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ABSTRACT 
 

In network science, controlling the elements of complex networks with a few numbers of nodes has recently 
become a significant subject of research and a major challenge. Nowadays, the minimum dominating set 
(MDS) represents an important modern network topic in this context. During the last decade, many methods 
have been developed to solve the MDS problem and generate different solutions for the same graph. In this 
paper, we evaluated the performance of two approaches to solve the minimum dominating set problem: the 
first one is based on the genetic algorithm, called a hybrid of a genetic algorithm (HGA-MDS), and the second 
approach is based on the integer linear programming (ILP-MDS). We proposed three measures to evaluate 
the quality of the obtained solution, which are the domination number, the nodes degree, and the betweenness 
centrality. We utilized a number of publically available benchmark test and real-world graph data sets. The 
experimental results have shown that the ILP-MDS outperforms HGA-MDS in calculating the domination 
number, the optimal solution, and in handling the big data graphs. The results also showed the close 
performance of two methods in calculating the average of both nodes degree and betweenness centrality for 
the obtained best dominating set. 

Keywords: Minimum dominating set; Domination number; Genetic algorithm; Integer linear programming; 
Betweenness centrality; Nodes degree. 

 
1. INTRODUCTION  

The topic of controlling network elements 
with a few numbers of nodes has recently become a 
significant research field [1, 2]. Moreover, it 
represents an attractive topic in many applications 
that depend on the network representation of their 
components, which vary between the field of 
wireless networks, social networks, biological 
networks, and the growth of these areas [3-5]. 
Minimum dominating set (MDS) represents a small-
optimized subset of graph nodes, such that each 
other node must be adjacent to at least one of them 
[6]. MDS had recently gained much attention and 
application in many domains [7]. However, 
computing the MDS is NP–hard problem that cannot 

be solved in polynomial time [6]. To obtain the 
optimal or even nearer to the optimal solutions for 
the MDS problem, a wide variety of techniques have 
been developed. In this context, Meta-heuristics 
methods [8, 9] and integer linear programming 
methods (ILP) [10, 11] represent the most popular 
methods and they have given valuable solutions.  

Meta-heuristics are optimization methods 
that orchestrate an interaction between local 
improvement procedures and higher-level strategies 
to create a process capable of escaping from local 
optima and performing a robust search of a solution 
space [12]. Conceptually, various meta-heuristic 
algorithms, which are derived from the behavior of 
biological and physical systems in nature, have been 
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proposed as powerful methods for the MDS problem 
and they have given valuable solutions [13-16]. The 
efficiency of existing meta-heuristic algorithms are 
still not satisfactory, especially for hard and large-
scaled instances. Among those methods, the genetic 
algorithm (GA) is one of the best methods developed 
to solve the MDS problem [13].  

The GA is a stochastic search method that 
is inspired by natural biological evolution to 
generate useful solutions to optimization and search 
problems [17]. Nowadays, GA is considered to be 
the most widely known and applicable type of meta-
heuristics algorithm, and it is a population-based 
search methodology [9]. The GA is widely used to 
solve real-world problems by representing the 
problem using GA, design the fitness function that 
controls the quality of the solution, and tuning the 
required parameters including population structure, 
population size, a sequence of genetic operators, the 
operator's parameters, and termination conditions 
[18]. Although the GA has shown successful 
performance in solving many combinatorial 
searches, the resulting solution still needs to be 
evaluated for improvement. Actually, developing a 
measure for evaluating search algorithms is difficult 
without distinctly defined evaluation aims and 
related certain criteria [12]. 

