part of the ij-th 
element of the node admittance matrix. 
  
2.3  Inequality constraints    

These constraints reflect the system operating 
limits as follows: 
1. Generator constraints: generator voltages, real 

power outputs, and reactive power outputs are 
restricted by their lower and upper limits as 
follows: 

     maxmin
GiGiGi VVV  , i=1,…,NG     (9) 

     maxmin
GiGiGi PPP  , i=1,…,NG     (10) 

     maxmin
GiGiGi QQQ  , i=1,…,NG    (11) 

2. The transformer constraints: transformer tap 
settings are bounded as follows: 

      maxmin
iii TTT  , i=1,…,NT      (12) 

3. Shunt VAR constraints: shunt VAR 
compensations are qualified by their limits as 
follows: 

      maxmin
cicici QQQ  , i=1,…,NC    (13) 

4. Security constraints: these include the 
constraints of voltages at load busses and 
transmission line loadings as follows:       

      maxmin
LiLiLi VVV  , i=1,…,NL     (14) 

      max
lili SS  , i=1,…,nl       (15) 
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3. CUCKOO SEARCH ALGORITHM  

 
Cuckoo search algorithm (CSA) is inspired by 

some species of a bird family called cuckoo 
because of their special lifestyle and aggressive 
reproduction strategy. This algorithm was proposed 
by Yang and Deb [27]. The CSA is an optimization 
algorithm based on the brood parasitism of cuckoo 
species by laying their eggs in the communal nests 
of other host birds, though they may remove others’ 
eggs to increase the hatching probability of their 
own eggs. Some host birds do not behave friendly 
against intruders and engage in direct conflict with 
them. If a host bird discovers the eggs are not their 
own, it will either throw these foreign eggs away or 
simply abandon its nest and build a new nest 
elsewhere [27, 28]. 

The CSA is based on three idealized rules [28]:  
 Each cuckoo lays one egg (a design solution) at 

a time, and dumps its egg in a randomly chosen 
nest among the fixed number of available host 
nests;  

 The best nests with high quality of eggs (better 
solution) will be carried over to the next 
generation;  

 The number of available host nests is fixed, and 
the egg laid by a cuckoo is discovered by the 
host bird with a probability of pa ϵ [0, 1]. In this 
case, the host bird can either throw the egg away 
or abandon the nest so as to build a completely 
new nest in a new location.  

The later assumption can be approximated by the 
fraction pa of the n nests which are replaced by new 
ones (with new random solutions). 

The CSA contains a population of nests or eggs. 
Each egg in a nest represents a solution and a 
cuckoo egg represents a new solution. If the cuckoo 
egg is very similar to the host’s, then this cuckoo 
egg is less likely to be discovered; thus, the fitness 
should be related to the difference in solutions. The 
better new solution (cuckoo) is replaced with a 
solution which is not so good in the nest. In the 
simplest form, each nest has one egg. When 
generating new solutions for )1( tx , say cuckoo i, a 
Lévy flight is performed: 
        ),()1(  sLxx t

i
t

i     (16) 

where 
   0  ,

12/sin)(
),( 01




  ss
s

sL 


     (17)  
In equation (16), the term L(s, λ) determines the 
characteristic scale and  α > 0 denotes a scaling 
factor of  the step size s, which should be related to 

the scales of the problem of interest. The 
characteristic scale L depends on the problem to be 
solved. For instance, the α=O(L/10) is suitable 
when the dimensionality of the problem is small. In 
contrast, when the dimensionality of the problem is 
large, the α=O(L/100) is more appropriate. 

Based on these three rules, the basic steps of the 
CSA can be summarized as the pseudo-code shown 
in Figure 1. 
 

Objective function T
dxxxxf ),,( ),( 1    

Initial a population of n host nests xi (i=1, 2, …, n); 
while (t < MaxGeneration) or (stop criterion); 
      Get a cuckoo (say i) randomly by Lévy flights; 
      Evaluate its quality/fitness Fi; 
      Choose a nest among n (say j) randomly; 
      if (Fi > Fj); 
          Replace j by the new solution; 
      end 
      Abandon a fraction (pa) of worse bests; 
          [and build new ones at new location via Lévy 
flights]; 
      Keep the best solutions (or nests with quality 
solutions); 
      Rank the solutions and find the current best; 
end while 
Postprocess results and visualization; 
 

Figure 1: Pseudo-code of CSA [28] 
 
4. MODIFIED CUCKOO SEARCH 

ALGORITHM  
 

Given enough computation, the CSA will always 
find the optimum solution, but as the search relies 
entirely on random walks, a fast convergence 
cannot be guaranteed. Presented here, two 
modifications to the method are made with the aim 
of increasing the convergence rate, thus making the 
method more practical for a wide range of 
application but without losing the attractive features 
of the original method. 

