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ABSTRACT 
 

This study aims to develop a robust nonparametric regression-based path analysis with the assumption of 
linearity. This study used a multivariate approach, namely nonparametric path analysis. The conclusion that 
can be obtained is that the properties of the spline estimator in Nonparametric Regression-Based Path 
Analysis using the PWLS approach, hypothesis testing on each relationship between variables in 
Nonparametric Regression-Based Path Analysis using the PWLS approach, as well as several findings 
regarding confidence intervals. The novelty of this research is to describe the estimation of nonparametric 
path analysis parameters through lemmas and theorems. 
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1. INTRODUCTION  
 

Path analysis is the development of a 
parametric regression analysis that has more than 
one equation and between equations is presented 
structurally, where the structural equation is 
characterized by at least one exogenous variable 
(X), at least one endogenous intervening variable 
(Y), and one pure endogenous variable (Z). The 
main assumption in path analysis is that the 
relationship between variables is linearity [1]. The 
assumption of linearity sometimes cannot be 
fulfilled in several studies, such as the results found 
by Arisoesilaningsih et al. [2] stated that the 
relationship between growth and production of 
porang tubers is influenced by variations in plant 
age, vegetation conditions, soil conditions, and 
agroforestry climatic conditions that do not meet 
the linearity assumption. In the application, it is 
very difficult to get these functions precisely, and 
even symptoms often show that the data obtained 
does not or does not show a relationship pattern that 
is easy to describe. If the assumption of linearity is 
not fulfilled and the form of nonlinearity is 
unknown, then one alternative that can be used is a 
nonparametric regression model. 

The pattern of the relationship between 
responses and unknown predictors can be estimated 
using the Spline function approach [3]-[5], Local 

Polynomials [6], Kernel [7], Wavelets [8], and the 
Fourier Series [9]. This study developed a 
nonparametric regression-based path analysis using 
a spline path estimator. The regression curve used 
is assumed to be smooth, in the sense that it is 
contained in a certain function space, especially the 
Sobolev space, where m is the order of the spline 
polynomial. To get the regression curve estimation, 
the optimization is used Weighted Least Square 
(WLS) or Penalized Weighted Least Square 
(PWLS) [10]. 

Based on the above phenomena, this study aims 
to develop a nonparametric regression-based path 
analysis that is robust in the assumption of linearity. 
This research is expected to obtain the properties of 
the spline estimator in the Nonparametric 
Regression-based Path Analysis using the Penalized 
Weighted Least Square approach, to obtain 
hypothesis testing on each relationship between 
variables in the Nonparametric Regression-based 
Path Analysis using the Penalized Weighted Least 
Square approach, and to obtain the optimal 
confidence interval for each relationship between 
variables in Path Analysis. based on Nonparametric 
Regression using the Penalized Weighted Least 
Square approach. 

2. LITERATURE REVIEW 
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2.1 Path Analysis 
Path analysis was developed by Sewall Wright 

in 1934. Sewall Wright developed this method as a 
means of studying the direct effects and indirect 
effects of several variables where some variables 
are seen as causes and other variables are seen as 
effects [11]. Path analysis is also known as causing 
modeling because path analysis makes it possible to 
test the theoretical proportions of the cause and 
effect relationships of certain variables. 

The following are the assumptions underlying 
path analysis, namely: The relationship between 
variables must be linear and additive [1]. The path 
diagram is the basis of path analysis, which is a 
procedure for empirical estimation of the strength 
of each relationship depicted in the path diagram 
[12]. Path diagrams are used to graphically display 
both measured and unmeasured causal relationships 

2.2 Nonparametric Regression Analysis 
This study developed a nonparametric 

regression-based path analysis, specifically spline. 
Therefore, this research requires several supporting 
theories that can later be used to complete this 
research. Some of these theories are as follows:  
1. Kernel Functions and Spline Functions and 

their properties. Kernel functions include 
Gaussian Kernel, Ephanicov Kernel and 
Uniform Kernel, and the Spline function will 
be applied to investigate the behavior of the 
Kernel and Spline mixture estimators for 
estimating multivariable semiparametric 
regression curves. 

