
Journal of Theoretical and Applied Information Technology
28th February 2021. Vol.99. No 4

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

932

SELECTIVE IMAGE COMPRESSION-ENCRYPTION
ALGORITHM USING ADAPTIVE HUFFMAN CODING AND

AES

1RUSHDI HAMAMREH, 2EMAD TABIB
1Computer Engineering Department, Al-Quds University, Palestine

2Computer Engineering Department, Graduate Studies, Al-Quds University, Palestine

E-mail: 1rushdi@staff.alquds.edu, 2imad.tabib@students.alquds.edu

ABSTRACT

The interest in data transmission is increasing in all types of multimedia such as digital images, text, audio,
and video. Digital images have special characteristics such as data redundancy and strong correlation between
adjacent pixels, that make it difficult for traditional ciphers like IDEA, AES, DES, RSA to deal with real-
time digital image encryption as these ciphers require high computational power, to overcome all these issues
in digital images transmission, and keep the model secure, we have proposed a selective image encryption
algorithm that combines Adaptive Huffman coding (AHC) and Advanced Encryption Algorithm (AES) and
proposed a selective bits model. As we know the digital image is represented by a 2D matrix, and each pixel
in the matrix represented by 8 bits (1-Byte). To begin with, the plain-image matrix is divided into N X N
blocks; where N is a multiple of 4. Then we selected the leftmost bits of the binary representation of the block
pixels, then the selected bits from each byte are re-converted to decimal, the values of the generated block
will be in the range of [0:1], [0:3], [0:7] for 1, 2, 3 bits selections respectively. Then the resulted blocks are
compressed by AHC, then encrypted by AES algorithm. Also, we calculated the mean value of each block
from the non-selected bits above. Both the encrypted selected bits matrix and the encrypted mean vector will
be transmitted. The experimental result shows that the proposed algorithm provides a competitive
compression ratio, high image quality (SSIM), high PSNR, in addition to the high-security; we measured the
pixel sensitivity of images (NPCR and UACI) and got values close to the optimal values.

Keywords: Image compression, lossy image compression, Selective Image Compression and Encryption,
Adaptive Huffman coding, Advanced Encryption Algorithm,

1. INTRODUCTION

Today, the Internet is used to transfer large
amounts of important and valuable data. Due to the
significant increase in the transmission of digital
images over the internet, the goal of obtaining a
model that combines both bandwidth reduction and
digital image transmission in a secure manner has
become more attractive to researchers around the
world. To achieve this, we should use the data
compression and encryption algorithms. Data
compression is a technique to reduce the quantity of
data without excessively reducing of its quality. The
transition and storing of compressed multimedia data
are much faster and more efficient than original
uncompressed multimedia data [1]. Because the
Internet has many attack points, it is vulnerable to
many types of attacks, so this information must be
protected from unauthorized access using some of
the encryption methods. Data encryption is a security

method in which information appears to be
encrypted or unreadable by an unauthorized person
or organization. and can only be decrypted by the
authorized user with the correct encryption key.
Many researchers approach different models for
image compression and encryption [2,3,4,5,6,7] to
overcome image transmission issues. The goal of
digital image transmission is to get a secured and less
computational system; less encryption time, to make
it real-time encryption. In this thesis. We proposed a
model to reduce the redundancy of the image data
before using the AES encryption; to overcome the
image encryption issues mentioned above, by taking
the bits containing most of data in the 8-byte-pixel of
the 2D image matrix. To further reduce the image
data, we used Real-Time Encoding (AHC)
technology to reduce redundant data storage and
enhance transmission time. Advanced Encryption
Standard is applied to provide the highest level of
security.

Journal of Theoretical and Applied Information Technology
28th February 2021. Vol.99. No 4

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

933

The rest of the paper is organized as follows: In
Section 2, we list some of the related works in the
same field. In Section 3, we describe the image
compression technique used in our proposed model.
In Section 4, we describe the image encryption
algorithm used in our proposed model. briefly
introduce the methods used in this paper. The
proposed model is described in section 5. In section
6, we test and analyze the compression efficiency
and the security of the model, through various
statistical analysis. Finally, conclusions and future
works are given in section 7 and 8 respectively.

2. RELATED WORKS

In recent years, some approaches [2,3,4,5,6,7]
utilizing image compression and encryption models
were introduced. Bruno Carpentieri in [2] studied the
combination of compression and encryption
techniques on various digital data. The experimented
done on 2D data with three standard compression
algorithms, JPEG, Lossless JPEG, and JPEG 2000 in
lossless mode, and using four standard encryption
algorithms, DES, 3DES, RC4, and AES. The aim of
his work is to study the cost of encryption in terms
of file size after performing data compression, and
how bad is performing first encryption and then
compression. Per his results, the cost of security is
negligible if we perform first compression and then
encryption and It is not efficient at all to encrypt the
file then compress it. The file size will definitely
grow and in some cases the resulting output will be
far larger than the original input. Tong et al. [3]
studied combining lossy compression technique
using LWT with lossless compression technique
using SPIHT coder, followed by symmetric
cryptosystem using Chaotic sequence generation.
The experiment test is done using five grayscale
images with a size of 512 x 512 pixels. Experimental
results show that the compressed file size is about
50% of the input file size. Also, the encryption
method passes many security tests, such as
sensitivity test, entropy test, autocorrelation test.
Samer Isayed et al. [4] proposed an algorithm using
lossy compression technique with lossless
compression technique using Huffman coding,
followed by symmetric cryptosystem using AES.
The testing results is done on 4 grayscale images
with a size of 512 x 512 pixels. The proposed lossy
technique is a thresholding algorithm which mainly
set image intensity values between ± threshold (T),
They studied the effect of changing the threshold and
block sizes on the compression ratio and the quality
of the image, their results show that the compression
ratio increases when block value is increased, but
with a poor image quality. They achieved the best