Hedar and Ismail in [13] proposed a hybrid 
of a genetic algorithm and local search for MDS with 
a specific fitness function. This algorithm is called a 
hybrid genetic algorithm for the MDS problem 
(HGA-MDS). Based on the obtained results from 
wide range of experiments, the proposed algorithm 
was successful and promising. However, this 
algorithm has yet to be implemented with large and 
real data and therefore, needs the real evaluation of 
its performance and quality of the solution. 
Furthermore, as a mathematical optimization 
approach, integer linear programming (ILP) is a 
highly feasible way of finding the solution of many 
problems in reality [19, 20]. Specifically, Nacher 
and Akutsu in [10]proposed an integer linear 
programming representation (ILP-based) model to 
determine an optimal solution for the MDS problem. 
Practically, this ILP-Based model was used to find 
driver sets and analysis big real word data networks 
[21-23]. 

Several previous studies have emphasized the 
importance of nodes’ degree and centrality in 
playing important roles in network architecture [24, 
25]. Moreover, several studies confirmed that the 
node degree and betweenness are important. For 
example, the network properties of biologically 
central genes exhibit some topological centrality 
compared to the rest of proteins in the consideration 
network and high-betweenness preferential in 
detecting biological central genes [22, 26, 27]. Based 
on the literature, we introduced three quality 
measures: domination number, nodes degree, and 
nodes centrality test for evaluating the quality of the 
generating solutions using the HGA-MDS and ILP-
MDS methods.  

This paper is organized as follows. In the 
next section, we briefly presented the MDS problem 
as preliminaries needed throughout the paper. In 
addition, we highlighted the HGA-MDS and ILP-
MDS methods. Section 3 describes the three 
measures to evaluate the performance of HGA-MDS 
and ILP-MDS methods. In Section, 4 we present the 
conducted experimental setup, while the results and 
discussion are presented in Section 5. Finally, the 
conclusion makes up Section 6. 

2. PRELIMINARIES  

2.1 Domination in Graphs 
2.1.1 Graph representation 

A graph is a mathematical structure that is 
used to model pairwise relations between objects [1]. 

 

 

Figure 1: The example of graph. The circles represent 
the nodes (15) and the lines represent the edges (15). 
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It is a vital data structure to represent and analyze the 
real applications of networks in certain areas such as 
data mining, natural language processing, and 
information retrieval [2, 3]. Ordinarily, a graph can 
be mostly denoted by a pair G = (V, E) that is made 
up of vertices (also called nodes or points) which 
are denoted by a set of  V and connected by  set of 
edges (also called links or lines) that are denoted by 
set of E. Figure 1 shows a simple example of graph 
in which circles represent the nodes (15) and lines 
represent the edges (15).  
As a complete description, usually, the graph can be 
represented by the list of links between nodes. For 
example, the network in toy example of Figure 1 can 
be described by a list of ordered pairs like 
this {(1,2), (2,3), (2,9), … }. However, for 
mathematical representation, it is confidence to use 
the adjacency matrix to represent the network. The 
adjacency matrix 𝐴(𝑛 × 𝑛) of undirected graph 𝐺 =

(𝑉, 𝐸) is a matrix with rows and columns indexed by 
𝑉.  

Figure 2 shows the adjacency matrix that 
represents the network example in Figure 1 in simple 
form in which, 𝐴௜௝ = 1 if node 𝑖 is connected to the 

node 𝑗 in the given graph, and 𝐴௜௝ = 0 if the node 𝑖 

is not connected to the node 𝑗 in the given graph. 

 

Figure 2: The adjacency matrix representation for 
example graph in Figure 1. 

2.1.2 Graph domination 
The concept of domination in graphs is a 

rapidly developing area of research in graph theory. 
The concept of domination has existed for a long 
time and early discussions on the topic can be found 
in the works of Ore [28] and Berge [5]. Currently, 
domination is considered to be one of the 
fundamental concepts in graph theory and its various 
applications to ad hoc networks, biological 
networks, distributed computing, social networks, 

and web graphs [6, 7, 11]. This partly explains the 
increased interest. Such applications usually aim to 
select a subset of nodes that will provide some 
definite service such that every node in the network 
is close to some node in the subset. Hence, the MDS 
covers all the targeted graph nodes. 