2. Nonparametric regression analysis. 
Nonparametric regression analysis, is used as 
the basic theory in developing a mixture 
estimator of Spline and Kernel in multivariable 
semiparametric regression. 

3. Optimization of Penalized Weighted Least 
Square (PWLS). The Penalized Weighted 
Least Square optimization concept is used to 
find the estimator form of a mixture of Kernel 
and Spline to estimate the regression curve, 
both in multivariable nonparametric regression 
and multivariable semiparametric regression. 

4. The Hilbert Space Reproducing Kernel Method 
(HSRK). The Space Reproducing Kernel 
Method method was used to solve the PLS 
optimization in multivariable and 
semiparametric multivariable regression 
models. 

5. The basic concept of the Sobolev space. The 
Sobolev space is used as a basic function space 
in multivariable and semiparametric 
nonparametric regression analysis, where the 

regression curve is assumed to fit in the 
Sobolev space. 

6. The concept of the Generalized Cross 
Validation (GCV) method. The Generalized 
Cross Validation method, which has been 
developed by researchers on cross section data, 
will be generalized into a function that will be 
used as a method for selecting optimal knot 
points and bandwidth parameters in the Spline 
and Kernel mixture estimators in multivariable 
semiparametric regression. 

3. METHOD 
 

This research was conducted at the 
Statistics Computer Laboratory, Statistics 
Department, Universitas Brawijaya for the 
development of statistical modeling theory. This 
study describes the properties of the spline 
estimator in Nonparametric Regression-Based Path 
Analysis using the Penalized Weighted Least 
Square approach, and constructs the lemma 
theorem. 

 
4. RESULTS AND DISCUSSION 
 
Properties of Estimates 
The first objective of the study is to obtain the 
properties of the spline estimator in the 
Nonparametric Regression-based Path Analysis 
using the Penalized Weighted Least Square 
approach. 
Asymptotic properties 
Several goodness estimator criteria have been 
developed by many authors. In nonparametric 
regression, it is often noted that the estimator's 
asymptotic behavior is based on a certain measure 
of goodness. If squared risk criteria are used as the 
goodness of the regression curve estimator, The 
estimator will converge in terms of velocity,  

0 1,n     , in contrast to the parametric case 

which can achieve velocity 1n  under regular terms 
[13]. 
 

In this paper, we investigate the asymptotic 
nature of a weighted spline estimator  based on 
the Integrated Mean Square Error (IMSE) criteria. 
Previously, the following assumptions were given. 

Assumption:

  2 1
0 . , 1, 2,...,

2


 j

j
A t j n

n
 (1) 

Then, Integrated Mean Square Error (λ) is 
composed of two terms, bias and variance. 
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        

      

      

    
      

1 2

0

1 2

0

1 2

0

1

0
2

IMSE E f t f t w t dt

E f t Ef t w t dt

E Ef t f t w t dt

f t Ef t

Ef t Ef t w t dt











  

 

 

 








 

 
   2b V    (2) 

With         
1

22

0

b E f t Ef t w t dt    

and         
1

2

0

V t E Ef t f t w t dt   

The first step, investigated the asymptotic 

properties of the quadratic bias component  2b   

 
Theorem 1 

If  
 tf  completion of minimizing the PLST: 

 

      
1 22

1

1 0

n
m

j j j
j

n w y g t g t dt



      (3) 

then the solution is to minimize the PLST: 
 

is    *g t Ef t  . (4) 

Proof: 
Theorem 1 provides a solution to minimize the 
Penalized Weighted Least Square: 

      
1 22

1

1 0

n
m

j j j
j

n w y g t g t dt



       (5) 

can be written as: 
   

  

11 1

11 1 1

' ' '

' ' '

f t

y

 



 

  

 

 



T S WT T S W

S W I T T S WT T S W

 (6) 

By pairing    , 1,2,...,j jf t y j n   the minimum 

completion: 

        
1 22

1

1 0

n
m

j j j
j

n w f t g t g t dt



       (7) 

can be written as: 

    
  

   

11 1

11 1

1

* ' ' '

              ' '

              '

g t

f t

 



 

 





   
 

T S WT T S W

S W I T T S WT

T S W

 

 Ef t , with       1 ,..., 'nf t f t f t  (8) 

The following theorem, presents the asymptotic 
properties of the quadratic bias component. 
 