compression ratio at T= 8 with a block size of 64 ×
64 pixels in all test images with average 0.4, 17.6dB,
3.58 for the SSIM, PSNR and CR respectively.
Pratibha Chaudharya et al. [5] proposed a Joint
Image Compression and Encryption Scheme is
proposed for grayscale images. The testing done on
images with different dimensions 256X256,
512X512 and 1024X1024. The proposed model used
Huffman and Arithmetic coding for compression and
XOR cipher encryption method. The proposed
model shows good compression ratio and execution
time. Chao-Jen Tsai et al. [6] proposed A chaos-
based joint compression and encryption (JCAE)
schemes. This scheme improved the computation
time, compression ratio, and estimation accuracy of
three different chaos-based JCAE schemes. The fist
used the auxiliary data structures to improve the
existing chaos- based scheme. The second scheme
solved the issues of large multidimensional lookup
table overheads, and the last also enhances the
accuracy of frequency distribution estimations. The
results showed that the proposed scheme is faster and
generate smaller files than existing JCAE schemes.
T. Sudarson and R. Perumal [7] proposed a lossless
compression and encryption model method, the
compression using arithmetic coding technique after
splitting the data into equal intervals, and encryption
is performed by symmetric encryption technique
using bit-wise XOR with pseudorandom bit
sequence. The algorithm results showed that the
model is secure and immune to chosen plaintext
attack.

3. ADAPTIVE HUFFMAN CODING

 Huffman coding is a lossless data compression
technique. Huffman coding is based on the
frequency of occurrence of a data item i.e. pixel in
images. The technique is to use a lower number of
bits to encode the data in to binary codes that occurs
more frequently [8]. Huffman coding suffers from
the fact that the decompressor needs to have some
knowledge of the probabilities of the characters in
the compressed files. Not only this can add
somewhat to the bits needed to encode the file, but,
if this crucial piece of knowledge is unavailable, then
compressing the file will require two passes, one-
pass to find the frequency of each character to
construct the Huffman tree and the second parameter
to actually compress the file. Adaptive Huffman
coding algorithms improve the compression ratio by
applying to the model the statistics based on the
source content sent from the immediate past. An
alphabet and its frequency table are dynamically
adjusted after reading each symbol during the
process of compression or decompression [9]. The

Journal of Theoretical and Applied Information Technology
28th February 2021. Vol.99. No 4

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

934

algorithm working during creating the tree for “abb”
text is represented in Figure 1. Table 1 shows the
sequence of codes sent to the decoder for Figure.1
example.

Figure 1: Encoding abb using AHC.

Table 1: The Sequence of Codes Sent to the Decoder

NYT A NYT B b
0 01100001 0 01100010 01

 This method is based on the same principles as the
static method with the following extensions:
a) every node in the tree has its key number,

maximum value of the key number in the tree
can be calculated as in formula (1):
KeyNum=2 .maxNumOfCharInAlphabet+1 (1)
- the root has the largest key number;
- an ancestor has larger number than
any of its descendants;
- the right descendant should have larger key
number than the left descendant.

b) After input of any character the tree is updated
c) A special leaf node called NYT (not yet

transmitted) is used for both indicating the
place for a new character and for signalizing
that there is a new character is obtained, its key
has the least value in the tree, and its weight
should always equal to zero;

d) A set of nodes with equal weight values is
called a block.

 In case of AHC not only the codes of the characters
are transmitted. Auxiliary codes such as the code of
NYT Node and ASCII codes of the new-coming
characters are being transmitted as well [10].

3.1 Image Compression Performance
Parameters

 To measure the loss in the image compression, we
use some standards performance parameters as
described in the formulas (2, 3, 4, 5): Compression
Ratio (CR), Mean Square Error (MSE), Peak Signal
to Noise Ratio (PSNR), Structural Similarity Index
Measure (SSIM) [11,12]. PSNR is the measurement
of the peak error between the compressed image and
original image. The higher the PSNR contains better
quality of image. MSE is the cumulative difference
between the compressed image and original image.
Small amount of MSE reduce the error and improves
image quality [13]. The SSIM index evaluates a test
image X with respect to a reference image Y to
quantify their visual similarity [14].

MSE =
1

MN
 (X(i, j) − Y(i, j))ଶ

୨ୀଵ

 (2)

୧ୀଵ

PSNR = 10 logଵ
(2୬ − 1)ଶ

√MSE
 (3)

SSIM =
(2 ∗ xത ∗ yത + C1)(2 ∗ σ୶୷ + C2)

൫σ୶
ଶ + σ୷

ଶ + C2൯ ∗ ((xത)ଶ + (yത)ଶ + C1)
 (4)

Where C1 and C2 are constants, �̅�, 𝑦ത, 𝜎௫ , 𝜎௬ and
𝜎௫௬ are given as:

xത =
1

N
 x୧ (4.1)

୧ୀଵ

yത =
1

N
 y୧ (4.2)

୧ୀଵ

σ୶
ଶ =

1

N − 1
 (x୧ − xത)ଶ (4.3)

୧ୀଵ

σ୷
ଶ =

1

N − 1
 (y୧ − yത)ଶ (4.4)

୧ୀଵ

σ୶୷ =
1

N − 1
 (x୧ − xത)((y୧ − yത) (4.5)