2.2 The Minimum Dominating Set Problem 
An undirected graph 𝐺 = (𝑉, 𝐸) consists of 

a set 𝑉 of vertices and a set 𝐸 of edges. A dominating 
set is a subset of vertices 𝐷 ⊆ 𝑉 such that for all 𝑢 ∈

𝑉 − 𝐷, there exist a node 𝑣 ∈ 𝐷, for which 𝑢𝑣 ∈ 𝐸 
(we say that 𝐷 dominates 𝑉). This means that each 
vertex is either a member of the dominating set or it 
is adjacent to some member of the dominating set 
(see Figure 1 black nodes). The MDS problem is that 
of finding a dominating set of minimum cardinality 
in a graph. The size of a MDS in a graph 𝐺 is called 
the domination number of 𝐺 and is denoted by 𝛾(𝐺). 
The MDS problem is a fundamental problem in 
algorithmic graph theory. This is one of the central 
problems of combinatorial optimization, classified 
as NP–hard problem [11, 29]. A wide range of 
methods have been used to acquire the optimal, or 
even near the optimal solutions for the MDS 
problem like meta-heuristics methods [12, 13]. 

2.3 Genetic Algorithm 
Genetic algorithms were invented by 

Holland in [30], early 1975, as a search heuristic that 
mimics the process of natural evolution. This 
heuristic is routinely used to generate useful 
solutions to optimization and search problems. It 
belongs to the larger class of evolutionary 
algorithms, which generates a solution to 
optimization problems using techniques inspired by 
natural evolution such as inheritance, selection, 
crossover, and mutation.  In other words, the GA is 
a procedure that tries to mimic the genetic evolution 
of a species. Specifically, GA simulates the 
biological processes that allow the consecutive 
generations in a population to adapt to their 
environment. The adaptation process is mainly 
applied through genetic inheritance from parents to 
children and through survival of the fittest.  

GAs were limitedly applied until their 
multipurpose presentation of Goldberg [17] in 
search, optimization, design, and machine learning 
areas. Nowadays, GAs are considered to be the most 
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widely known and applicable type of meta-
heuristics, and it is a population-based search 
methodology [31]. The GA have shown successful 
performance in solving many combinatorial search 
problems as MDS problem on graph [13], but the 
resulting solution still needs to be evaluated for 
improvement. 

2.4 Hybrid Genetic Algorithm for MDS 
In [13] a hybrid algorithm based on a 

genetic algorithm in addition to local search 
strategies for the MDS problem (HGA-MDS) was 
developed. This algorithm uses a 0 − 1 variable 
representation of solutions in searching for the MDS, 
and it invokes a new fitness function to measure the 
solution qualities. New fitness function and 
intensification elements have been set within HGA-
MDS to achieve better performance and fit the 
problem. Based on the obtained results from wide 
range of experiments, the proposed algorithm was 
successful and promising.  

2.5 ILP-Based MDS Model 
As a mathematical optimization program, 

integer linear programming (ILP), where some or all 
the variables are bounded to be integers, is a highly 
feasible way of finding the solution of many 
problems in reality. In addition, constraints and 
objective function are linear, in case of 0 − 1 
variable representation it is called the binary integer 
linear programming problem [19]. ILP is used to 
represent and solve the NP-Complete problems [20]. 
To solve the MDS problem, Nacher et.al in [10] 
introduced the following integer linear programming 
formulation: 

objective ∶ min ෍ 𝑥௝

௡

௝ୀଵ

subject to. (1)

෍ 𝐴௜௝𝑥௝

௡

௝ୀଵ

≥ 1 𝑖 = 1,2, … , 𝑛  

𝑥௝ ∈ {0,1}

 

