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ABSTRACT 
 

Hyperspectral imaging (HSI) is a popular subject in remote sensing data processing because of the huge 
quantity of data included in these images, which enables for improved description and utilization of the 
surface of the earth by integrating abundant spectral and spatial data. However, due to the high 
dimensionality of HSI data and the limited number of labelled examples available, conducting HSI image 
classification poses significant technical and pragmatic hurdles. Approaches to HSI classification with deep 
learning have gained major successes in recent years as new deep learning algorithms emerge, giving 
unique prospects for hyperspectral image classification research and development. Initially, a quick 
introduction to standard deep learning (DL) models is provided, followed by a comparison of the 
performance of common DL based HSI approaches. Finally, the difficulties and future research prospects 
are explored. 
Keywords: Remote Sensing Image, Deep Learning, Auto-Encoder, Convolutional Neural Network, 

Stacked, Deep Belief Network. 
 
1. INTRODUCTION  
 

Remote hyperspectral sensing is an 
acquisition of digital images in numerous small 
spectral contiguous bands of earth material and 
creates complete spectral signatures. Hyperspectral 
imaging (HSI) gathers information and analyses it 
over the electromagnetic spectrum.  The goal of 
HSI is to get the spectrum of each pixel in a scene 
image in order to identify objects, materials, or 
processes. [1]. At a nominal spectral resolution of 
10 nanometers, a spectral band is defined as a 
distinct interval of the electromagnetic spectrum 
with wavelengths ranging from 0.4 micrometers to 
0.5 micrometers in one spectral band. The resulting 
hyperspectral images not only include a lot of 
spectral data, but they also have a lot of spatial data 
on the ground features. Hence, many applications 
have made use of hyperspectral remote sensing., 
such as precision agriculture [2], crop monitoring 
[3], and land resources [4], HSI has been employed 
in environmental protection to detect oil spills [5], 
water quality analysis [6], gas [7] and vegetation 
coverage [8], health of forests [9].  In the medical 
field, HSI has been used for skin testing to assess 
the health of human skin [10], military and defense 
applications [11].  Other domains where the usage 

of HSI had useful outcomes included security and 
so forth [12].  Classification is a basic activity that 
plays a significant part in land use and land cover 
applications, among the aforementioned 
applications. Several approaches for quickly 
processing and classifying hyperspectral images 
have been developed. [13]. In a variety of HSI data 
classification techniques, machine learning (ML) 
and deep learning (DL) methodologies are 
employed. This includes unsupervised methods like 
clustering. Often supervised classifiers are 
preferable because they may give high classification 
accuracies, however, while the limited availability 
of training data may influence these approaches, 
since they usually need several examples to get 
such good results. 

As deep learning technology has evolved 
fast over the past decade, it has attracted a great 
deal of interest. Deep learning technology, in 
contrast to standard machine learning models, does 
not require the creation of artificial feature patterns 
and can automatically learn data patterns. As a 
result, it has achieved great results in the domains 
of speech recognition, autonomous driving, 
semantic segmentation, object identification, and 
natural language processing. It was recently brought 
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into the field of HSI categorization as well. A 
variety of novel deep learning HSI classification 
models have been developed by researchers. Deep 
Learning techniques can automatically generate 
meaningful representations of input data at distinct 
scales. These learnt features have been successful in 
a variety of machine vision tasks.  

Deep belief networks were suggested 
using restricted Boltzmann machines, which 
represented a significant and early advance in DL. 
Following that, work based on Auto-encoder was 
developed, which trained the various intermediate 
levels of representation locally at each level. 
Convolutional neural networks, another DL 
architecture, have recently achieved significant 
results in computer vision, thanks to the model's 
deep structure, which allows it to capture and 
generalize filtering mechanisms by performing 
convolutions in the image domain, yielding abstract 
mathematical and efficient features. Despite its 
enormous promise, using Deep Learning for image 
classification in Remote Sensing (RS) introduces a 
slew of new problems. This is due to a number of 
factors: For first off, many RS data, particularly 
hyperspectral images (HSIs), contain hundreds of 
bands, requiring a high number of neurons in a DL 
network to retain a significant amount of data in a 
small region. The spectral curve vectors across 
bands, aside from the obvious geometrical motifs 
inside per band, may also give useful information. 
However, further study is needed to determine how 
to use this knowledge. Second, to obtain their often-
remarkable results, DL techniques rely on a large 
number of labelled samples. Unfortunately, there 
are very few labelled samples in the RS data. Third, 
RS images are more sophisticated than traditional 
natural scene images. A wide variety of objects may 
be included in the high-resolution RS images. In the 
first place, HSIs may be measured using a variety of 
sensors. A DL network structures for RS image 
classification cannot be constructed directly 
because to the complexity of the data. 