୧ୀଵ

0 1

a

0 1

NYT

1

2

1

1 0

1

1

1

2

0

NYT

NYT

NYT

abb

ab

a a

b

b

a

Journal of Theoretical and Applied Information Technology
28th February 2021. Vol.99. No 4

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

935

CR =
numberOfBitsInCompressedMessage

numberOfBitsInOrigionalMessage
 (5)

4. ADVANCED ENCRYPTION STANDARD

 Advanced Encryption Standard (AES) algorithm is
one of the block cipher encryption algorithm that
was published by National Institute of Standards and
technology (NIST) in 2000. The main goal of this
algorithm was to replace DES, after some vulnerable
aspects had appeared. NIST has called the security
experts around the world to provide an innovative
block encryption algorithm to encrypt and decrypt
data with a robust and complex structure. A lot of
algorithms were submitted by the expert around the
world. After performing various criteria and
security parameters, on October 2000 NIST
announced that Rijndael is the winning algorithm,
and named as AES, this algorithm has its own
structure for encrypting and decrypting sensitive
data, it is the strongest security protocol, since it is
applied in both hardware and software [15]. AES is
currently computationally unbreakable and likely to
remain unbreakable unless a future quantum
computer can reach the required computational
ability[16].

 The AES encryption procedure are shown in
Figure 2. There are sets of transformation operations
in AES algorithm each operation is applied on a 2D
array of bytes called state matrix. The state is a
rectangular array of bytes and since the block size is
128bits or 16 bytes, the array is a dimension of 4 X
4 byte. The round key is similarly pictured as a 4x4
matrix. The form of state and key matrices is shown
in Figure. 3.

 State matrix Key Matrix

൦

𝑆 𝑆ଵ 𝑆ଶ 𝑆ଷ

𝑆ସ

𝑆଼

𝑆ହ

𝑆ଽ

𝑆 𝑆

𝑆ଵ 𝑆ଵଵ

𝑆ଵଶ 𝑆ଵଷ 𝑆ଵସ 𝑆ଵହ

൪ ൦

𝐾 𝐾ଵ 𝐾ଶ 𝐾ଷ

𝐾ସ

𝐾଼

𝐾ହ

𝐾ଽ

𝐾 𝐾

𝐾ଵ 𝐾ଵଵ

𝐾ଵଶ 𝐾ଵଷ 𝐾ଵସ 𝐾ଵହ

൪

Figure 3: State and Key Matrices.

As shown in Figure. 2, after an initial application of
the AddRoundKey() transformation, the state is
transformed by implementing a round function. The
round function is executed Nr times, where Nr is
number of rounds that its value depends on the key
size [17]. It uses 10 rounds for 128-bit keys, 12
rounds for 192-bit keys and 14 rounds for 256-bit
keys. But the final round slightly differs from the
previous Nr-1 rounds, that it does not have
MixColumn() transformation.

4.1 Image Encryption Test Parameters
 Suppose ciphertext images before and after one-
pixel change in a plaintext image are C1 and C2
respectively; the pixel value at grid (i, j) in 𝐶ଵ and
𝐶ଶ are represented as 𝐶ଵ(𝑖, 𝑗) and 𝐶ଶ(𝑖, 𝑗) and a
bipolar array D is defined in eqn. (6). Then the
Number of Pixel Change Rate (NPCR) and Unified
Average Changing Intensity (UACI) can be
mathematically represented by equations (7) and (8),
respectively, where symbol T denotes the total

Figure 2: AES Encryption (128-bits).

number pixels in the ciphertext, symbol F denotes
the largest supported pixel value compatible with the
ciphertext image format. It is clear that NPCR
concentrates on the absolute number of pixels that
changes value in differential attacks, while the UACI
focuses on the averaged difference between two

Plain text

Add round key

Substitute Bytes

Shift Rows

Mix Columns

Add round key

Substitute Byte

…

Shift Rows

Mix Columns

Add Round Key

Substitute Byte

Shift Rows

Add Round key

R
ound 1

R
ound 9

R
ound 10

Cipher

Journal of Theoretical and Applied Information Technology
28th February 2021. Vol.99. No 4

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

936

paired ciphertext images. The range of NPCR and
UACI is [0, 1]. [18].

D(i, j) = ൜
0, if Cଵ(i, j) = Cଶ(i, j)

1, if Cଵ(i, j) ≠ Cଶ(i, j)
ൠ (6)

NPCR =
D(i, j)

T
୧,୨

∗ 100% (7)

UACI =
| Cଵ(i, j) − Cଶ(i, j)|

F . T
∗ 100%

୧,୨

 (8)

5. PROPOSED MODEL

 In order to reduce the redundancy of digital images
to be sent over the network, we’ve proposed a model
to selected the bits with highest data from each
image pixel followed by lossless image compression
and Symmetric image encryption to guarantee the
highest security level. The model implemented using
Matlab 2017b on different images. Figure 4 shows
the proposed model architecture.

Figure 4: Proposed Model.

5.1 Compression and Encryption Process:
 There are three steps at the sender side as follows:
1. Selective methodology: The plain-image matrix is
divided into N X N blocks; where N is a multiple

of 4. We’ve selected the leftmost bits of the binary
representation of the block pixels, then the selected
bits from each byte are re-converted to decimal, the
values of the generated block will be in the range of
[0:1], [0:3], [0:7] for 1,2,3 bits selections
respectively. Also, we calculated the mean value of
each block from the non-selected bits above, this will
combine a vector of the mean values with length
equal to the image blocks number. The detailed steps
with and example are listed below. Figure 5. Shows
our selective model.