The network graph can be described by the 
adjacency matrix 𝐴(𝑛 × 𝑛), as Figure 2, where 𝑛 is 
the number of nodes in the given network, 𝐴௜௝ = 1 if 

the node 𝑖 interacts with the node 𝑗 or 𝑖 = 𝑗, and 
𝐴௜௝ = 0 otherwise. Where 𝑛 represents the number 

of nodes in the targeted graph. The solution of the 

problem in Equation (1) is the binary vector 𝑥, where 
𝑥௜ = 1 if node 𝑖 belongs to the generated MDS and 
𝑥௜ = 0 otherwise. This ILP formula can be applied 
to both directed and undirected networks. The 
domination number 𝛾(𝐺) of a network 𝐺 is the 
number of nodes in an MDS. After obtaining an 
MDS by solving problem in Equation (1) we can 
calculate the domination number as follows: 

𝛾(𝐺)  = ෍ 𝑥௜                     (2)

௜∈௏

 

The ILP-based method to solve the MDS problem is 
called shortly ILP-MDS. 

3. QUALITY MEASURES 

In this section, we review three famous 
measures that are used to reflect the quality of 
resulted minimum dominating sets. 

3.1 Domination Number Measure 
The domination number 𝛾(𝐺), in Equation 

(2), measures the size |𝐷| of the resulted minimum 
dominating set 𝐷 for the graph under consideration: 

3.2 Nodes Degree Measure 
Degree centrality is a simple measure that 

counts how many neighbors a node has. In other 
words, Degree centrality of a node 𝑣௜ is the number 
of interacting partners of 𝑣௜ and computed as: 

𝑑𝑒𝑔 (𝑣௜) = ෌ 𝑎௜௝
௡

௝ୀଵ,௜ஷ௝
. 

3.3 Betweenness Centrality Measure 
Centrality defines how important a node is 

within a network. According to [22, 24, 25], the 
betweenness centrality is a global measure of 
centrality of the vertex 𝑣 in a graph 𝐺 =  (𝑉, 𝐸) 
which indicating an interactions appearance in 
shortest paths through the whole network. The 
betweenness centrality of a node 𝑢 can be calculated 
as following: 

𝐵஼(𝑢) = ∑ 𝜎௜௝(𝑢)/௜ஷ௝ஷ௨∈௏ 𝜎௜௝ ,  

where 𝜎௜௝ means the number of shortest paths 

between node 𝑖 and 𝑗, and 𝜎௜௝(𝑢) is the number of 

shortest paths between node 𝑖 and 𝑗 running through 
the node 𝑢.  

4. NUMERICAL EXPERIMENTS 
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The formulation of the MDS problem 
includes the initialization for the matrix that 
represents the constraints and two vectors for the 
objective function and the set of variables. We 
implemented the HGA-MDS method using Matlab 
programming environment (Mathwork Inc.). For 
implementing the ILP-based model in Equation (1), 
we utilized both MOSEK and Guropi optimization 
solvers (academic licenses) with Matlab. Moreover, 
all experiments in this section were implemented on 
a system with processor Intel(R) Core (MT) i5 2.53 
GHz and 4.0 GB RAM. To compare the performance 

of the HGA-MDS method against the ILP-MDS 
method by the three quality evaluation measures, we 
used several test graphs from the literature [13]. 

The HGA-MDS was run ten times on each 
instance in the first test graphs in Subsection 4.1.1, 
and twenty times on each instance in the second test 
graphs in Subsection 4.1.2. Several numerical results 
have been reported in this section. All parameters 
used in HGA-MDS with their assigned values are 
shown in Table 1. 