DL's use in RS image categorization is 
difficult because of the reasons listed above. 
Recognizing this, a number of techniques were 
presented in recent years to cope with such issues. 
An overview of such advancements is presented in 
this survey, with a particular focus on two essential 
aspects: pixel-wise classifying HSIs, and when it 
comes to the former, scene categorization for 
elevated airborne or satellite images is crucial., it's 
about figuring out what category each of the pixels 
in an RS scene image falls into, while the latter is 

about automatically assigning semantic labels to 
each of the images. 

The research in RS analysis is important 
due to its potential applications in real life. 
Hyperspectral imaging results in multiple bands of 
images that make the analysis challenging due to 
the increased volume of data. The spectral, as well 
as the spatial correlation between different bands, 
conveys useful information regarding the scene of 
interest. Recently, the convolutional neural network 
(CNN) is one of the most frequently used deep 
learning-based methods for HSI classification. 
These approaches are mostly based on 2-DCNN to 
extract the spatial and spectral features separately 
for HSI classification. On the other hand, the HSI 
classification performance is highly dependent on 
both spatial and spectral information. In the 
literature, there are several deep learning models 
proposed based on 3D-CNN proved to be more 
efficient than 2D-CNN models to extract joint 
spatial-spectral features for HSI classification. In 
this direction, we proposed different 3D-CNN 
based approaches to extract joint spatial-spectral 
features for HSI classification. 

The following is how this survey is 
structured. The second part describes common DL 
models used in HSI image classification, such as 
stacked auto-encoders, DBNs, and CNNs. The third 
section compares the classification performances of 
common deep learning techniques for HSI images. 
The fourth section reviews the current work and the 
fifth section address future difficulties, identifying 
prospective areas for future study in HSI image 
categorization using deep learning methods. 

 

2. TYPICAL DEEP NEURAL NETWORK 
MODELS 

 
  We'll examine at three typical deep neural 
network models that were used to classify RS 
images in this part. 

 
2.1 Auto Encoders (AEs) 

Effective feature extraction becomes a key 
preprocessing step for modelling the data's 
underlying structures and relationships, decreasing 
the Hughes effect and the curse of dimensionality 
while handling with HSI data classification 
problems. To conduct unsupervised coding from 
HSI data, autoencoders have been frequently 
utilized as deep models. n its operating mode, the 
AE design does not conduct any classification tasks, 
but instead reconstructs the input data by decreasing 

 [14]. In reality, the fundamental 
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strength of these models is their capacity to reflect 
the exact input data into a new space, resulting in 
squeezed, stretched, or perhaps even equitably 
results with the lowest degree of deformation 
conceivable. As shown in Figure 1, this projection 
is carried out using a conventional architecture 
consisting of encoder and decoder networks 
connected by a bottleneck layer that depicts the 
hidden region. Due to the existing connection 
between neighboring bands, HSI-AEs evolved as 
generally pixel-wise techniques, which are 
commonly used to perform dimensionality 
reduction (DR) and greater extent spectral FE. In 
this case, the encoder takes the spectral pixel 

 as input and represents it in a new 

space using a hierarchical collection of 
recognition weights or encoder components. The 
resulting code vector or code dictionary 

 is then sent into the decoder, which 

applies a set of  generating weights on the 
output matrix in order to restore and/or resemble the 

input matrix .  