Figure 5: Bits Selective Model.

1.1. Divide the image into N × N blocks; where N is
one the following values 4,8,16,32,64. Let’s take a 4
X 4 image block example as shown in Table 2 to
describe each step.

 Table 2: 4 X 4 Image Block Example.

143 144 142 144

134 155 139 162

149 140 148 160

144 150 137 149

Input Image

AES
Decryption

AES
Encryption

Adaptive
Huffman
Coding

Selective bits code
and mean values
vector

Final MV
and AH code

Loop on
blocks

Convert
image into

NXN blcoks

Selective
method

Still on the loop ?

L
oop finished?

Loop on
blocks

Decrypted
MV(mean vector)

Decompressed AH
code

Add MV to AH
code

Still in the loop ?

Reshape the vector
to matrix

Output Image

L
oop Finished?

Input image (M
X M); where M is

a multiple of 4

Divide the image
into NXN blocks

Convert the
selected bits into
decimal values

Vector of mean
values

Select one, two or
three bits from
left from each

byte in the block

Calculate the
mean values of

the blocks for the
remaining bits

Converted the
blocks into their

binary
ValuesByte in

Combine the
generated blocks
Byte in the block

To be
compressed by

AHC

To be encrypted
by AES

Journal of Theoretical and Applied Information Technology
28th February 2021. Vol.99. No 4

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

937

1.2. Convert the blocks into their binary values as
shown in Table 3.

Table 3: The Binary Values for the Block.

10001111 10010000 10001110 10010000

10000110 10011011 10001011 10100010

10010101 10001100 10010100 10100000

10010000 10010110 10001001 10010101

1.3. Select the bits with the highest values, i.e. the
leftmost bits; we have selected one, two or three bits
in our experiments. Convert these bits into their
decimal values. In this example we will select 3 bits
as shown in Table 4 and Table 5.

Table 4: 3 Bits selected from the leftmost bits of each
pixel

100 100 100 100
100 100 100 101
100 100 100 101
100 100 100 100

Table 5: Convert the Selected Bits to Decimal Values.

4 4 4 4

4 4 4 5

4 4 4 5

4 4 4 4

1.4. Convert the remaining bits in the blocks into
their decimal values, and calculate the mean value of
each block. The size of this mean vector will be
small compared to the original image size and based
on the block size selected. For example, here, from
the 4 X 4 X 8 bits, we just sent 1 X 8 bits. The mean
value for this block is 14. We added this step after
we tested the effect of not sending it as we will show
in the results section. Tables 6 and 7 describes this
step.

Table 6: The Remaining Bits of Each Pixel After We
Selected 3 Bits.

01111 10000 01110 10000

00110 11011 01011 00010

10101 01100 10100 00000

10000 10110 01001 10101

Table 7: The Decimal Values of the Remaining Bits.

15 16 14 16

6 27 11 2

21 12 20 0

16 22 9 21

2. The decimal values of selected bits in step 1.3
above will be compressed by Adaptive Huffman
coding. The generated Adaptive Huffman code is:
000000100111111000000101111011111. The
compression ratio for this block is (4 X 4 X 8) / (41
+ 8) = 3.12. The compression ratio may be more for
other blocks based on how close the block values are
to each other.

3. All the compressed blocks generated from
Adaptive Huffman coding will be combined and sent
to be encrypted using Advanced Encryption
Standard encryption algorithm, also to encrypt the
vector of the mean values of the image blocks
generated from step 1.4 above. The output code will
have the same length as the code entered to the
encryption.

5.2 Decompression and Decryption Process:
 The inverse steps will be applied at the receiver
side as follows:
1. The encrypted code of the selective bits block will
be decrypted using AES decryption. As well as the
mean vector. The output for the above example for
the selected bits code is:
000000100111111000000101111011111. And the
first value of the decrypted mean vector value will
be 14.
2. The decrypted code of selective block will be
decompressed by Adaptive Huffman decoding. The
output block will be same as displayed in Table 5.
3. Rebuild the selective bits blocks as follows:
3.1. The decoded block will be converted into their
binary values, the output block will be same as
displayed in Table 4.
3.2. Add zeros to the right side of the binary values,
the number of zeros will be (1 Byte – number of
selected bits). In our example we will add 5 zeros (8-
3). And convert the block values to its decimal
values as displayed in Tables 8 and 9 respectively.

Journal of Theoretical and Applied Information Technology
28th February 2021. Vol.99. No 4

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

938

Table 8: Add Zeros to the Compressed Block Data.

10000000 10000000 10000000 10000000

10000000 10000000 10000000 10100000

10000000 10000000 10000000 10100000

10000000 10000000 10000000 10000000

Table 9: Covert the Compressed Block to Decimal.

128 128 128 128

128 128 128 160

128 128 128 160

128 128 128 128

3.3. Add the encrypted mean value for this block
generated in step 1 to the block in the previous step.
The generated block is displayed in Table 10.

Table 10: Add the Mean Value to the Decompressed
Block.

142 142 142 142

142 142 142 174

142 142 142 174

142 142 142 142

6. DATA AND RESULTS

 This section presents the results of the experiments
done on some standard test images. We will compare
the results of the original Adaptative Huffman
compression and on AES image encryption without
using our selective method with our new proposed
selective method. As we mentioned before our
ultimate goal is to reduce data volume and speed up
the encryption process.
 Simulation was carried out using MATLAB
R2017b simulation software under Microsoft
Windows 10 operating system.