 

Table 1.  Parameter configuration of HGA-MDS 

Parameter Definition Value 

𝑃ୗ୧୸ୣ Size of the initial population. 40 

𝑃௖ Crossover probability. 0.8 

𝑃௠ Mutation probability. 0.01 

𝜂௠௜௡ Min expected values of the selection operator. 0.9 

𝜂௠௔௫ Max expected values of the selection operator. 1.1 

𝑛𝑆𝑡𝑒𝑝 Number of nodes used in the local search.  2 

𝐷𝑜𝑚𝑖𝑆𝑒𝑡 Max number of the best dominating sets used to update DS. 10 

𝐶𝑜𝑟𝑒𝑁𝑜 Prespecified number of best dominating sets used to compute 𝑥஼௢௥௘  3 

𝑁௚ Max number of generations 100 

 
4.1 Benchmark Test Graphs  

We considered two different groups of test 
graphs of the MDS problem provided in the 
literature, such as [13, 32]. The first group of test 
graphs contains graphs with 400 to 800 nodes, while 
the second group contains graphs with 80 to 400 
nodes.  

4.1.1 First test graphs 
We adopted a referenced first test graph 

construction procedure explained in [13, 32]. The 
first set of test graphs contains 18 different instances 
of the MDS problem created from the two graphs 
𝐺௣,ௗ

ସ଴଴ and 𝐺௣,ௗ
଼଴଴, where 𝑝 is the density of a graph is 

defined to be the number of edges in the graph 
divided by the number of edges of the complete 
graph of the same size and 𝑑 is the domination 
number 𝛾(𝐺), see Table 2.   

4.1.2 Second test graphs 
Following the generation instructions 

shown in [13] we generated the second set of test 
graphs that contains 32 instances of the MDS 
problem created from the six graphs  𝐺௥

ଵ − 𝐺௥
଺, with 

different values of the range 𝑟. More details can be 
seen in Table 3. 

4.2 Dense Random Graphs Dataset 

We generated typical dense connected 
random graphs class of Erdoes-Renyi random graphs 
[33]. These graphs have been generated using the 
network workbench tool, the official version [34]. 
All details of the generated graphs are shown in 
Table 4, where 𝑛 represents the number of nodes, 𝑝 
represents the linking probability, and |𝐸| represents 
the number of edges in the graph. 
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Table 2. First test problems 

Test Graphs No. of nodes Density (𝑝) Domination No. (𝑑) 
No. of 

instances 

𝐺଴.ଵ,ௗ
ସ଴଴  400 0.1 8, 11, 14, 23 4 

𝐺଴.ଷ,ௗ
ସ଴଴  400 0.3 3, 5, 8, 11 4 

𝐺଴.ହ,ௗ
ସ଴଴  400 0.5 3, 8, 11 3 

𝐺଴.ଵ,ௗ
଼଴଴  800 0.1 11, 14,18 3 

𝐺଴.ଷ,ௗ
଼଴଴  800 0.3 3, 5 2 

𝐺଴.ହ,ௗ
଼଴଴  800 0.5 3, 6 2 

 

Table 3. Second test problems 

Test Graphs No. of nodes Area Range (𝑟) 
No. of 

instances 

𝐺௥
ଵ 400 3000 × 3000 210-240 4 

𝐺௥
ଶ 350 2500 × 2500 200-230 4 

𝐺௥
ଷ 300 2000 × 2000 180-220 5 

𝐺௥
ସ 200 1000 × 1000 100-160 7 

𝐺௥
ହ 100 600 × 600 80-120 5 

𝐺௥
଺ 80 400 × 400 60-120 7 

 

Table 4: The dense random graphs dataset 

Random 
Graphs 

n p |𝐸| 
Min 
𝑑𝑒𝑔 

Max 
𝑑𝑒𝑔 

Avg. 𝑑𝑒𝑔 Density 

RG-1000 1000 0.5 498,176 452 548 497.2 0.9953 
RG-2000 2000 0.5 1,997,242 927 1,080 998.6210 1.0001 
RG-3000 3000 0.1 901,214 237 361 300.4 0.2003 

 
 
5. RESULTS AND DISCUSSIONS 

Here, we analyzed the performance of 
HGA-MDS and ILP-MD for the MDS problem. We 
used three measures to evaluate the performance of 
the two methods. These measures are the domination 
number, the nodes degree, and the betweenness 
centrality. The best solution (Best) measure gives the 
minimum number of nodes in the best solution found 
in all independent runs (around 20 times). This 
represents the best domination number of the given 
graph as shown in the result tables. Whereas, 
percentage (Hits) is the measure that gives the 
percentage of the optimal solution found throughout 

the independent runs. Initially, we measured the best 
domination number produced by HGA-MDS 
compared with ILP-MDS.  