In the literature, there have been numerous 
AE models developed for HSI data analysis. Zhu et 
al. [15], proposed an unsupervised tied AE for 
spatial frequency FE based on the highest 
uncertainty ratio as a pre-processing DR process 
and perfect through Softmax categorization. Okan 
et al. [16], proposed a pixel-wise stacked AE, which 
uses a two-step training method that includes 
unsupervised and supervised learning before the 
final supervised classification using regression 
analysis. Mughees et al. [17], created an SAE for 
spectrum processing, while an evolutionary 
perimeter alteration segmentation technique is used 
for spatial analysis. As a consequence, a majority 
voting-based approach is used to merge the 
spectral-based categorization image with the 
spatial-based narrow band segmentation image. 
Paul et al. [18], propose a segmented-SAE for 
spectral-spatial HSI classification process as an 
advancement on the SAE, which uses consensual 
data to conduct spectral segmentation and syntactic 
statuses to comprehend the spatial data contained in 
the HSI cube, minimizing its sophistication and 
computational periods. 

Zhou et al. [19], developed a two-stage AE 
termed concise and discrete SAE, in which the first 
stage trains a discriminative SAE to learn a 
physical infrastructure by reducing the training 
error, and the second phase conducts data 
classification while updating the DSAE's 
parameters. AEs have also been used with neural 

networks like CNNs to derive spectral 
characteristics. 
 

 
 

Figure 1: Typical Representation of Autoencoder, A 
Bottleneck Layer Connects the Two Major Parts: An 

Encoder and A Decoder. 

 
2.2 Deep Belief Networks (DBNs) 

DBNs construct a probabilistic graphical 
model in the form of a directed acyclic graph by 
combining probability and graph theory. Several 
papers in the literature discuss how to construct 
DBNs by stacking unsupervised networks like 
limited Boltzmann models with a pessimistic 
training algorithm as the optimizer. 

DBNs have been used to conduct FE in 
HSI data processing as a version of the AE 
framework incorporating pessimistic layer-wise 
learning. In this regard, Li et al. [20] employ a DBN 
for extracting features, stacking spectral-spatial data 
and using logistic regression to classify. Chen et al. 
[21] also uses three DBNs to retrieve spatial, 
spectral, and spatial-spectral elevated characteristics 
from HSI data in a systematic way, and then use 
regression models to accomplish the final 
classification model. Several efforts have been 
made to improve the HSI classification efficiency 
of this type of DNN. For example, Le et al. [22], 
examine the hyper-parameters utilized by Chen et 
al. [21]'s spectral and spectral-spatial DBNs, 
whereas Zhong et al. [23], developed a 
diversification DBN for HSI classification that 
maintain standards the pre-training and fine-tuning 
processes by a factor of ten. Guofeng et al. [24] use 
kernel PCA and PCA to enhance conventional DBN 
learning approach and prevent the influence of 
gradient disappearance. Zhou et al. [25], created a 
group belief network based on DBNs that takes into 
account the properties of combined spatial-spectral 
characteristics from HSI by changing the lower 
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layer of every RBM that makes up the network 
model. 

Despite DBNs are potential DL techniques 
for HSI information classification, however suffer 
from the same restriction as SAEs: such neural 
models are intended for evaluating 1-dimensional, 
thus the extensive spatial information included in 
HSI cubes should be high accuracy in order to 
access the data simultaneously. Finally, this sort of 
spectral-spatial processing can't fully include the 
spatial-contextual data contained in HSI cubes. 
 
2.3 Convolutional Neural Networks (CNN) 

CNN uses a multi-layer trained 
architecture consisting of a convolution, pooling, 
and fully connected layers. The input maps are 
concatenated using trainable kernels and then 
passed through from the activation function to 
produce the outcome image features as a 
consequence of convolution layers. Figure 2 depicts 
a typical CNN architecture. Every hidden layer 
entity is coupled by shared weights to the local 
responsive field over the input instead of being 
entirely connected to the input in the converting 
layer, which may be 2-dimensional size m x n 
feature maps in the convolution layer. The 
convolution layer produces a concentration of the 

 input feature maps with a  kernel of the size 
 and a nonlinear element activation 

feature, which subsequently applies to the output 
maps. To predict classification labels, fully 
connected with Softmax layers are applied after 
stacked layers have been completed.  