6.1 Data Set:
 We have used four standard test images in our
experiments, in two sizes (dimensions) 512 X 512
and 1024 X 1024 and in both gray-scale and colored
format. We used Lena, Boat, Barbara and Pepper
images.

6.2 Results and Analysis:
 We have split our results into 3 categories; in each
category, we calculated the standards image

compression and encryption metrics we mentioned
in the previous sections; which are CR, SSIM and
PSNR for data compression, NPCR and UACI for
data encryption.
6.2.1 AHC followed by AES encryption

without using our selective model
 To compare our selective method with the AHC
coding on the original image, Table 11 shows the
testing results of compressing Lena image with
adaptive Huffman coding only without using the
selective method. As shown from the table, the
compression ratio is less than 1; the code size is more
than the original input matrix length, this is because
the image values range is varying from 0:255 and
this will generate a large Huffman tree since the size
of the unique values will be almost equal to the size
of the image block. From the table we can also see
that SSIM is 1 and PSNR is inf; this is expected
because the system is lossless

Table 11: Compression metrics result for AHC on the
original image.

Block
Size CR SSIM PSNR

4 X 4 0.86 1 Inf

8 X 8 0.60 1 Inf

16 X 16 0.37 1 Inf

32 X 32 0.23 1 Inf

64 X 64 0.15 1 Inf

6.2.2 Using the selective method and Adaptive
Huffman compression and AES encryption.

 We’ve applied our selective model on different
sizes to measure its performance on different sizes,
we used 512 X 512 and 1024 X 1024. As mentioned
in the proposed model chapter, our model tested on
two stages as follows:
 1. Compress and encrypt the selected bits only and
ignoring the remaining bits to get better CR and to
reduce the redundancy data.
2. Compress and encrypt the selected bits, and
calculate the mean values for each block to generate
a vector with size equal to image size (512 *512) /
(Block size * Block size); for 512 X 512 images.
This vector will reduce the CR a little as its size will
be small compared to the input image size. For
example, for 8 X 8 block size, the final mean vector
will be (1 * 4096 * 8) bits. While the input image
size is (512 * 512 * 8) bits. This vector will be
encrypted with the AES to use it to generate a good
image quality at the receiver side.

Journal of Theoretical and Applied Information Technology
28th February 2021. Vol.99. No 4

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

939

 We will calculate and study the data compression
and encryption performance for both stages in the
next 2 subsections.
1. Image Compression Analysis:
 Tables 12 to 15 show the testing results using our
model on standard images with dimension 512 X
512, using different block sizes and different
selective bits range using the two stages mentioned
above.
 In the first stage, we studied the results without
sending the mean values vector, and we found that
the image quality is slightly poor compared to the
increase in CR compared to the second phase. Tables
12 and 13 show the compressed images results for
CR, SSIM and PSNR for different block sizes.
 In the second stage, we sent the mean values and
compared it with the results from not sending this
vector. Table 14 and 15 show the compressed images
results for CR, SSIM and PSNR for different block
sizes.
 We got a good CR, PSNR and SSIM values, the
high compression ratio in our method because of the
block values range is reduced to 0:1 for 1-bit
selection, 0:4 for 2-bits selection and 0:7 for 3-bit
selections instead of 0:255 range for the original
image; which made the use of Adaptive Huffman
coding is more productive.
 As we can see from the tables, we found that using
more than 3 bits is not efficient as the compression
ratio is decreased and so the execution time is
increased in 3 bits selection than the 2 bits selection.
However, it has better SSIM in 3 bits selection. We
found that there are 2 options to select based on the
compression metrics values, 8 X 8 and 16 X 16
Block sizes with 2-bits and 3-bits selections, and
using the second stage where the mean vector was
sent. 2-bits selection has the best values for the
compression ratio and execution time, and 3-bits has
the best image quality but with less compression
ratio and more execution time.
 We also studied our method on Colored images,
Table 16 and Table 17 show the results of a colored
Pepper image and Pepper gray-scale image
respectively. We can see that the compression ratio
appears close in both gray-scall and colored format,
but SSIM is more for the colored image than gray-
scall, this is because the colored image has 3-
dimensional matrix, and when our blocks for each
dimension are combined in the receiver side, may
reduce the image loss.
Table 19 show the compression results for 1024 X
1024 images, we noticed that compression ratio,
SSIM and PSNR increased when the image size
increased using our model.

 In Figures 6 to 15, the received images for two of
the used images after applying our algorithm on the
standard images on all block sizes and with all bit
selections.
2. Image Encryption Analysis:
 We studied the security of our method using some
standard metrics for differential attacks, NPCR and
UACI. First, we encrypted the original image using
our model, and then we changed one-pixel value
from the original image and encrypted it using our
model. We changed one bit from the first byte of the
image, if the changed bit is from the least significant
bits which have the most data of the image; the bits
we selected in our algorithm, the results show very
high values for NPCR and UACI for 8 X 8 Block
size and with 2- and 3-bits selection. Table 18 and
Table 20 shows the result of the security metrics on
Lena image on both sizes, the average values for
NPCR and UACI were: 99.7% and 33.3%
respectively. Which are close to the optimal values
mentioned in [18]. Therefore, we selected 8 X 8
block size than 16 X 16 Block size which we also
obtained a good compression performance.
 Comparing our model with the AES image
encryption directly without our model, shows that
we reduced the encryption time, data size, and
improved the pixel sensitivity of images, as the
results in [43] shows the NPCR and UACI for AES
encryption are 0.0354 and 0.0137 respectively, but
in our SICE/AHAES model we achieved values
close to the optimal values; we achieved 99.6, 33.46
for NPCR and UACI respectively.
 Also comparing our model with similar lossy image
compression-encryption models, shows that our
model has high values for the CR, SSIM and PSNR,
and optimal values for security tests parameters. For
example, comparing to the suggested model in [4]
we got very competitive values for the compression
parameters. The best values obtained in [4] were
(3.22, 0.45, 18.74) for CR, SSIM and PSNR
respectively, where we got (5.54, 0.6940, 25.07) and
(4.61, 0.7807, 30.08) for the same image. Also, our
method works for all image sizes and in both types
(greyscale and colored) images.