Theorem 2 

If (A0) applies then    2b   O , n  .  

Proof: 
Suppose that  *g t  the minimum completion:  

          
1 1 22

0 0

mf t g t w t dt g t dt        (9) 

Because (A0), then for n  . 

    

      

2
1

1

1
2

0

n

j j j
j

n w f t g t

f t g t w t dt







 




 (10) 

as a result, so      g t Ef t g t     

So for every  2 0,1 ,mg W  

        

      
   

1 22

0

1 2

0

21

0

m

b E f t Ef t w t dt

E f t Ef t w t dt

g t dt









 

 

   








 (11) 

Remember that    Ef t g t  , so obtained:  

        

   

1
22

0

1 2

0

          m

b E f t g t w t dt

g t dt





 

   







 (12) 

to  2 0,1 ,mg  W  so we can conclude that: 

        

   

1
22

0

1 2

0

         m

b E f t g t w t dt

g t dt





 

   







  (13) 

Because it applies to every  2 0,1 ,mg  W  then by 

taking    g t f t , can be obtained that:  

     
 

212

0

mb g t dt 



   



O

  (14) 



Journal of Theoretical and Applied Information Technology 
15th December 2021. Vol.99. No 23 

© 2021 Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
5605 

 

The following is derived asymptotic properties 

 V .  

Define: 

     , ; ,f h f h f h              R J and 

 2 0,1 ,mh W  

With     2
1

1

n

j j j
j

g n w y g t



  and 

      
1 2

0

mJ g g t dt     

For any value 2, [0,1],mf g W
 

 

      
        

2
1

1

1 2

0

, ,
n

j j j j
j

m m

f g n w y f t g t

f t g t dt

 

 





   

 





   (15) 

 , ,
0

d f g

d





 and 0   will give:  

            
1

1

1 0

n
m m

j j j j
j

n w g t y f t f t g t dt



    

If 1,..., n  base for natural splines and 

 
1

( )
n

k k
k

f t t 


 , then Lemma 1, gives:  

   

     
1 1

1 1

1 2 1 !

n n

j j j k k j
j k

n n
m

j k jk
j k

w g t y t

n m g t d

 

 

 

 

 
 

 

  

 

 
 (16) 

Because it applies to every  2 0,1mg  W , the last 

equation is equivalent to finding k  which fulfills:  

      1

1

1 2 1 !
n

m

j j jk k j k
k

y n m w d t  



     (17) 

1, 2,...,j n  

By presenting the matrix, it can be obtained: 

    11 2 1 !
m

y n m     


W K  (18) 

with  , , 1, 2,...,jkd k j n K ,and 

   , , 1, 2,...,k jt k j n    

Then, can be obtained that:  

 1 1 1'y n      


W FB F W , (19) 

with 'B F VF . 
If the last equation is multiplied from the left with 

'  can be obtained that:  

 1 1 1' ' ' 'y n         W FB F W  (20) 

So, the estimator   obtained from the equation:  

  11 1 1

1

' ' ' '

1 1
,..., '

1 1 n

n y

diag y
n n

     


 

   

 
    

W FB F W




 (21) 

Estimator  f t  can presented in the equation:  

   
1

1

1
'

1

n

k k
k

n

k k
k k

f t t

y
n

  

 














  (22) 

The asymptotic property of the variance component 
is given by the theorem below. 
 
