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ABSTRACT 
General gradient-based optimization techniques such as the steepest descent method, Newton's method, and 
quasi-Newton method, often fail in globally solving non-convex optimization problems (multi-modal 
functions). The main reason is that once a local solution has been determined, these methods do not know 
how to pass a hill to obtain another better local solution. Therefore, a new gradient type method so-called 
ABCED Steepest Descent Method has been introduced in this paper which does not have the weakness 
been mentioned above. The ABCED SD method is a hybrid from a modified steepest descent method and 
the Artificial Bee Colony (ABC) algorithm. ABCED SD method developed through the ABC framework 
by replacing the exploitation search phase with modified steepest descent method, therefore the global 
optimum solution is obtained by the modified steepest descent algorithm. Reported numerical results 
shown that ABCED SD method able to locate the global optimum solution for the benchmarked general 
global optimization problems and the comparison results with the original Artificial Bee Colony algorithm 
also shown that ABCED SD method able to obtain the global optimum solution with less iterations. 
Besides that, ABCED SD method also does not require any initial point and it will not only determine the 
local minimizer as in the classical steepest descent method, but it manage to determine the global 
minimizer of the general global optimization problems.  
 
Keywords: Multi-Modal Function, Non-Convex Optimization, Steepest Descent Method, Artificial Bee 

Colony Algorithm 
 
1. INTRODUCTION 
 

Mathematicians believe that every daily 
problem that we face can be modeled into a 
mathematical model entirely. In mathematical 
terms, the goal of solving those models in the 
“best” way is called optimization. These might 
mean maximize profit, minimize loss, maximize 
efficiency or minimize the risk in running a 
business; minimize weight or maximize strength 
in designing a bridge and minimize the time or 
fuel use in selecting an aircraft flight plan. 

 

There are several gradient-based 
optimization techniques that have been proposed 
to solve those mathematical models, such as the 
steepest descent method, Newton’s method, and 
the quasi-Newton method. These methods are 
well-performed to determine local solutions or 
once say globally determined the solution when 
solving convex optimization problems, in which 
there have only one local solution and can also 
be called a global solution. 

 
However, most of our daily problems happen 

as non-convex optimization problems, which 
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may contain a multi-local optimum solution. 
Most of the time, the local solution is greatly 
different and meaningless when compared to the 
global one. Therefore, the most important 
objective and challenge in solving these non-
convex optimization problems are how to 
determine the optimum value among all the local 
optimum solutions in the domain or we call it a 
globally optimum solution. By the way, those 
well-performed methods mentioned above 
always lose their efficiency when applied to the 
global minimizer for non-convex problems.  

 
The artificial Bee Colony (ABC) algorithm 

is one of the most recent swarm intelligence-
based algorithm proposed by Dervis Karaboga 
in the year 2005 [8]. It is a biological-inspired 
optimization algorithm. ABC is inspired by the 
foraging behavior of honeybee swarm. The 
process of the swarm of bees searching for a 
food source is the process used to find an 
optimal solution [8].  Exploration and 
exploitation are two important mechanisms in 
ABC. The exploitation process starts when the 
employed bees approach to food sources. After 
determining the nectar amounts of the food 
sources by the employed bees, the onlooker bees 
will go to the highest probability value of the 
source and determine the nectar amount. When 
the source is exhausted, it indicated the end of 
the exploitation process. Meanwhile, the 
exploration process begins when scouts are sent 
to search for new food sources randomly. 
However, there are some insufficiencies 
regarding ABC. ABC perform better during the 
exploration stage but weaker at the exploitation 
stage [2][4][11][13]. 

 
In the ABC algorithm, abandoned food 

source is replaced with a new food source by 
scout bee [9]. This is realized by creating a 
random position. The scout bee will go for a new 
food source. If a position cannot be developed in 
the number of control parameters called as 
“limit”, it is assumed that this food source is 
abandoned. [4] try to overcome this issue by 
introduced the ABC algorithm based on 
information learning. Karaboga and Kaya have 
presented a novel solution generating mechanism 
by utilizing arithmetic crossover and adaptive 
neighborhood radius [10]. Yang et al. 
introducing a single equation unifying multiple 
strategies [12]. In addition, a chaotic strategy is 
employed for parameter adaption to balance the 

proportion of exploration and exploitation in 
different stages.  