The first modification is made to the Lévy flight 
step size α. In CSA, the value of α is 1 and is 
constant, whereas in MCSA if the number of 
generations increase the value of α is reduced. In 
the MCSA, a portion of the eggs with the best 
fitness (quality) are put into a group of top eggs 
[29].  Initially, the value of Lévy flight step size A = 
1 was selected and, at each generation, a new value 
of Lévy flight step size is calculated by using α = 
A/√G, where G is the generation number. This 
exploratory search is carried out only on the 
fraction of nests to be abandoned. The second 
modification is to add information exchange 
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between the eggs in an attempt to speed up 
convergence to a minimum. In the CSA, there is no 
information exchange between individuals and, 
essentially, the searches are performed 
independently. In the MCSA, a fraction of the eggs 
with the best fitness are put into a group of top 
eggs. For each of the top eggs, a second egg in this 
group is picked at random and a new egg is then 
generated on the line connected these two top eggs.  

The distance along line at which the new egg is 
located and calculated using the inverse of the 
golden ratio φ=(1+√5)/2, such that it is closer to the 
egg with the best fitness. In the case that both eggs 
have the same fitness, the new egg is generated at 
the midpoint. Whilst developing the method a 
random fraction was used in the place of the golden 
ration, it was found that the golden ratio showed 
significantly greater performance than a random 
fraction. There is a possibility that, in this step, the 
same egg is picked twice. In this case, a local Lévy 
flight search is performed from the randomly 
picked nest with step size α = A/G2. There are two 
parameters, the fraction of nests to be abandoned 
and the fraction of nests to make up the top nests, 
which need to be adjusted in the MCSA [29]. 

Computational steps for MCSA can be 
summarized as the pseudo-code shown bellows: 
Step 1: Initialize the population of cuckoo with 

eggs. 
Step  2:  Calculate the fitness of function Fi= f (xi), 

i=1, 2, ..., n, for each generation until the 
number of objective evaluation is less 
than the maximum number of evaluation.  

Step 3: Arrange all the fitness function values in 
the order of their fitness.  

Step 4: After the evaluation, calculate the number 
of nests to be abandoned.  

Step 5: Calculate the Lévy flight step size by using 
α = A/√G. Generate a new egg by 
performing the Lévy flight from a 
randomly selected position of an egg. If 
the generated new egg is better than the 
other randomly selected egg than this egg 
is moved to new position. 

Step 6: The random search of Lévy flight is 
controlled by multiplying it with α and 
now α = A/G2 is to explore the 
abandoned nests. 

Step 7: The new generated egg is randomly 
chosen. The egg having the best fitness 
are grouped in one and from these a 
second egg is randomly taken and a new 
egg is generated along the distance which 
is calculated using, 

            /ji xxdx                     (18) 

             The distance is such calculated that the 
nest is moved towards the worst to the 
best position of an egg. 

Step 8: The best nest is being selected as the best 
objective value so far. 

 
5. SIMULATION RESULTS 

 
In order to validate the feasibility and 

effectiveness of the proposed method, the algorithm 
was tested on the standard IEEE 30-bus and IEEE 
57-bus test systems. The proposed algorithm is 
implemented on MATLAB R2016a using a 
Pentium IV PC, 3.6 GHz Processor and 4 GB 
RAM. The MCSA parameters used for the 
simulation are as follow: the population size (Np), 
maximum number of iterations, and the value of 
probability pa have been selected 40, 100, and 0.7, 
respectively. 
 
5.1 IEEE 30-Bus Test System 

The proposed MCSA technique has been tested 
on the standard IEEE 30-bus test system is shown 
in Figure 2. The system consists of 41 transmission 
lines, 6 generating unit and 4 tap-changing 
transformers. The complete system data is given in 
[30, 31]. The upper and lower active power 
generating limits and the fuel cost coefficients of all 
generators of the standard IEEE 30-bus test system 
are presented in Table 1.  The voltage magnitude 
limits are between 0.95 and 1.05 pu for all load 
buses, while it is between 0.95 and 1.1 pu for all 
generator buses. Tap setting of all transformer taps 
are between 0.9 and 1.1 pu. The total system 
demand was chosen 283.4 MW.  