Tables 5 and 6 along with their graphical 
representation in Figure 3 show that ILP-MDS 
performs better than HGA-MDS in calculating the 
best domination numbers for the first test graphs 
𝐺௣,ௗ

ସ଴଴ and 𝐺௣,ௗ
଼଴଴. Moreover, we measured the best 

domination number produced by HGA-MDS and 
ILP-MDS. Results in Table 7 and Figure 4 reveal the 
superiority of the ILP-MDSet method compared 
with the HGA-MDS method for all datasets 𝐺௥

ଵ −

𝐺௥
଺.  



Journal of Theoretical and Applied Information Technology 
28th February 2021. Vol.99. No 4 

© 2021 Little Lion Scientific 
 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
770 

 

Table 5. Results of running HGA-MDS and ILP-MDS on 𝐺௣,ௗ
ସ଴଴ 

No. of 
Nodes 

No. of Edges 𝑃 
Optimal 

(𝑑) 
HGA-MDS LIP-MDS 

Avg. Hits (%) Hits (%) 
400 8944 0.1 8 8 100 100 
400 8278 0.1 11 11.1 90 100 
400 10606 0.1 14 14.4 60 100 
400 16716 0.1 23 24.2 40 100 
400 39394 0.3 3 3 100 100 
400 33808 0.3 5 5.3 70 100 
400 15600 0.3 8 8.1 90 100 
400 8738 0.3 11 11 100 100 
400 59062 0.5 3 3.1 90 100 
400 6158 0.5 8 8 100 100 
400 8338 0.5 11 11 100 100 

 

Table 6. Results of running HGA-MDS and ILP-MDS on 𝐺௣,ௗ
଼଴଴ 

No. of 
Nodes 

No. of Edges 𝑃 
Optimal 

(𝑑) 
HGA-MDS LIP-MDS 

Avg. Hits (%) Hits (%) 
800 31426 0.1 11 11.3  70 100 
800 21058 0.1 14 14 100 100 
800 27262 0.1 22 22.5 50 100 
800 161478 0.3 3 7.9 60 100 
800 150730 0.3 5 6.8 50 100 
800 244526 0.5 3 4.4 50 100 
800 203442 0.5 6 6.5 80 100 

 

Table 7. Results of running HGA-MDS and ILP-MDS on graphs 𝐺௥
ଵ − 𝐺௥

଺, where 𝑟 is the range. 