Theorem 3  

If (A0) applies then 
  1/2

1
,

1 mn

n




    
 

V O
 

Proof: 

   

   

1

1 1

1
'

1

1

1

n

k k
k k

n n

k r r k
k rk

f t y t
n

t y t
n

  


 




 









 
 (23) 

  
 

 

   

    
 

2
2

2
1

1

1

2
1 2

2
1

V a r

1

M a x
1

n
k

k k

n

k r k r r
r

n
k

j
i j n

k k

f t

t

n

t t w

t
w

n






 

 




 









 













 (24) 
So that: 

       
1

2

0

( 2 2 )E Ef t f t w t dt  V  (25) 

     
1

1 2 2
21

1 0

1
(

(1 )

n

j k
j n

k

Max w t w t dt
n k

 




 



   

For n ->∞, [13] and [14], provide an approach that: 

     
1

1 1

1 0

  
n

r k r k
r

n n w t t w t dt  



    (26) 

    1 2 1
21

1

1

(1 )

n

j
j n

k

Max w n
k

 


 

 



V  (27) 

Furthermore [13]: 

    1 2 1
21 2

1

1

1 ( )

n

j
j n m

k

Max w n
k

 
 

 

 



  

V  (28) 

With the integral approach obtained that: 
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     2
1

1/ 2 2 21
0 (1 )j m mj n

dx
Max w

n x


 




 


V  

 1/ 2

1
,

m
m

n



 K  

  
1/2

1
mn

   
 

O  (29) 

With     2
1

2 21
0

,
(1 )j mj n

dx
m Max w

x







 


K  

By combining the quadratic bias and 
variance components, the asymptotic behavior of 
Integrated Mean Square Error is obtained, which is 
fully provided by the following results. 
Consequence   
If (A0) applies then  

    1/2

1
,

m
IMSE n

n
 


    
 

O   (30) 

Proof: 
This result is proofed by combining Theorem 2 and 
Theorem 3  
The following theorem, presents the convergence 
speed of the weighted spline estimator which can 

reach the level  2 / 2 1m mn  , based on Integrated 
Mean Square Error criteria. 
 
Theorem 4  

   2if 0,1  dan A0  applies thenmf  W
1/2to , 0, mn n      

(i).   2 / 2 1  andm m
opi n   O  

(ii).     2 / 2 1m m
optIMSE n   O  

Proof: 

 IMSE  can be written as:  

      1/2

1
) , ,

m
IMSE m m

n
  


    
 

K K    (31) 

With K (m) and K (σ, m) constants that do not 
contain λ. by lowering the Integrated Mean Square 
Error (λ) against λ, then the result is equalized to 
zero, the first part of Theorem is proofed. The 
second part of theorem is obtained by substituting 

opt . Theorem of the first part into the 

 IMSE  . 

Consistent Properties of Parametic Component 
Estimators 
 In this section we will investigate the 

consistent nature of the 
~
̂  in the nonparametric 

regression model. For this purpose, the following 
assumptions are given  

A1.  ; 1nX n  is a sequence of random variables 

that are distributed identically and independently 
with zero mean and with variation 

, 0 , 1,2,...,jv v v j rp      

A2.    0E  
 

  

A3.  2 2     , 1,2,..., ; 1,2,...,jk kE x e j rp k rn      

A4.  2 2     , 1,2,..., ; 1,2,...,jk kE x s j rp k rn     

Based on these assumptions, the following 
items are compiled to demonstrate the consistent 

nature of the parametric component estimators 
~
̂ .    

Lemma 1: 

 If 
~

ˆ
n  is a sequence of parametic 

component estimators given by Theorem 1, then: 

 

 

 

1

~

 

ˆ T T T
n

TT

T T T

f

  



  


    

      
  



 

  

X BX X A BX

X I A B

X B X A B

 (32) 

Proof: 
Based on Theorem 1, can be obtained that: 

   

 
   

 
   

 

1

~

1

1

ˆ

             

         

         

        

T TT T
n

T TT T

T TT T

f

f

f

   

  

 



 









          

  

         



   





     









 

 

 



 



X I A BX X I A

B X

X I A BX X I A

B

X I A BX X I A

            

        

B

     

 

   

 

 

  
 

1

1

           

 

        

 

            

T TT T

TT

TT

TT

T T

f

f

 

 



 

 










         
    

    
    

 

 

 



 

 

X I A BX X I A

             B X I A B

X I A BX

X I A B B

X A B
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   

 

   

 

1

1

        

    

        

   

    

T TT T

T T T

TT T T T

T T T

f

f

 

  

 

  





         
  

   

 


  

  

 

  

 

  

X I A BX X I A

             B X B X A B

X BX X A BX X I A

B X B X A B

(33) 

Furthermore, to show that the sequence of the 

estimator 
~

ˆ
n is a consistent estimator, the following 

lemma is needed which states the convergence 
property of the right-hand product term on the right 
side of Lemma 1. 
Lemma 2. 
If the assumptions of A1-A3 are met, then 

i. 
 