A CNN's architecture is made up of two 
distinct components, which may be viewed as two 
networks. The FE-net, which is made up of a 
various leveled stack of extracting features and 
recognition phases that gets to know elevated 
interpretations of the inputs, and the classifier, 
which is made up of a stack of FC layers that 
accomplishes the very last classification process of 

calculating the subscription of every input, are both 
prepared as a final method to enhance all of the 
weights in the CNN. According to Murugan et al. 
[26], the FE-net is made up of several hierarchically 
stratified separation and identification stages, with 
CONV, activation, and POOL layers being widely 
utilized in these sub mapping functions. The CNN 
approach can extract local stationarity properties of 
X in this way, revealing the properties that are 
common throughout the data source using regional 
kernels. In reality, the CNN's feature extraction is 
quite similar to that of other DNN models, in that 
the initial stages may identify identifiable 
characteristics, while the final phases integrate all 
of the characteristics identified by the preceding 
layers to detect further creative traits. However, as 
shown in Figure 2, the flexibility in kernel design 
helps in effective and environmental retrieval of 
spatial, spectral, and spectral-spatial features, 
whereas the regionally existence of convolutional 
kernels, combined with parameter-sharing 
throughout layers, reduces the value of variables 
that need to be fine-tuned by the approach, 
producing evaluations faster. The classifier net, in 
particular, conducts the final classification utilizing 
the data received by the FE-network. Typically, this 
component is done in phases made up of ReLU and 
FC layers, with Softmax placed on last FC layer. 

Furthermore, a normal MLP structure or 
alternative classifiers like SVM or logistic 
regression can be used to create the classifier net. 
The classifier can also be ignored, with the first 
portion, the FE-net, being used for different 
applications like unsupervised FE. There are three 
kinds of CNN methods for HSI categorization in 
the present literature, regardless of whether they 
conduct spatial, spectral, or spectral-spatial 
selection of feature. We'll look at some of the 
works that are currently available in each category 
in the sections that follow.  

 

 

 
Figure 2: Typical CNN Structure Illustration. 
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Figure 3: Traditional Spectral Convolutional Model Architecture Employed By 1D-CNN 

 
2.3.1 Spectral CNN models 

In spectral models like the one shown in 
Figure 3, the input data is spectral pixels 

, where  can be the amount 
of bands  or a acceptable number of spectral 
channels , retrieved using PCA, to which 1D 
kernels were implemented on every CONV layer, 

, resulting in an output  composed of 
feature vectors. Li et al. [27] present a 1D-

CNNframework for investigating spectral data 
associated between pixels by retrieving pixel pair 
features from the source information, with the 
central pixel and every one of its immediate 
neighbors as source. Likewise, Du and Li [28] build 
subtraction PPFs for HSI target detection, with the 
spectral difference between the central pixel and its 
surrounding pixels as the 1D-CNN model's input.  

Mei et al. [29] add batch normalization 
layers, a dropout mechanism, and a novel nonlinear 
activation function to the 1D-CNN architecture, 
training the model using the pixel's wavelength, the 
spectral mean of nearby pixels, and the standard 
deviations per spectral band of adjacent pixels. 

 
2.3.2 Spatial CNN models 

When it comes to spatial models, they 
solely take into account spatial data from the HSI 
dataset. In this case, 2D-CNN architectures are 
commonly used to analyze spatial data, with each 
CONV layer applying  kernels to 
the input data, yielding  feature maps as shown 
in Figure 4. By decreasing the spectral dimension 
with a DR technique like PCA and reducing spatial 
regions of  pixel-centered neighbors, spatial 
data may be recovered from the primary HSI 
dataset.  

Haut et al. [30] prepare a 2D-CNN with 
one PC, whereas Liang and Li [31] train a 2D-CNN 
with three PCs and use sparse coding to post-

process the recovered spatial features to produce a 
discreate lexicon of more reflective spatial 
characteristics for classification. The random 
patches network is a 2D-CNN framework presented 
by Xu et al. [32], in which input data is lightened 
using PCA and three PCs are considered. In 
addition, Zheng et al. [33] use a 2D-CNN to 
accomplish final classification with six PCs as 
input. Zhao et al. [34] present a 2D-CNN 
framework for retrieving deep spatial 
characteristics that uses a multiscale convolutional 
AE derived on the Laplacian pyramid, and a PCA 
to retrieve three PCs on the other. Then, using 
logistic regression as a classifier, the collected 
spatial characteristics are combined with the 
spectral data. Zhu et al. [35] have presented a 2D-
CNN adaptive HSI classification network, made up 
of adaptive convolutions and down sampling that 
merge the surrounding metadata of each input 
sample adaptively.  
 