7. CONCLUSION

 In this paper, we proposed a method for image
compression using Adaptive Huffman coding to
reduce the data size followed by image encryption
using AES encryption algorithm to ensure image
security. The proposed model divide the M X M
image; where M is a multiple of 4, into equivalent
sub images each has N ×N blocks; where N is one

Journal of Theoretical and Applied Information Technology
28th February 2021. Vol.99. No 4

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

940

the following values 4, 8, 16, 32 or 64. Then we
converted the blocks into binary values and selected
one of the following values from the 8 bits of each
byte: 1, 2 or 3 bits, and reconverted the selected bits
into decimal values. Also, we compute the mean
value from the remaining bits that were in the step
above after they converted to their decimal values.
After that we apply Adaptive Huffman coding
algorithm on the resulting selected bits image (NXN
blocks), so we can use the power of Adaptive
Huffman coding when the blocks values vary from
0:1 for 1 selected bit, 0:3 for 2 selected bits, and 0:7
for 3 selected bits instead of original image values
from 0:255. Then, an AES encryption has been used
to encrypt the combined blocks generated from the
adaptive Huffman coding. As well as, we encrypt the
mean values vector to be used in rebuild the image
in the receiver side to improve the image quality.
 We have studied the effect of changing the number
of binary bits selected, block size ranges, image
width and the effect of sending/not sensing the mean
vector on the compression ratio, image quality
(SSIM, PSNR), execution time. we found that the
best values are when the Block size is 8 X 8 with
two-bits or three-bits selection. As well, the security
measurements show that we achieved values close to
the optimal values for NPCR and UACI for 8 X 8
block size with two-or-three bits selection. This
applies for both gray-scale and colored images.
 Also, we found that the compression ratio and
image quality is increased when the image width
increased, as our tables show in the previous section.
If we interested on one metric than other, we can
select other options than the one we selected. For
example, if we interested in the compression ratio,
we can see that the best compression is at 16 X 16
block size with 1-bit selection and it still has a good
image quality.

8. FUTURE WORKS

 As our proposed methodology works only on
images (Grey, RGB) with width NXN; where N is a
multiple of 4, the block division algorithm can be
modified to work with any width. Also, we can use
some of enhanced AES methods to reduce the
execution time since the execution time is still can
be improved and multiple methods were introduced
recently to enhance the execution time. Also, it can
be modified to work with audio, video transmission,
since we used Adaptive Huffman coding which
works well with audio and video compression.

REFRENCES:

[1] Asadollah Shahbahrami, Ramin Bahrampour,
Mobin Sabbaghi Rostami, Mostafa Ayoubi
Mobarhan, “Evaluation of Huffman and
Arithmetic Algorithms for Multimedia
Compression Standards”, International Journal
of Computer Science, Engineering and
Applications (IJCSEA), Vol. 1, No. 4, University
of Guilan (Iran), August 31, 2011, pp. 8-9.

[2] Bruno Carpentieri, “Efficient Compression and
Encryption for Digital Data Transmission”,
Security and Communication Networks, Vol.
2018, Article ID 9591768, University of Salerno
(Italy),May 17, 2018, pp. 1-8.

[3] X.-J. Tong, P. Chen, and M. Zhang, “A Joint
Image Lossless Compression and Encryption
Method Based on Chaotic Map”, Multimedia
Tools and Applications, Vol. 76, No. 12, July 30,
201, pp. 1-10.

[4] Samer Isayed, Dr. Liana Tamimi and Dr. Mousa
Farajalla. “A Gray-scale Image Compression-
Encryption Algorithm using Huffman Coding
and AES”, Thesis for: MSC, Palestine
Polytechnic University (Palestine), Sept, 2018,
pp. 56-57.

[5] Pratibha Chaudharya, Ritu Guptab, Abhilasha
Singhc, Pramathesh Majumderd and Ayushi
Pandey, “Joint image compression and
encryption using a novel column-wise scanning
and optimization algorithm”. International
Conference on Computational Intelligence and
Data Science (ICCIDS 2019), January 2020, pp.
1-10.

[6] Chao-Jen Tsai, Huan-Chih Wang and Ja-Ling
Wu, “Three Techniques for Enhancing Chaos-
Based Joint Compression and Encryption
Schemes”, Entropy 2019, Vol. 21, No. 1, January
2019, pp. 1-14.

[7] T. Sudarson, R. Perumal. “Simultaneous
compression and encryption using arithmetic
coding with randomized bits”, Computer Science
(2012), pp. 1-4.

[8] S.L. Bawa, “Compression Using Huffman
Coding”, IJCSNS International Journal of
Computer Science and Network Security, Vol.
10, No. 5, May 2010, pp. 133-139.

[9] Ida Pu, “Fundamental Data Compression”,
December 2005, pp. 91-92.

[10] Mikhail Tokovarov, “Modification of Adaptive
Huffman Coding for use in encoding large
alphabets”, International Conference of
Computational Methods in Engineering Science
(CMES’17), Vol. 15, No. 4, January 2017, pp. 2-
3.