0,

TT
pf

n
rn

    
X I A B

 

ii. 0,
T p

n
rn


 

X B
 

iii. 
  

0,
T T p

n
rn

 
  

X A B
 

Proof:  
i. To show that  

 
 

0, ,

TT
pf

n
rn

     
X I A B

will be used 

Chebychev's inequality. It will be shown that 

 
 0,

, 1, 2,...,

TT

j

I A f
Var n

rn

j rp

      
 
 


 
X B

. Then, 

take   

   1 2, , ,...,
T

rnz f z z z z      
I A B   

and  
1   

i
i rn

u Max z
 

  

So, 

 

 

     

~ ~

~

1

1

2

2

11 1

( )
T

T

j

T

j

rn

ji i
i

rn

ji i
i

rn rn

i ji i ji
i rni i

Var f

Var z

Var x z

Var x z

z Var x z Var xMax







  

     



 
  

 



    
 





 

X I A B

X

 

 

2

1

2

2

rn

j
i

j

u v

u rn v

rnu v










 (34) 

And the consequences will lead to: 

 

 
  

 

 

2

2
2

2

 

1

1

1

1 , 

TT

j

TT

j

j

j

f
Var

rn

Var f
rn

rnu v
rn

u v
rn
o n





    
 
 

   





  

 

 

X I A B

X I A B

 (35) 

 So, 

 
 0,

TT

j

f
Var n

rn

       
 
 

 
X I A B

 

So, 
 

0,

TT
pf

n
rn

     
X I A B

 

ii. To show that  0, ,
T p

n
rn


 

X B
and it will 

show that:   

 0, , 1,2,...,
T

j

Var n j rp
rn

 
   

 


X B
 

Take  1 2,   , ,..., rne e e e e 
  

B  
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   

 

 

1

1

2 2

1

T T

j

rn

ji i
i

rn

ji i
i

rn

ji i
i

Var Var e

ar x e

Var x e

E x e

rn













 
 
 















 
X B X

  (36) 

So, 

 
 

 

 

2

2

1
 

1 ,    

T
TVar Var

rn rn

rn

rn

rn
o n










 
 

 



 






X B
X B

 (37) 

The result is obtained, 

  0,    
T

j

Var n
rn




 
  

 


X B
  (38) 

So, it has been proven that 

  0,
T p

n
rn


 

X B
 

iii. 
  

0,
T T p

n
rn

 
  

X A B
applies if  

 
 0,

, 1,2,...,

T T

j

Var n
rn

j rn

  
   

 


 
X A B

 

Then, given that   ,Ts  
 

A B  

 1 2  , ,..., rns s s s


 

    

 

 

1

1

2 2

1

 

T T T

j j

rn

ji i
i

rn

ji i
i

rn

ji i
i

Var Var s

Var x s

Var x s

E x s

rn

 











 
 
 













  
X A B X

 (39) 

  As a result, 

 
 

  

 

 

2

2

1
 

1 ,   

T T
T T

j
j

Var Var
rn rn

rn

rn

rn
o n

 
 









 
  

 



 

 
 

X A B
X A B

 (40) 

  So, 
 

 
 0,

T T

j

Var n
rn

  
   

 
 

X A B
  (41) 

 So, it has been proven that   

  
0,

T T p

n
rn

 
  

X A B
 

 Furthermore, based on Lemma 1 and 2, the 

consistency of the estimator 
~
̂ is shown in the 

following Theorem. 
 