Optimal values of control variables are given in 
Table 2. The total fuel cost obtained by proposed 
technique is 800.3856 $/h. Figure 3 show the cost 
convergence characteristic of MCSA for IEEE 57-
bus test system. Table 3 shows a comparison 
between the results of fuel cost and power losses 
obtained from the proposed approach and those 
reported in the literature. The comparison is 
performed with the same control variable limits, 
initial conditions, and other system data. It is clear 
from the Table 3 that the proposed MCSA 
technique outperforms TS, TLBO, BBO, ABC, and 
GA techniques. 
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Table 1: Generator data and fuel cost coefficients 

Bus 
min

GiP  

(MW) 

max
GiP  

(MW) 

ai 
($/h) 

bi 
($/MW.h) 

ci 
($/MW2.h) 

1 50 200 0.00 2.00 0.00375 
2 20 80 0.00 1.75 0.01750 
5 15 50 0.00 1.00 0.06250 
8 10 35 0.00 3.25 0.00834 

11 10 30 0.00 3.00 0.02500 
13 12 40 0.00 3.00 0.02500 

 
 
 

 
 
 
 

Figure 2: Single Line Diagram of IEEE 30-Bus Test System 
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Table 2: Optimal Values of Control Variables 

Variables 
Limit Result 

(Best solution) Lower Upper 
PG1 (MW) 
PG2 (MW) 
PG5 (MW) 
PG8 (MW) 
PG11 (MW) 
PG13 (MW) 
VG1 (pu) 
VG2 (pu) 
VG5 (pu) 
VG8 (pu) 
VG11 (pu) 
VG13 (pu) 
T11 
T12 

T15 
T36 

50 
20 
15 
10 
10 
12 

0.95 
0.95 
0.95 
0.95 
0.95 
0.95 
0.90 
0.90 
0.90 
0.90 

200 
80 
50 
35 
30 
40 

1.10 
1.10 
1.10 
1.10 
1.10 
1.10 
1.10 
1.10 
1.10 
1.10 

  177.2375 
   48.8705 
   21.7325 
   19.5596 
   12.7538 
   12.2368 

1.0999 
    1.0848 
    1.0555 
    1.0651 
    1.0002 
    1.0459 

0.9745 
    1.0585 
    1.0999 
    1.0212 

Fuel cost ($/h) 
Ploss (MW) 

800.3856 
8.9910 

 

 

 

 

 

Figure 3: Cost Convergence Characteristics for IEEE 30-Bus Test System  
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Table 3: Results of minimum fuel cost for IEEE 30-bus system 

Variables TS [5] TLBO [19] BBO [22] ABC [22] GA [22] MCSA 
PG1  (MW) 
PG2  (MW) 
PG5  (MW) 
PG8  (MW) 
PG11 (MW) 
PG13 (MW) 

176.04 
48.75 
21.56 
22.05 
12.44 
12.00 

176.94 
49.02 
21.53 
21.81 
12.20 
11.41 

171.9231 
48.8394 
21.4391 
21.7629 
12.1831 
16.5588 

180.5218 
48.7845 
21.2598 
18.6469 
11.8145 
12.1011 

177.28 
48.817 
21.529 
21.81 
11.325 
12.087 

177.2375 
 48.8705 
 21.7325 
 19.5596 
 12.7538 
 12.2368 

Fuel cost ($/h) 802.29 802.45 802.717 802.1649 802.0012 800.3856 
Power loss (MW) - 9.525 9.3064 9.7286 9.4563 8.9910 

 

 

 
 

Figure 4: Single Line Diagram of IEEE 57-Bus Test System 
 
5.2 IEEE 57-Bus Test System 

To evaluate the efectiveness and efficiency of the 
proposed MCSA approach in solving larger power 
system, a standard IEEE 57-bus test system is 
considered as shown in Figure 4. The standard test 
system consist of 80 transmission lines, seven 

gnerators at the buses 1, 2, 3, 6, 8, 9, and 12, and 15 
branches under load tap setting transformer 
branches. The shunt reactive power sources are 
considered at buses 18, 25, and 53. The total load 
demand of system is 1250.8 MW and 336.4 
MVAR. The bus data and the line data are taken 
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from [30, 31]. The minimum and maximum active 
power generating limits and the fuel cost 
coefficients of all generators of the standard IEEE 
57-bus test system are presented in Table 4. The 
maximum and minimum values for voltages of all 
gnerator buses and tap setting transformer control 
variables are considered to be 1.1-0.9 in p.u. The 
maximum and minimum values of shunt reactive 
power sources are 0.0 and 0.3 in p.u. The maximum 
and minimum values for voltages of all load buses 
are 1.06 and 0.94 in p.u, respectively. 