 
Goh and his team introduced a Simplexed 

ABC algorithm that improves the accuracy and 
efficiency of the ABC in solving global 
optimization problems. The finding of the lead 
this research to the new direction of the 
investigation. A Nelder-Mead simplex method is 
a derivative-free approach in which the order of 
convergent is much slower compared to the 
gradient-based method. However, the 
enhancement of Simplexed ABC has indicated 
that even with a smaller number of colony 
involvement, its ability to approximate optimum 
solution is much better than the original ABC 
[6]. After that, Goh et al. proposed a ABCED 
Conjugate Gradient Method which hybrid the 
artificial bees colony algorithm with the most 
effective deterministic local optimization 
approaches, the experiment numerical results 
shows that the proposed hybridization method 
able to obtain better global optimization solution 
with less bees colony size and number of cycles 
involved [7].  Therefore, this research has led to 
a new path that will enhance the original ABC 
with Steepest Descent Method [3][5]. 

 
In this paper, we have introduced a method 

so-called ABCED Steepest Descent Method 
(ABCED SD) which its algorithm is a hybrid 
from the modified steepest descent method [5] 
into the Artificial Bees Colony (ABC) algorithm 
for solving general global optimization 
problems. The main idea of the ABCED SD 
method is replacing the exploitation process in 
the original ABC with the modified steepest 
descent. The performance of the exploitation 
process will be improved by the efficiency of the 
steepest descent method. Besides that, via this 
hybridization process, the ability of the steepest 
descent method also improved to able to 
determine the global optimal solution for non-
convex optimization problems. 

 
This paper is organized as follows. In 

Section 2, we define several basic definitions of 
global optimization and the properties of the 
gradient type method which must be understood 
before discussing the development of the 
ABCED SD method in more detail. The 
algorithm of the ABCED SD method has been 
shown in section 3. The numerical results and 
the comparison results which reflect the 
effectiveness of the ABCED SD method in 
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solving general global optimization problems 
have been presented in the following section. 
Finally, the conclusion which ends this paper 
will be presented in Section 5. 

 
2. ABCED STEEPEST DESCENT 

METHOD 
 

The steepest descent method is the simplest 
gradient-based method. The enhancement of the 
gradient-based method begins with this Steepest 
Descent method is to make sure it possible to 
work with another gradient-based method. The 
enhanced steepest descent method so-called 
ABCED Steepest Descent Method (ABCED SD) 
which its algorithms is hybrid from the modified 
steepest descent method [5] into the Simplexed 
ABC algorithm for solving general global 
optimization problems. The main idea of the 
ABCED Steepest Descent method is replacing 
the Nelder-Mead algorithm in Simplexed ABC 
with the modified steepest descent method. The 
exploitation process of the Simplexed ABC will 
be improved by the efficiency of the steepest 
descent method. Besides that, via this 
hybridization process, the ability of the steepest 
descent method also improved to able to 
determine the global optimal solution for non-
convex optimization problems. 

 
The advantages of the steepest descent 

method compared to the Nelder-Mead algorithm 
are the requirement of the number of the initial 
point and the guaranteed descent direction of the 
steepest descent. The Steepest Descent method 
only required one initial point to begin its 
searching algorithm. This requirement has made 
the steepest descent method can be engaged by 
any employed bee for their exploitation 
searching process at their respective food source. 
The steepest descent direction has enabled the 
employed bee to exploit the food source and 
obtain the optimum solution faster than the 
Nelder-Mead algorithm.  

 
Goh has reported that the steepest descent 

method with the Armijo line search [1] showed 
its efficiency in locally solving non-convex 
optimization problems [5]. Therefore, the 
Modified Steepest Descent with Armijo line 
search has been selected to improve in this 
research. The Armijo line search rule [1] is 
described as follows. 

 

Given 0s  , (0,1)  , (0,1)   and 
2max{ , , , }k s s s      

such that 

 ( ) ( )    T
k k k k k k kf x d f x g d

               (1) 

where ( )k k kd g f x    . 

 
Algorithm 2.1 (Steepest descent method with 
Armijo line search) 

Input: Initial point 
0

,nx    Function to be 

minimized : ,nf    and Tolerance .     

1. 0k   

2. 
k k

d f   

3. while  
k

d   do 

4. 2,
k
  0.618,  0.8   

5. while 

 ( ) ( ) T

k k k k k k k
f x d f x g d   

 do 

6. .
k k
    

7. 
1

.
k k k k

x x d

   

8. 1.k k   

9. 
k k

d f   

10. 
k

x  is a minimizer. 