Theorem 5 

If ˆ
n

 sequence of parametric component estimators 

given by Theorem 1, then 
~

ˆ , 
p

n n  


 

Proof: 
Based on Lemma 1, it is obtained, 

 

 

 

1

~

ˆ

   

         

        

 

 

  

T T T
n

TT

T T T

f

  



  






    

  

  





 

  

X BX X A BX

X I A B

X B X A B

 (42) 

Based on Lemma 2, it has been promoted that 

i. 
 

0,

TT
pf

n
rn

     
X I A B

 

ii. 0,
T p

n
rn


 

X B
 

iii. 
  

0,
T T p

n
rn

 
  

X A B
 

Furthermore, with Theorem 3 about convergent 
properties in probability, will be obtained 

   

0,    

TT T T T

p

f

n

   

 

       

 

  



X I A B X B X A B
 (43) 

As a result, with Theorem 3 obtained 
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~ ~

0 atau ,    0ˆ ˆ
p p

n n n      
 

 

 
Hyphotesis Testing 
In the second objective of the study, namely to 
obtain hypothesis testing on each relationship 
between variables in the Nonparametric 
Regression-based Path Analysis using the Penalized 
Weighted Least Square (PWLS) approach. 
Hypothesis testing was carried out to determine the 
significance of the path analysis formed [15]. There 
are procedures that can be used in writing 
hypotheses in general and in specifics [16]. The 
parameter function hypothesis is: 

':H k m   

Bayes Estimator 
The observed sampling is given 

   1 1, ,..., ,n nt y t y obtained from a stochastic 

process     ; 0,1Y t t  and follow the model:  

       , 0,1 .Y t f t t t                  (44) 

    ; 0,1f t t has a prior improper distribution: 

   1/2
1 1

1

,
m

t

t b Z t 


                   (45)        

b> 0, polynomial coefficient  1,..., 'm    has 

the distribution  0, ,N al a    

    ; 0,1 ,Z t t with:  

     
1 1

0

( )

1 !

mt u
Z t dw u

m




             (46) 

Is a Wiener process with zero mean and covariance 
of Reproducing Kernel:  

   
1 1 1

1
2

0

( ) ( )
,

[ 1 !]

m ms u t u
R s t du

m

 
  


   (47) 

Polynomial Coefficient 1, 1,...,i m  and  Z t is 

uncorrelated [4] and   t is a normal process 

with mean zero and 

     2 / ,  if 
cov( ), )

0            , if 

w t t s
t s

t s


 

 
 


 

Theorem 2 provides a weighted spline estimator 

 f t can be written as follows  

 
        
      

    

1 1 1
1

1
1

1 1 1

,..., ( )

,...,

( ) .

m

n

f t

t t y

t t

y



   

  

 

  



  

 

 






 

 



T S WT T S W

S W

I T T S WT T S W

 (48) 

The following is given a Theorem which is used to 
derive the Bayes estimator in a weighted spline. 
 
Theorem 6 
Given , ,y f 

 
 Gaussian random vector with zero 

mean and following the model: 
y f  

 
 

     2 1' , '  and  ' 0fE ff bV E E f    
   

W  if 

h is normally distributed with 

     0, ' , '  h hfE h E hh b E hf b  
     

V V  

 and ' 0E h 
 

 so:  

(i). 1 1( | ) ( ) ,  andhf fE h y n y   
  

V V W  

(ii). 
 
 

1

2 1 1 1

( | ) h hf f fh

hf f f fh

Var h y b

 



  

 


 



V V V V

V V A W V V
 

with   1 1 2( )  and /f f n n b      
   

A V V W  

Proof: 
If  1 2, ,h y 

 
X X  Lemma 2 will give:  

 1

12 22

 and hf fb b n    
  
V V W  (49) 

As the results: 
(i). 1 1( | ) ( )hf fE h y n y   

  
V V W and  

(ii). 1 1( | ) { ( ) }h hf f fhVar h y b n    
  

V V V W V  

On the other hand, the Sherman-Morisson-
Woodbury formula for matrices danA,B, C,  D  will 
give: 
 

1 1 1 1 1 1 1( ) ( )         A BC D A A B C DA B DA  (50)