Best control variables settings are given in Table 
5. The total fuel cost obtained by proposed 

technique is 41835.9919 $/h and total active power 
loss is 18.6180 MW. Table 6 shows a comparison 
between the results of fuel cost obtained from the 
proposed approach and those reported in the 
literature. The comparison is performed with the 
same control variable limits, initial conditions, and 
other system data. It is clear from the Table 6 that 
the proposed MCSA technique outperforms 
Shuffled Frog Leaping Algorithm (SFLA) and Grey 
Wolf Optimizer (GWO) techniques. Figure 5 show 
the cost convergence characteristic of MCSA for 
IEEE 57-bus test system. 

 
 

Table 4: Generator Data and Fuel Cost Coefficients 

Bus 
min

GiP  

(MW) 

max
GiP  

(MW) 

ai 
($/h) 

bi 
($/MWh) 

ci 
($/MW2h) 

1 0 575.88 0.00 20 0.07758 
2 0 100 0.00 40 0.01000 
3 0 140 0.00 20 0.25000 
6 0 100 0.00 40 0.01000 
8 0 550 0.00 20 0.022222 
9 0 100 0.00 40 0.01000 

12 0 410 0.00 20 0.032258 
 

Table 5: Best Control Variables Settings for IEEE57-Bus Test System 

Control variables Best result Control variables Best result 
PG1  (MW) 
PG2  (MW) 
PG3  (MW) 
PG6  (MW) 
PG8  (MW) 
PG9  (MW) 
PG12 (MW) 
VG1  (pu) 
VG2  (pu) 
VG3  (pu) 
VG6  (pu) 
VG8  (pu) 
VG9  (pu) 
VG12 (pu) 
T4-18 (pu) 
T4-18 (pu) 
T21-20 (pu) 

144.1184 
91.1478 
45.0011 
75.9760 
455.2431 
93.7208 
364.2109 
1.0753 
1.0669 
1.0640 
1.0688 
1.0897 
1.0524 
1.0628 
0.9958 
1.0020 
1.0980 

T24-25 (pu) 
T24-25 (pu) 
T24-26 (pu) 
T7-29  (pu) 
T34-32 (pu) 
T11-41 (pu) 
T11-43 (pu) 
T15-45 (pu) 
T14-46 (pu) 
T10-51 (pu) 
T13-49 (pu) 
T9-55 (pu) 
T40-56 (pu) 
T39-57 (pu) 
Qc18 (pu) 
Qc25 (pu) 
Qc53 (pu) 

1.0988 
0.9077 
0.9137 
1.0088 
0.9596 
1.0531 
0.9540 
0.9955 
1.0237 
1.0046 
0.9779 
1.0727 
0.9156 
0.9801 
0.0930 
0.1886 
0.1334 

Fuel cost ($/h) = 41835.9919; Ploss (MW) = 18.6180 
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Figure 5: Cost Convergence Characteristics for IEEE 57-Bus Test System 

Table 6: Results of Minimum Fuel Cost for IEEE 57-Bus System 

Variables SFLA [32] GWO [32] MCSA 
PG1  (MW) 
PG2  (MW) 
PG3  (MW) 
PG6  (MW) 
PG8  (MW) 
PG9  (MW) 
PG12 (MW) 

144.856 
93.0378 
45.209 

68.2624 
457.0264 
95.8565 

365.9573 

145.42 
95.66 
45.02 
67.57 
454.28 
94.11 
367.95 

144.1184 
91.1478 
45.0011 
75.9760 

455.2431 
93.7208 

364.2109 
Fuel cost ($/h) 41872.9 41873.188 41835.9919 

 
 
 
6. CONCLUSION 

In this paper, an application of MCSA method 
for OPF problem is employed to get faster and 
better optimization performance. The problem of 
the present work is formulated as a nonlinear 
optimization problem with equality and inequality 
constraints of the power system. The feasibility of 
the proposed technique for solving OPF problems is 
demonstrated by using the standard IEEE 30-bus 
and IEEE 57-bus test systems. Results obtained are 
compared to those other well established techniques 
in the literature recently. It is revealed that among 

all the techniques, the proposed method gives better 
results in terms of finding the minimum fuel cost 
for all the test system of the OPF problem. The 
superior performance of the MCSA is due to its 
ability to simultaneously refine a local search, while 
still searching globally. It can do this because of the 
information exchange between the top eggs and the 
exploration globally due to the abandoning of nests 
and search via Lévy flights. On the other hand, the 
MCSA has the advantage of being very simple to 
implement and only having two parameters to 
adjust.   
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