 
 
3. ALGORITHM OF ABCED STEEPEST 

DESCENT METHOD 
 

Initialize the population of solutions
ij

x , i=1, 

2...SB, j= 1, 2...n, trial= 0 is the non-

improvement number of the solution ijx , used 

for abandonment 
Evaluate the population. 
Set Cycle= 1 
Repeat  

{Produce a new food source population 
for employed bees} 
for i=1 to SN do 

Produce a new food source 
i

v  for 

the employed bee of the food 

source ix using Algorithm 2.1 
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Apply a greedy selection process 

between 
i

v , 
i

x and select the better 

one.  

If solution ix  does not improve 

triali= triali + 1, otherwise, triali 
+ 1=0 

end for 
Calculate the probability values pi by 

1

i

i SN

j

j

fit
p

fit





for the solutions  

Where the fitness values  
1

0
1

1 ( ) 0

i

ii

i i

if f
ffit

abs f if f




 






 

 
 
{Produce a new food source population 
for onlooker bees} 
t=0, i=1 
repeat 

if random<pi then 

Produce a new 
i

v food 

source by Algorithm 2.1 
for onlooker bee 
Apply a greedy selection 

process between 
i

v and 

i
x and select the better one 

If solution does not 
improve triali= triali + 1, 
otherwise triali= 0 
t= t+1 

end if 
until (t=SN) 
{Determine scout} 
if max (triali)> limit then 

Replace ix with a new randomly 

produced solution by  

min max min
(0,1)( )j j j j

i
x x rand x x    

end if 
Memorize the best solution achieved so 
far 
cycle= cycle+1 

until (cycle= Maximum Cycle Number) 
 
 
 

4. NUMERICAL RESULTS 
 

The ABCED Steepest Descent algorithm 
discussed in section 3 had been programmed into 
C++ and tested to 21 different kinds of global 
optimization problems. These 21-different kinds 
of global optimization problems are selected 
because they possess different kinds of 
challenges in global optimization problems. The 
list of test problems given in Appendix A and the 
graph of performance in Appendix B.  With the 
assessment of these 21 global optimization 
problems, the enhanced ABCED Steepest 
Descent method will be able to solve any kind of 
global optimization problems after this. 
 

The numerical results reported in Appendix 
A Table 4.1 demonstrated the efficiency of the 
enhanced ABCED Steepest Descent Method in 
solving various types of global optimization 
benchmark problems. From the numerical 
results, it shows that the ability of the original 
Steepest Descent has been improved to 
successfully solving global optimization 
problems. Besides that, the original Steepest 
Descent requires the initial point to start the 
approximation had been overcome with the 
enhancement. The weakness of the original 
steepest descent method often trapped in local 
optimum point unable to move to the global 
solution had been eliminated and successfully 
obtain the global optimum solutions. 
 
4.1 Comparison results of ABCED SD with 

original ABC  
 

The numerical performance of ABCED 
Steepest Descent has been comparing to the 
original ABC in solving 10 selected global 
optimization problems (Yang, 2014). The 
comparison results are presented in the following 
graph of the logarithm of the global solution with 
the number of iterations. The comparison results 
show that the ABCED Steepest Descent post 
better convergent ability than the original ABC. 
In all selected problems, the ABCED Steepest 
Descent method obtained a better global 
optimum solution compare to the original ABC. 
These comparisons result in Figure 4.1 (see 
Appendix B) have been proved the performance 
for the enhanced method in solving global 
optimization problems. From the comparison 
results, ABCED SD method able to obtain global 
solution with less than 10 iterations. The 
convergent rate to the global solutions, ABCED 
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SD shows a drastic improvement compared to 
the original ABC by approaching global 
minimizer much slower than ABCED SD 
method.  
 
5. CONCLUSION AND DISCUSSION 
 

In this paper, the enhancements had 
produced a new gradient-based method called 
ABCED Steepest Descent. The numerical results 
reported in section 4 show that the ability of the 
original local optimizations has been improved 
their ability in globally solving multimodal 
global optimization problems. The results 
indicated that the proposed algorithm is capable 
of obtaining the global optimal solution 
effectively compared to the original ABC 
algorithm except for the Both function. 
However, the convergence ability of the 
proposed algorithm is still better than the 
original ABC algorithm. In summary, the 
proposed algorithm achieved outstanding 
performance by ABCED Steepest Descent 
solved all the various selected global 
optimization problems had verified their ability 
been improved. The performance of the original 
ABC algorithm and selected test function in 
terms of iterations number is presented in 
Appendix B Figure 4.1. These figures show 
that the logarithm of global optimum value and 
the number of iterations. All the considered 
algorithms converged to the optimal solution, 
however overall the original ABC algorithm 
requires a greater number of iterations compared 
to the ABCED Steepest Descent algorithm. The 
numerical results in Figure 4.1 also showed that 
ABCED SD method perform better than the 5 
variants of ABCED Conjugate Gradient 
(Goh,2018B), this also prove that those local 
optimizations that possess the global convergent 
ability like steepest descent method will perform 
better than those local convergent method in 
globally solving those selected multimodal 
global optimization problems. Therefore, this 
improvement can lead be applied to Quasi 
Newton Method which also possess the global 
convergent in solving multimodal global 
optimization problems.  
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 Appendix A 
Table 4.1 Numerical Results of ABCED Steepest Descent Method 