2.3.3 Spectral-spatial CNN models  

As shown in Figure 5, There are models 
that take into consideration both spectral and spatial 
characteristics from the HSI cube. Many different 
techniques and architectures may be devised to 
accomplish spectral-spatial processing because of 
the versatility of CNN models. 2D-CNN 
architectures with spectral-spatial handcrafted 
features can conduct the spectral-spatial processing.  

He et al. [36], for example, use covariance 
matrices to train the 2D-CNN model, which store 
the spectral-spatial examples of various regions of 
20 PCs, resulting in variationally correlation maps. 
Aptoula et al. [37] employ attribute profiles as input 
to the 2D-CNN model, using spatial-spectral 
information that APs may collect in an image at 
multiple scales. Yue et al. [38] create a 2D-CNN 
model to analyze spectral-spatial characteristics by 



Journal of Theoretical and Applied Information Technology 
31st December 2021. Vol.99. No 24 

© 2021 Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
6047 

 

 
Figure 4: Traditional Spatial Convolutional Model Architecture Employed By 2D-CNN 

 
 

 
 

Figure 5: Traditional Spatial-Spectral Convolutional Model Architecture Employed By 3D-CNN 
 

combining spectral information into three 
feature regions and appending them to spatial 
regions. As an example, Zhao and Du [39] 
presented a spectral-spatial feature-based 
classification framework that uses a 2D-CNN to 
find spatial information, while a symmetric local 
differential embed is used to retrieve spectral 
features. A SAE is used by Yue et al. [40] to 
retrieve spectral characteristics, while a 2D-CNN 
with spatial pyramid pooling performs a multiscale 
spatial FE. It has been shown that the hierarchical 
spatial-spectral features derived from the 1D-
CNN1D or 2D-CNN may be used with Softmax 
regression classifiers to get the final classification.  

For spectral-spatial classification, 3D-
CNN is often used in addition to 1D-CNN and 2D-
CNN. The 3-D filters of size 

 are capable of extracting 
high-level features in a natural fashion, resulting in 

 feature volumes as output. Chen et al. [41] 
compare three types of convolutional models using 
HSI data as input blocks, while Li et al. [42] 

compare the spectral-spatial 3D-CNN framework, 
two spectral-based techniques, and the spatial 2D-
CNN for HSI data categorization, highlighting the 
advantages of using convolutional models. The 
existing literature, like that for 1D-CNN and 2D-
CNN models, offers increasingly complicated and 
advanced techniques for HSI processing utilizing 
3D-CNN structures. Luo et al. [43], for example, 
create a hybrid CNN2D-3D architecture that can 
handle overfitting concerns by utilizing a three-
dimensional kernel as the network's initial layer to 
retrieve relevant features from the original 3D 
inputs, which have a limited neighboring frame. 
The acquired features are subsequently reshaped 
into a single matrix, which is then sent to the next 
2-D kernel, as well as the pooling and FC layers, 
resulting in a final classification. 

As seen by recent articles, researchers are 
attempting to build deeper and more complicated 
networks by including novel configurations, 
additional nodes and links, finer optimizers and 
functionalities, as well as other innovations. 
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TABLE 1: Description of Popularly used Benchmark Hyperspectral Image Datasets 

Parameters Salinas (SA) Pavia University (PU) Indian Pines (IP) 
Spatial Dimension 512 × 217 610 × 340 145 × 145 

No. of Spectral Bands 200 115 200 

No. of Classes 16 9 16 

Wavelength Range 360–2500 µm 0.43–0.86 µm 0.4–2.5µm 

Sensor AVIRIS ROSIS AVIRIS 

 
 

TABLE 2: Number of Available Samples in the Salinas Scene, Pavia University, and Indian Pines Datasets with 
Ground-Truths. 