Test 
Graphs 

No. of 
Nodes 

Domination number 

 
Test 

Graphs 
No. of 
Nodes 

Domination number 
ILP-
MDS 

HGA-
MDS 

ILP-
MDS 

HGA-
MDS 

𝐺ଶଵ଴
ଵ  400 67 79  𝐺ଶ଴଴

ଶ  350 54 67 
𝐺ଶଶ଴

ଵ  400 62 77  𝐺ଶଵ଴
ଶ  350 47 63 

𝐺ଶଷ଴
ଵ  400 57 73  𝐺ଶଶ଴

ଶ  350 43 55 
𝐺ଶସ଴

ଵ  400 53 70  𝐺ଶଷ଴
ଶ  350 41 51 

𝐺ଵ଼଴
ଷ  300 42 54  𝐺଼଴

ହ  100 18 19 
𝐺ଵଽ଴

ଷ  300 39 48  𝐺ଽ଴
ହ  100 15 16 

𝐺ଶ଴଴
ଷ  300 35 41  𝐺ଵ଴଴

ହ  100 13 14 
𝐺ଶଵ଴

ଷ  300 33 40  𝐺ଵଵ଴
ହ  100 11 11 

𝐺ଶଶ଴
ଷ  300 31 36  𝐺ଵଶ଴

ହ  100 9 10 
𝐺ଵ଴଴

ସ  200 35 39  𝐺଺଴
଺  80 15 15 

𝐺ଵଵ଴
ସ  200 30 35  𝐺଻଴

଺  80 12 13 
𝐺ଵଶ଴

ସ  200 23 27  𝐺଼଴
଺  80 9 10 

𝐺ଵଷ଴
ସ  200 22 26  𝐺ଽ଴

଺  80 8 8 
𝐺ଵସ଴

ସ  200 20 23  𝐺ଵ଴଴
଺  80 7 7 

𝐺ଵହ଴
ସ  200 17 21  𝐺ଵଵ଴

଺  80 6 6 
𝐺ଵ଺଴

ସ  200 16 20  𝐺ଵଶ଴
଺  80 5 5 
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Figure 3. Percentages of the optimal solution hits of HGA-MDS and ILP-MDS on 𝐺௣,ௗ
ସ଴଴ and 𝐺௣,ௗ

଼଴଴ , with different values 
for the density 𝑝 and domination number 𝑑. 

 
Figure 4. Domination number measure comparisons between HGA-MDS and ILP-MDS on graphs 𝐺௥

ଵ − 𝐺௥
଺, with 

different values for the range 𝑟. 
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Tables 8 and 9 together with Figures 5 and 
6 show the average values of node degrees and 
betweenness centrality measures calculated from the 
MDS obtained by HGA-MDS and ILP-MDS for 
 Gଶଵ଴

ଵ ,  Gଶଶ଴
ଵ , Gଶ଴଴

ଶ , Gଶଵ଴
ଶ , Gଵ଼଴

ଷ ,  Gଵଽ଴
ଷ . For the node 

degree measure, the minimum, average and 
maximum values of the obtained dominating sets are 
presented in Table 8 and Figure 5. Observably, the 
results showed the close performance of the two 
methods in calculating the average of node degrees 
for the obtained best dominating sets. For the 
betweenness centrality measure, the minimum, 
average, and maximum values of the obtained best 
dominating sets are presented in Table 9 and Figure 
6 that shows the close performance of the two 
methods in calculating the average values of the 
betweenness centrality for the obtained dominating 
sets with a relative advantage of ILP-MDS. The 
result reveals that ILP-MDS is superior and provides 
the optimal solution for every instance and shows 
noticeably higher percentages (hits) for all instances 

of the MDS problem. For HGA-MDS, results are not 
guaranteed.  

Additionally, Table 10 reports the 
implementation results of the considered two 
methods on the random graphs that are described in 
Table 4. This class of graphs has a high density. 
Therefore, the ILP solver needs to check all the 
alternatives and don’t give the final result as the 
experiments asserted. However, we found that if we 
interrupt the ILP solver execution, it gives result but 
there is no guarantee of the solution. The results with 
this type of graph also showed a preference for the 
solvers in some cases, where the Guropi was more 
accurate than the MOSEK. These results reveal the 
high performance of the HGA-MDS method for this 
class of random graphs. From this point, it appears 
significant to study different methods for MDS 
problem with different graphs kinds and sizes. 

 

Table 8. Evaluate the performance of HGA-MDS and ILP-MDS by the degree measure. 

Test 
Graphs 

Degree HGA-MDS ILP-MDS 

Min. Avg. Max. 
Deg. 
Min. 

Deg. 
Avg. 

Deg. 
Max. 

Deg. 
Min. 

Deg. 
Avg. 

Deg. 
Max. 