No. Problem Mean of 20 Runs 
1 Griewank(5 variable) 

55

2

1 1

1
( ) 1 cos

4000

i

i

i i

x
f x x

i 

  
  
 

   

4.493174e-003 
 

2 Sphere (5 variable) 
5

2

1

( )
i

i

f x x


     

7.897967e-012 

3 Rosenbrock  
(5 variable) 

4
2 2 2

1

1

( ) 100( ) ( 1)
i i i

i

f x x x x




       

6.683427e-003 
 

4 Rastrigin function (5 variable) 
5

2

1

( ) 50 10 cos(2 )
i i

i

f x x x


      

5.124035 

5 Rastrigin function (2 variable) 
2

2

1

( ) 20 10 cos(2 )
i i

i

f x x x


      

0.04974795 
 

6 Ackley's function  

  

2 2

1 2 1 2

1 2

( , ) 20 exp 0.2 0.5( )

exp 0.5 cos(2 ) cos(2 ) 20

f x x x x

x x e 

   

  

 
   

2.473979e-006 
 

7 Beale's function 
2 2 2

1 2 1 1 2 1 1 2

3 2

1 1 2

( , ) (1.5 ) (2.25 )

(2.625 )

f x x x x x x x x

x x x

     

  
 

2.631804e-005 
 

8 Goldstein–Price function 

   
   

2 2 2

1 2 1 2 1 1 2 1 2 2

2 2 2

1 2 1 1 2 1 2 2

( , ) 1 1 19 14 3 14 6 3

30 2 3 18 32 12 48 36 27

f x x x x x x x x x x

x x x x x x x x

        

      

  
  

 

3.000000 
 

9 Booth's function  

   2 2

1 2 1 2 1 2
( , ) 2 7 2 5f x x x x x x       

1.819610e-011 
 

No. Problem Mean of 20 Runs 
10 Matyas function 

2 2

1 2 1 2 1 2
( , ) 0.26( ) 0.48f x x x x x x    

4.588312e-009 

11 Lévi function N.13 

   
   

22 2

1 2 1 1 2

2 2

2 2

( , ) sin (3 ) 1 1 sin (3 )

1 1 sin (2 )

f x x x x x

x x

 



   

  
 

3.634035e-007 

12 Three-hump camel function 
6

2 4 21

1 2 1 1 1 2 2
( , ) 2 1.05

6

x
f x x x x x x x      

1.376839e-012 

13 Easom function 

         2 2

1 2 1 2 1 2
( , ) cos cos expf x x x x x x        

-1.000000e+00 
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14 Adjiman function 

1

1 2 1 2 2

2

( , ) cos( ) sin( )
1

x
f x x x x

x
 


 

-5.004024 

15 bird function 
   2 2

2 1
1 cos( ) 1 sin( ) 2

1 2 1 2 1 2
( , ) sin( ) cos( ) ( )x xf x x x e x e x x      

-106.7645 
 

16 Bohachevsky 1 Function 
2 2

1 2 1 2 1 2
( , ) 2 0.3cos(3 ) 0.4cos(4 ) 0.7f x x x x x x       

3.087730e-010 

17 Bohachevsky 2 Function 
2 2

1 2 1 2 1 2
( , ) 2 0.3cos(3 ) 0.4cos(4 ) 0.3f x x x x x x       

0.18 

18 Bohachevsky 3 Function 
2 2

1 2 1 2 1 2
( , ) 2 0.3cos(3 4 ) 0.3f x x x x x x       

9.183535e-010 

19 Branin RCOS function 1 
22

1 1

1 2 2 12

5.1 5 1
( , ) 6 10 1 cos( ) 10

4 8

x x
f x x x x

  
      
   

     
 

0.3978874 

20 Branin RCOS function 2 
22

1 1

1 2 2 2

2 2

1 2 1 2

5.1 5
( , ) 6

4

1
10 1 cos( ) cos( ) ln( 1) 10
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Appendix B: The performance of new proposed method 
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Figure 4.1: Comparison ABCED Steepest Descent with Original ABC 