  
If the similarities are taken: 

1 dan f n    D


A B C V W   (51) 

Will be given: 
1 1 1 1 1 1 1( ) ( )f f f fn n n           

  
V W V V W W V  (52) 

As the results:  

 

 
 

1

1 1 1 1

1

2 1 1 1

( | )

( )

h hf f fh

hf f f fh

h hf f fh

hf f f fh

Var h y b

n b n

b

 

 



   



  





 







 

  





V V V V

V V W W V V

V V V V

V V A W V V

 (53) 

With prior and weighted quadratic loss function, 
the estimator  f t  is the posterior mean f, which 

is fully presented in the following Theorem.  
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Theorem 7 
Bayes estimation  ,f t   from  f t given by :  

    
    

      
  

,

1

11
1

11

,..., .

' ' ,...,

'

m

m

f t E f t y

t t

y t t

y

 

 

    

 









 



T TT W S

TT W S



 

 

 (54) 

with φ = a/b and   n  
 

S WV I  

Proof: 

Rewrite       1 1,..., ', ,..., 'n mf f t f t    


 

  1 / 1 !jt i T  (55) 

1,2,..., , 1,2,...,j n i m   

and 

  1 , , , 1, 2,...,i jt t i j n V R   (56) 

When paired  h f t


so that  

  ' /hf E f t f b


V  

         1 1,..., . ' ,...,m mt t t t     T  (57) 

From Theorem 7 obtained that: 

 ' /

'

f E f f b





 

V

TT V
   (58) 

With a few elaborations obtained: 

    
 

/

'

h E f t f t b

t  



 

V


 

 (59) 

Finally, Theorem 7 and Theorem 1 will give; 

       
 
    

 
    

  
    

  

1

11

1

11

1

11

1

11

,...,

. ' '

,...,

'

,..., . '

'

,...,

'

m

m

m

m

E f t y t t

n y

t t

n y

t t

y

t t

y

 

  

 

 

  

 

 

 











  

 



 

 

T TT V W

TT V W

T

TT W S

TT V W S



 

 

 

 

  (60) 

 The weighted spline estimator given by 
Theorem 2 is a Bayes estimator with the prior 
improper estimator, which is given in full by 
Theorem below. 
 
 
 
 

Theorem 8 
If    , 0,1f t t  has a prior improper distribution 

so that:  

     ,a
a
lim E f t y f t

  (61) 

With   f t  weighted natural polynomial spline is 

obtained by minimizing:  

      
1

22
1

1 0

n
m

j j j
j

n w y f t f t dt



       (62) 

Proof: 
Sherman-Morisson-Woodbury formula for equation 
matrix: 

     11 1, ' 
  

 
A W S B T T S WT  (63) 

  1 1'  


C T S WT  dan 'D T  (64) 

Will give: 

    
11 1'  

   
 

TT W S S W  

    
    

11 1

11 1 1

'

' '

 

  

 

  



   

 

 

S WT T S WT

T S WT I T S W
 

Lemma 3 give that: 

   
  

  

111 1

11 1

22 1

'

'

' ...

 

 

 

 

 

 



 

 







I T S WT

I T S WT

T S WT

 (65) 

As the results: 

      

    

11 1 1

11 1

'

' '

   

 

  

 

  


  

 

TT W S S W S

WT T S WT T S W
 

      21 1 1 1 2' '   
    


S WT T S WT T S W O  

  
    

11

11 1

' '

' '

lim


  

 





 







 

T TT W S

T S WT T S W
 

  
      
 

    
  

1

11 1 1

1

11 1

1

lim 'TT


 

  



 







  



 





 

 

-1W S

S W S WT T'S WT

T'S W

S W I T T'S WT

T'S W



  



 



 (66) 

Finally, Theorem 2 will give: 
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  
       
       

11
1

11
1

lim

,..., lim ' '

,..., lim '

m

m

E f t y

t t

t t y







    

   











  



T TT W S

TT W S



 

 

         
      

     

11 1
1

1
1

11 1

,...,

,...,

m

m

t t y

t t

y

   

  

 

 