Journal of Theoretical and Applied Information Technology
28th February 2021. Vol.99. No 4

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

941

[11] Alain Hore and Djemel Ziou, “Image quality
metrics: PSNR vs. SSIM”, 20th International
Conference on Pattern Recognition, Turkey,
August 23-26, 2010, pp. 2366-2367.

[12] C.Sasi varnan, A.Jagan, Jaspreet Kaur, Divya
Jyoti, Dr.D.S.Rao, “Image Quality Assessment
Techniques pn Spatial Domain”, International
Journal of Computer Science and Technology,
Vol. 2, No. 3, September 2011, pp. 178-181.

[13] Mr.Chandresh K Parmar, Prof.Kruti Pancholi,
“A review on image compression techniques”,
Journal of information, knowledge and research
in electrical engineering, Vol. 2, No. 2, Nov 12 -
Oct 13, 2012, pp. 282.

[14] Gabriel Prieto Renieblas, Agustín Turrero,
Alberto Muñoz González, Eduardo Guibelalde.
“Structural similarity index family for image
quality assessment in radiological images”,
Journal of Medical Imaging, Vol. 4, No. 3, July-
Sept, 2017, pp. 035501-2.

[15] William Stallings, “Cryptography and Network
Security” 4th Ed, 2005, pp. 58-309.

[16] Ahmad-Loay Sousi, Dalia Yehya, Mohamad
Joudi, “AES Encryption: Study & Evaluation”,
Cryptography & Network Security Papers, Rafik
Hariri University, November 2020, pp. 3-22.

[17] Dessalegn Atnafu Ayalneh, Dr. V.N.V. Manoj,
Dr. Mike Venter, “Optimizing AES
implementation for High-speed Embedded
Application”, Thesis for: MSC, March 2008, pp.
21-34.

[18] Yue Wu, Joseph P. Noonan, Sos Agaian,
“NPCR and UACI Randomness Tests for Image
Encryption” Cyber Journals: Multidisciplinary
Journals in Science and Technology, Journal of
Selected Areas in Telecommunications (JSAT).
April 2011, pp. 32.

[19] Farhad Maleki, Ali Mohades, S Mehdi Hashemi,
and Mohammad Ebrahim Shiri. “An image
encryption system by cellular automata with
memory”, The Third International Conference
on Availability, Reliability and Security, March
4-7, 2008, pp. 1266–1271.

[20] Omar Farook Mohammad, Mohd Shafry Mohd
Rahim, Subhi R. M. Zeebaree, Falah.Y.H
Ahmed. “A Survey and Analysis of the Image
Encryption Methods”. International Journal of
Applied Engineering Research. Vol. 12, No. 23.
December 2017, pp.13-14.

.

Journal of Theoretical and Applied Information Technology
28th February 2021. Vol.99. No 4

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

942

Table 12: Lena image (512 X 512) compression results (without the mean vector).

Block
Size

1 Bit Selected 2 Bits Selected 3 Bits Selected
CR SSIM PSNR CR SSIM PSNR CR SSIM PSNR

4 X 4 4.87 0.4503 11.6 4.43 0.6649 17.34 3.84 0.7734 23.07
8 X 8 6.28 0.4503 11.6 5.60 0.6649 17.34 4.65 0.7734 23.07

16 X 16 6.52 0.4503 11.6 5.66 0.6649 17.34 4.42 0.7734 23.07
32 X 32 6.22 0.4503 11.6 5.16 0.6649 17.34 3.77 0.7734 23.07
64 X 64 5.53 0.4503 11.6 4.36 0.6649 17.34 2.89 0.7734 23.07

Table 13: Barbara image (512 X 512) compression results (without the mean vector).

Block
Size

1 Bit Selected 2 Bits Selected 3 Bits Selected
CR SSIM PSNR CR SSIM PSNR CR SSIM PSNR

4 X 4 4.54 0.3038 11.20 3.91 0.5743 16.83 3.03 0.7880 22.99
8 X 8 5.92 0.3038 11.20 4.95 0.5743 16.83 3.68 0.7880 22.99

16 X 16 6.17 0.3038 11.20 4.89 0.5743 16.83 3.44 0.7880 22.99
32 X 32 5.93 0.3038 11.20 4.32 0.5743 16.83 2.89 0.7880 22.99
64 X 64 5.68 0.3038 11.20 3.87 0.5743 16.83 2.44 0.7880 22.99

Table 14: Lena image (512 X 512) compression results (with the mean vector).

Block
Size

1 Bit Selected 2 Bits Selected 3 Bits Selected
CR SSIM PSNR CR SSIM PSNR CR SSIM PSNR

4 X 4 4.69 0.7246 22.96 4.30 0.7293 26.02 3.73 0.7972 30.75
8 X 8 6.20 0.6617 21.63 5.54 0.6940 25.07 4.61 0.7807 30.08

16 X 16 6.50 0.6394 20.61 5.64 0.6826 24.35 4.41 0.7770 29.59
32 X 32 6.22 0.6362 19.57 5.15 0.6864 23.71 3.76 0.7790 29.17
64 X 64 5.53 0.6495 18.63 4.36 0.6927 23.30 2.89 0.7803 28.93

Table 15: Barbara image (512 X 512) compression results (with the mean vector).