Salinas (SA) Pavia University (PU) Indian Pines (IP) 

 
 

 

   
S. No. Land Cover 

Type 
Samples 

 

S. No. Land Cover 
Type 

Samples 
 

S. No. Land Cover 
Type 

Samples 
 

1 
 

Brocoli-green-weeds-1  2009 

2 
 

Brocoli-green-weeds-2   3726 

3 
 

Fallow  1976 

4 
4 

Fallow-rough-plow  1394 

5 
 

Fallow-smooth  2678 

6 
 

Stubble  959 

7 
 

Celery  3579 

8 
 

Grapes-untrained  11271 

9 
 

 Soil-vinyard-develop  6203 

10 
 

Corn-senesced-green  3278 

11 
 

Lettuce-romaine-4wk  1068 

12 
 

Lettuce-romaine-5wk  1927 

13 
 

Lettuce-romaine-6wk  916 

14 
 

Lettuce-romaine-7wk  1070 

15 
 

Vinyard-untrained  7268 

16 
 

Vinyard-vertical-trellis  1807 
 

1 
 

Asphalt  6631  

2 
 

Meadows  18649  

3 
 

Gravel  2099 

4 
 

Trees  3064 

5 
 

Painted metal sheets  1345 

6 
 

Bare Soil  5029 

7 
 

Bitumen  1330 

8 
 

Self-Blocking Brick  3682 

9 
 

Shadows   947 
 

1 
 

Alfalfa  46 
 2 

 
Corn-notill  

 
1428 

 3 
 

Corn-mintill  
 

830 
 4 

 
Corn  

 
237 

 5 
 

Grass-pasture  
 

483 
 6 

 
Grass-trees  

 
730 

 7 
 

Grass-pasture  
 

28 
 8 

 
Hay-windrowed  

 
478 

 9 
 

Oats  
 

20 
 10 

 
Soybean-notill  
 

972 
 11 

 
Soybean-mintill  
 

2455 
 12 

 
Soybean-clean  
 

593 
 13 

 
Wheat  
 

205 
 14 

 
Woods  
 

1265 
 15 

 
Buildings-Grass 
 

386 
 16 

 
Stone-Steel 
 

93 
  

Total Samples 54129 Total Samples 42776 Total Samples 10249 
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All category accuracies have a mean value of AA. 
The following equation (1) is for Kappa for more 
complete indicator: 
 
 

 =               (1) 

 
where N represents the total samples, r denotes the 
total number of categories, and Xij is the (i, i)th 
value of the confusion matrix X, with Xi+ and X+i 
representing the summation of the ith row and ith 
column of X, respectively. 
 
3. DATASETS DESCRIPTION AND 

PERFORMANCE INDICATORS 
 
We compare the most common deep learning-based 
models to conventional machine learning based 
models after analyzing the key models and 
frameworks in order to evaluate the benefits and 
advantages that deep learning models may achieve 
in terms of reliability and classification accuracy. 
Towards this aim, the AVIRIS-collected Indian 
Pines (IP) and Salinas Valley (SV) sceneries, as 
well as the ROSIS-collected University of Pavia 
(UP) scene, were selected to produce the 
experimental component of the study. Table 1 
illustrates the specifics of these data sets and Table 
2 summarizes the number of labelled samples per 
category and the ground-truth information provided 
in distinct HSI datasets. Three evaluation measures, 
average accuracy (AA), overall accuracy (OA), and 
kappa coefficient (K), are used to assess 
classification results on benchmark data sets, as is 
typical in the literature. The overall sample count is 
equal to the number of correctly classified samples 
divided by the total number of samples. 
 
4. EXPERIMENTAL RESULTS AND 
ANALYSIS 
 

We look at three popular DL models for 
HSI classification in this section: CNN, SAE, and 
DBN, which employ spectral, spatial, and spectral-
spatial data. Pavia University dataset is considered 
as an example for the comparisons. For CNN and 

DBN-based classification, 10% and 50% labeled 
samples are randomly picked as training examples, 
respectively. For SAE-based classification, labeled 
samples are separated into three groups: learning, 
validating, and test set, using a 6:2:2 split ratio. 
Table 3 shows the classification findings. In terms 
of classification accuracy, spectral-spatial feature-
based classification techniques showed the best 
performance, followed by spatial feature-based 
classification techniques in second place, and 
spectral feature-based classification techniques in 
third place, as shown in Table 3.  

In HSI, some pixels belong to distinct 
objects and have the same spectral character, while 
others belong to the same item but have distinct 
spectral characteristics. It's challenging to identify 
those pixels only on the basis of spectral 
information. Furthermore, methods that simply 
consider spectral data frequently miss out on spatial 
pattern characteristics, having a negative impact. 
Spatial feature-based classification techniques use 
the spatial information in HSI to classify objects. 
However, during the dimensionality reduction 
process, some spectral information may be lost. 
Spatial-spectral feature-based categorization 
methods maximize HSI by combining spatial and 
spectral information. As a consequence, they 
produce the best results. 