 

 



T'S WT T'S W

S

W I T T'S WT T'S W

  



  

 (67) 

 The following shows the method of 
selecting the smoothing parameter λ for a weighted 
spline estimator based on the Bayes approach, 
namely Generalized Maximum Likelihood (GML). 
The basic idea of using the Generalized Maximum 
Likelihood method in the original nonparametric 
spline regression was first given by Wahba [4]. 
Then developed by Wang [17]  for correlated data. 
 Given that ϑ and ω with the 
decomposition: 

'

... ... ,

'

F

y

T






 
 

   
          

 
 

 and fulfill ' 0F T  .  

First, the following Theorem is given:  

(i) ϑ distributed   10, 'N b 


F W S λ F  

(ii) ω distributed     0, ' 'N b


T T T T  

Proof:  
Given the decomposition and the model 

y f   
 

 

Will give: 

  2 1Var 'y a b    
 
T T V W  (68) 

With another elaborations, obtained that: 

    1Var 'y b   


W S TT  (69) 

On the other hand, will give: 

    
 

1/2

1/2

Cov , 'b

b

    

 





 



-1F' W S TT T

FS T




 (70) 

So, can be obtained that: 

    1 1Var ' 'b     


T W S TT T   (71) 

and  

    
 

Var 'b

b

  



 



-1

-1

F' W S TT F

F'W S F





 (72) 

For a  , obtained: 

   1/2lim Cov , lim

0,

j
a

b


   

 




FS T
  

    
   

1lim Var lim '
a a

b

b

   

 
 



-1T' W S TT T

T'T T'T




 (73) 

For a  , remember that y normally distributed 
with a mean of zero, then Theorem is proved.  
 Theorem 4 shows that for a  the 
distribution of ϑ that depends on λ and 

  1~ 0, 'N b 


F W S F . Based on the ϑ 

distribution, the Likelihood and log Likelihood 
functions are obtained respectively: 

 
   

   

1/2/2 1

11

1
,

2 '

1
exp ' '

2

r
L b

b

b

 
 

  







   





F W S F

F W S F

 

 
   

   

1/ 2/ 2 1

11

1
,

2 '

1
exp ' '

2

r
L b

b

b

 
 

  





 
    
 

      





F W S F

F W S F

 

   

   
1

11

1
log , log log '

2 2
1

' '
2

r
L b b b

K
b

  

  





  

 

 
F W S F

F W S F

 (74) 

This log Likelihood function provides the 
Maximum Likelihood estimator: 

   11' '
ˆ

r
b

  





F W S F
 (75) 

By resubstituting b̂  n the log Likelihood function 

is obtained: 

 

  
  

11

21/11

log

' '
log

2
'

r

L

r
K

 

  







 
 
   
 
 
 

F W S F

F W S F

 (76) 

with K1 and K2 constants that are independent of λ 

and b. Maximizing  log L   is equivalent to 

minimizing: 

 
  

  

11

1/11

' '

'
r

GML
  









F W S F

F W S F

 (77) 

The optimal λ value is obtained by minimizing the 
GML (λ). 
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5. CONCLUSION 
 

The conclusion that can be obtained is 
obtained the properties of the spline estimator in 
the Nonparametric Regression-based Path Analysis 
using the Penalized Weighted Least Square 
approach, hypothesis testing on each relationship 
between variables in the Nonparametric 
Regression-based Path Analysis using the 
Penalized Weighted Least Square approach, as 
well as some findings regarding the confidence 
interval. optimal on each relationship between 
variables in the Nonparametric Regression-based 
Path Analysis using the Penalized Weighted Least 
Square approach, complementing the previous 
research findings, namely a theoretical review of 
Non-Parametric Path Analysis, as well as a 
theoretical review regarding the estimation of the 
variance-covariance error matrix of the Non-
Parametric Path Analysis model, as well as 
selection of smoothing parameters. On the other 
hand, the third objective is to theoretically test the 
optimal confidence interval for each relationship 
between variables in the Nonparametric 
Regression-based Path Analysis using the 
Penalized Weighted Least Square approach. 
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