Block
Size

1 Bit Selected 2 Bits Selected 3 Bits Selected
CR SSIM PSNR CR SSIM PSNR CR SSIM PSNR

4 X 4 4.38 0.6570 20.73 3.79 0.7614 25.34 2.96 0.8307 29.90
8 X 8 5.85 0.5915 19.93 4.90 0.7314 24.69 3.66 0.8168 29.37

16 X 16 6.16 0.5632 19.29 4.87 0.7253 24.25 3.43 0.8143 29.05
32 X 32 5.93 0.5611 18.68 4.32 0.7267 23.90 2.88 0.8149 28.80
64 X 64 5.68 0.5651 17.98 3.87 0.7295 23.67 2.44 0.8152 28.65

Table 16: Colored Pepper image (512 X 512) compression results (with the mean vector).

Block
Size

1 Bit Selected 2 Bits Selected 3 Bits Selected
CR SSIM PSNR CR SSIM PSNR CR SSIM PSNR

4 X 4 4.73 0.9067 23.28 4.20 0.9393 25.86 3.58 0.9761 30.39
8 X 8 6.30 0.8826 22.13 5.34 0.9286 25.05 4.36 0.9732 29.91

16 X 16 6.63 0.8520 21.05 5.35 0.9167 24.33 4.04 0.9710 29.54
32 X 32 6.44 0.8196 20.12 4.92 0.9042 23.68 3.42 0.9674 29.25
64 X 64 6.02 0.7695 19.14 4.14 0.8919 23.16 2.62 0.9646 29.02

Table 17: Gray-scale Pepper image (512 X 512) compression results (with the mean vector).

Block
Size

1 Bit Selected 2 Bits Selected 3 Bits Selected
CR SSIM PSNR CR SSIM PSNR CR SSIM PSNR

4 X 4 4.95 0.7547 23.92 4.53 0.7671 27.25 3.84 0.7973 30.91
8 X 8 6.34 0.6716 22.36 5.58 0.7199 26.02 4.45 0.7763 30.08

16 X 16 6.53 0.6333 21.08 5.44 0.7045 25.01 4.02 0.7718 29.52
32 X 32 6.19 0.6314 19.86 4.86 0.7079 24.31 3.32 0.7732 29.15
64 X 64 5.45 0.6380 19.01 3.99 0.7123 23.74 2.46 0.7741 28.93

Journal of Theoretical and Applied Information Technology
28th February 2021. Vol.99. No 4

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

943

Table 18: Lena image (512 X 512) Encryption metrics test results.

Block Size 1 Bit Selected 2 Bit Selected 3 Bit Selected
NPCR UACI NPCR UACI NPCR UACI

4 X 4 99.84 33.98 99.547 33.85 99.61 34.47
8 X 8 99.68 33.27 99.71 33.27 99.60 33.29

16 X 16 80.69 26.97 88.82 29.75 96.64 32.31
32 X 32 75.48 24.86 87.57 29.12 96.96 32.37
64 X 64 92.61 30.52 95.78 31.82 99.151 33.28

Table 19: Lena image (1024 X 1024) compression results (with the mean vector).

Block
Size

1 Bit Selected 2 Bits Selected 3 Bits Selected
CR SSIM PSNR CR SSIM PSNR CR SSIM PSNR

4 X 4 4.87 0.7744 24.84 4.59 0.8050 27.54 4.21 0.8187 31.97
8 X 8 6.57 0.7300 22.98 5.99 0.7395 26.10 5.26 0.7935 30.83

16 X 16 6.88 0.7185 21.66 6.20 0.7200 25.15 5.17 0.7895 30.17
32 X 32 6.68 0.7195 20.64 5.83 0.7230 24.41 4.53 0.7910 29.65
64 X 64 6.29 0.7228 19.58 5.23 0.7286 23.75 3.79 0.7934 29.20

Table 20: Lena image (1024 X 1024) Encryption metrics test results.

Block Size 1 Bit Selected 2 Bit Selected 3 Bit Selected
NPCR UACI NPCR UACI NPCR UACI

4 X 4 99.80 33.73 99.65 33.52 99.62 33.49
8 X 8 99.65 33.39 99.62 33.34 99.62 33.43

16 X 16 79.55 26.69 90.23 30.15 97.06 32.54
32 X 32 78.32 25.64 89.50 29.79 96.96 32.37
64 X 64 82.02 27.08 94.82 31.75 99.56 34.10

Figure 6: Barbara image (512 X 512) - 4 X 4 Block (1,2,3) bits selected respectively

Figure 7: Barbara image (512 X 512) - 8 X 8 Block (1,2,3) bits selected respectively

Journal of Theoretical and Applied Information Technology
28th February 2021. Vol.99. No 4

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

944

 Figure 8: Barbara image (512 X 512) - 16 X 16 Block (1,2,3) bits selected respectively

Figure 9: Barbara image (512 X 512) - 32 X 32 Block (1,2,3) bits selected respectively

Figure 10: Barbara image (512 X 512) - 64 X 64 Block (1,2,3) bits selected respectively

Figure 11: Colored Pepper image (512 X 512) - 4 X 4 Block (1,2,3) bits selected respectively

Journal of Theoretical and Applied Information Technology
28th February 2021. Vol.99. No 4

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

945

Figure 12: Colored Pepper image (512 X 512) - 8 X 8 Block (1,2,3) bits selected respectively

Figure 13: Colored Pepper image (512 X 512) - 16 X 16 Block (1,2,3) bits selected respectively

Figure 14: Colored Pepper image (512 X 512) – 32 X 32 Block (1,2,3) bits selected respectively

Figure 15: Colored Pepper image (512 X 512) – 64 X 64 Block (1,2,3) bits selected respectively