We evaluate five spatial-spectral feature-
based classification models based on SAE, DBN, 
2D-CNN, and 3D-CNN by separating the labelled 
samples 1:1 into train and test. Table 4 lists the 
experimental findings, whereas Figures 6, 7, and 8 
illustrate the visual classification results for the IP, 
PU, and SA datasets, respectively. As demonstrated 
in Figures 6 through 8, CNN-based HSI spectral-
spatial feature classification techniques, such as 3D-
CNN and 2D-CNN, outperform SAE and DBN-
based methods. It's worth noting that HSI 
classification techniques based on SAEs and DBNs 
are established before in history than those based on 
CNNs. However, statistically, the number of papers 
on the use of CNNs for HSI classification appears 
to be increasing at a quicker rate recently, and CNN 
performance is typically superior. 

TABLE 3: Classification Accuracies (in %) on Pavia University Datasets. 

 
Model 

Spectral feature Spatial feature Spectral-spatial feature 
OA AA Kappa (×100) OA AA Kappa (×100) OA AA Kappa (×100) 

CNN [41] 92.28  92.55  90.37  94.04  97.52  92.43  99.54  99.77  99.56 

SAE [44] 95.14  94.01  93.70  98.12  97.32  97.55  98.52  97.82  98.07 

DBN [45] 96.42  95.09  95.30  98.62  97.95  98.19  99.05  98.48  98.75 
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TABLE 4: Classification Accuracies (in %) on PU, SA, and IP Datasets. 

 
Models 

Pavia University Salinas Indian Pines 

OA AA Kappa  OA AA Kappa  OA AA Kappa  

SAE [17] 89.35 88.28 0.8745 90.46 89.73 0.8924 98.64 98.92 97.56 

DBN [21] 99.05 98.48 0.9875 99.27 98.92 0.9902 95.95 95.45 0.9539 

2D-CNN [30] 99.09 99.53 0.9880 99.64 99.12 0.9942 97.50 98.66 0.9715 

3D-CNN [42] 99.39 98.85 0.9920 99.82 99.36 0.9957 99.07 98.68 0.9893 

 
 

(a) (b) (c) (d) 

 
Figure 6: IP Dataset Classification Maps, (a) SAE, (b) DBN, (c) 2D-CNN, (d) 3D-CNN  

 
 

(a) (b) (c) (d) 

 
Figure 7: PU Dataset Classification Maps, (a) SAE, (b) DBN, (c) 2D-CNN, (d) 3D-CNN 
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(a) (b) (c) (d) 
 

Figure 8: SA Dataset Classification Maps, (a) SAE, (b) DBN, (c) 2D-CNN, (d) 3D-CNN 
 
 

5. CONCLUSION 
 

We briefly discussed a variety of common 
deep learning approaches that can be utilized to 
conduct Hyperspectral image classification in this 
literature review, including CNNs, SAEs, and 
DBNs. We conducted a systematic assessment of 
present state-of-the-art deep learning methods for 
HSI classification. DL has been used to explore 
classification techniques based on spectral features, 
spatial features, and combined spectral and spatial 
features. We've also compared and examined the 
results of several common approaches. The 
usefulness of DL-based HSI classification 
approaches in tackling real-world issues has been 
demonstrated, however this accomplishment does 
not yet exhibit the maximum capabilities of DL. 
Because of the growing availability of Remotely 
sensed data and computing resources, fast progress 
of DL in remote sensing image classification is 
predicted in the future years. Nonetheless, there is 
indeed a still far to go in terms of achieving 
maximum potential when dealing with several 
challenging factors. Other HSI classification 
approaches have also been developed. These 
approaches have the potential to improve 
performance and should thus be considered. For 
example, Zhu et al. [46], suggested a multiple 3D 
feature fusion model to retrieve spectral-spatial 
characteristics, while Fang et al. [47], developed a 
unique fused network to utilize the data for HSI 
classification. Recent advancements aren't 

addressed in depth in this paper, although they 
could be beneficial in the future. 
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