𝐺ଶଵ଴
ଵ  1 7 16 1 6 14 1 6 16 

𝐺ଶଶ଴
ଵ  1 8 16 1 7 13 1 7 16 

𝐺ଶ଴଴
ଶ  2 8 19 2 7 18 3 7 19 

𝐺ଶଵ଴
ଶ  2 8 20 2 8 20 2 8 19 

𝐺ଵ଼଴
ଷ  2 8 15 2 9 15 3 8 15 

𝐺ଵଽ଴
ଷ  2 9 20 2 9 17 2 9 16 

 

Table 9. Evaluate the performance of HGA-MDS and ILP-MDS by the betweenness centrality measure. 

Test 
Graphs 

Betweenness Centrality HGA-MDS ILP-MDS 

Min. Avg. Max. 
Cent. 
Min. 

Cent. 
Avg. 

Cent. 
Max. 

Cent. 
Min. 

Cent. 
Avg. 

Cent. 
Max. 

  𝐺ଶଵ଴
ଵ  0 0.0199 0.4516 0 0.0156 0.4516 0 0.0231 0.2917 

𝐺ଶଶ଴
ଵ  0 0.0251 0.3529 0 0.0242 0.2806 0 0.0291 0.2255 

𝐺ଶ଴଴
ଶ  0 0.0239 0.3272 0 0.0380 0.3201 0 0.0281 0.2796 

𝐺ଶଵ଴
ଶ  0 0.0222 0.5228 0 0.0254 0.2385 0 0.0364 0.3028 

𝐺ଵ଼଴
ଷ  0 0.0312 0.5514 0 0.0397 0.2954 0 0.0415 0.4156 

𝐺ଵଽ଴
ଷ  0 0.0322 0.4285 0 0.0376 0.4172 0 0.0400 0.4172 

 

Table 10: Results of the dense random graphs dataset 

Test Graphs No. of Nodes 𝑝 |𝐸| Density ILP-MDSet HGA-MDS 
RG-1000 1000 0.5 498,176 0.9953 6 6 
RG-2000 2000 0.5 1,997,242 1.0001 8 7 
RG-3000 3000 0.1 901,214 0.2003 47 31 
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Figure 5. Nodes degree measure comparisons between HGA-MDS and ILP-MDS for the graphs 𝐺௥
ଵ, 𝐺௥

ଶ and 𝐺௥
ଷ,with 

different values of the range 𝑟. 

 

 

Figure 6. Betweenness centrality measure comparisons between HGA-MDS and ILP-MDS for the graphs 𝐺௥
ଵ, 𝐺௥

ଶ and 
𝐺௥

ଷ,with different values of the range 𝑟. 

 

6. CONCLUSION 

In this paper, we evaluated the performance 
of two approaches that are used for solving the 
minimum dominating set problem: HGA-MDS and 
ILP-MDS. We used three quality evaluation 
measures to evaluate the quality of the obtained 
solutions. These measures are the domination 
number, the nodes degree, and the betweenness 
centrality. The experimental results on different 
standard benchmark test graphs show the efficiency 
of the two methods in terms of the quality of solution 
to compute and identify MDS. In addition, ILP-MDS 
outperforms HGA-MDS in calculating the 
domination number and the optimal solution. The 
results showed a close performance of the two 
methods in calculating the average of both node 
degrees and betweenness centrality for the obtained 
best dominating sets. However, despite the high 

performance of the GA-based method, there is a 
need to improve it from all the discussed aspects and 
applying on a real world with big data networks. In 
addition, using more domain-specific quality 
measures can help for further analysis. Moreover, we 
highly recommended the ILP-based MDSet model to 
be the measure of domination number performance 
for meta-heuristic-based-MDS methods. We 
observed that ILP-MDSet model faced a problem 
with solution search in the dense graph because of 
the large number of edges (high density) and the 
branch and bound strategy which model uses to 
solve the problem, hence, it needs to improve with 
this type of graph. 
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