
Journal of Theoretical and Applied Information Technology
15th December 2021. Vol.99. No 23

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5724

AN OPTIMAL APPROACH OF CONFORMITY ASSESSMENT
AND ROBUSTNESS TESTING FOR OBJECT ORIENTED

CONSTRAINTS

KHADIJA LOUZAOUI 1, KHALID BENLHACHMI 2

1,2Laboratory For Computer Science Research, Faculty Of Science, Ibn Tofail University, Kenitra, Morocco
1 khadija.louzaoui1@uit.ac.ma, 2khalid.benlhachmi@uit.ac.ma

ABSTRACT

In this work we propose a formal modeling of optimal constraints for testing the conformity contract
and robustness behaviors of object oriented (OO) programs. Our approach is an important way to
generate test data of overriding methods of the inheritance process in the general case where behaviors
of OO classes are not necessarily similar. The key idea of this work is to use mathematical entities for
developing some algorithms of test data generation to simplify conformity and robustness verification
process.
Our model of constraints is based on set theory and logical axioms, and can represent in an
unambiguous form all properties and behaviors of OO robustness contracts. The second model of this
paper is an equivalence partitioning of input data of the program under test, this partitioning technique
can be used to reduce the number of test cases that must be developed for classes and subclasses.

Keywords: Software Verification, Formal Specification, Conformity Testing, Robustness Testing,
Valid Data, Invalid Data, Test Data Generation, Equivalence Partitioning, Inheritance, Constraint
Resolution.

1. INTRODUCTION

Formal modelling is an important method of
discovering system anomalies and presenting
program properties in an unambiguous form. The
techniques of formal specification and verification
in computing science are used since 1940s: Turing
showed how the logical properties about programs
at input and output states can simplify and
facilitate their conformity assessment [1]. Floyd,
Hoare and Naur used axiomatic methods for
verifying the consistency and the conformity
contract between programs and their specification
[2,3,4]. Dijkstra showed how to derive
nondeterministic programs from formal calculus,
properties, and the specification equation of the
system under test [5].

In this paper we develop a constraint model
that includes various abstraction levels and
corresponding methods for synthesis and
verification of conformity and robustness
properties: the first method is a behavioural
equivalence partitioning of input domains of
derived classes of inheritance. The second method
is an optimal model of constraints for describing

all states of conformity and robustness of
overriding methods. Our approaches are based on
formal specifications and design by contracts
(DBC) [6, 7, 8].

Figure1: Specification Of An OO Class

For object oriented (OO) programs, designs by
contract represent a powerful technique for robust
and reliable software. DBC is based on three
Boolean constraints: precondition, postcondition
and invariant (P, Q, Inv) (Fig.1).The specification
(P, Q, Inv) must be satisfied in input and output of
programs under test, and can be used by different
languages of constraints: OCL[9] and JML[10]… .

In an OO paradigm, the conformity contract is
a property H defined for all elements of the input
domain E⨯Ic of the program under test:

() ()

:

 (,) (,) is : (,) () (,

{

))

, }

(
c

bef aft

H E I

x o H x o P x o I

true

nv o Q x o Inv o

false 
   

Journal of Theoretical and Applied Information Technology
15th December 2021. Vol.99. No 23

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5725

This conformity constraint of the program
under test is satisfied if: “For all invocation of the
program, output specifications (Q and Inv) are
satisfied if input specifications (P and Inv) are
satisfied” (Fig.2).

Figure 2: Conformity Contract Of An OO Program

Our previous approaches of conformity testing
[11,12] and robustness testing [13] in inheritance
are based on similarity of behaviours[14] between
overridden and overriding methods. In our basic
approaches we have indeed tested the conformity
and robustness of overriding methods in derived
classes from test results of overridden methods in
the super class. This reusability of test sequences
of the super class is only possible if overriding and
overridden methods have same basic behaviour
[14].

Figure 3: Robustness Contract Of An OO Program

 In this paper we present an approach for
testing the conformity and robustness of overriding
methods in derived classes in the general case
where overriding and overridden methods are not
necessarily similar. In this work we complete our
basic robustness approach by measuring the
robustness of programs in inheritance even if
derived classes and super classes are dissimilar
(Fig.3). The principle of this approach is based on
an optimal model of constraints and an
equivalence classes partitioning to generate test
data of conformity and robustness. In this context
this approach can be used to verify conformity and
robustness contracts of subclasses of inheritance
according to precondition, postcondition and
invariant specifications.

We organize our paper as follows: section 2
and 3 present similar approaches of software
testing and our previous works of conformity
constraints in derived classes. In section 4 we
propose our approach of conformity testing of

inheritance by using an equivalence classes
partitioning to generate test data. We present in
section 5 our optimal model of robustness testing.
Finally, our approach is evaluated by an OO
example of conformity and robustness testing.

2. RELATED WORKS

Most works have studied the problem of test
data generation and formal specifications for OO
programs. These works show how the programs
conformity can be tested by using white box
testing that takes into account the internal
mechanism of a system or black box testing that
ignores the internal mechanism of a system or
component and focuses solely on the outputs
generated in response to selected inputs and
execution conditions.

In [9], the authors present a method based on
the constraints resolution for test cases generation
with error anticipation in the methods
specification. In [10], they propose to use Java 8
streams for writing more concise and cleaner
assertions on a collection. The use of streams in
JML can be minimal and non-invasive in the
conventional style of writing assertions. It can also
be holistic to write all assertions in the abstract
state defined by streams. In [11,12], we have
proposed a formal model of constraints for testing
conformity contracts. This approach is used only
for testing conformity of similar classes. In [13]
we have used an optimal constraint for testing
robustness contracts of derived classes of
inheritance.

The approach of [14] can be used to test the
robustness of overriding methods in derived
classes from test results of overridden methods in
the super class. This reusability of test sequences
of the super class is only possible if overriding and
overridden methods have same basic behavior. In
[15], the approach presents a model-based
framework for the symbolic animation of object-
oriented specifications. This technique can be
applied to Java Modeling Language (JML)
specifications, making it possible to animate Java
programs that only contain method interfaces and
no code. In [16], the paper focuses on the basic
ideas of formal EventML programming illustrated
by implementing a fault-tolerant consensus
protocol and showing how proving its safety
properties with the Nuprl proof assistant. In [17],
the authors propose a randomly generation of test
data from a JML specification of class objects.
They classify methods and constructors according
to their signature (basic and extended constructors,
mutator, and observer) and for each type of

Journal of Theoretical and Applied Information Technology
15th December 2021. Vol.99. No 23

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5726

individual method of class, a generation of test
data is proposed. In [18], the authors use the
constraints resolution principle to reduce the
values of testing data for limited domain types and
use a random generation for other data types.

In [19], the authors present a new test model
written in SysML and an associated black box test
suite for the Ceiling Speed Monitor (CSM) of the
European Train Control System (ETCS). The
model is publicly available and intended to serve
as a novel benchmark for investigating new testing
theories and comparing the capabilities of model-
based test automation tools. They apply a novel
method for equivalence class testing that-despite
the conceptually infinite cardinality of the input
domains-is capable to produce finite test suites that
are complete for a given fault model.

In [20], the authors present some of the key
issues involved in model transformation
specification and testing, and introduce the concept
of Tract, a generalization of model transformation
contracts. They show how Tracts can be used for
model transformation specification and black-box
testing, and the kinds of analyses they allow.

In [21], the paper presents an approach to
define contracts of methods and their refinements
in Feature-oriented programming (FOP) that is an
extension of object-oriented programming to
support software variability by refining existing
classes and methods. In order to increase the
reliability of all implemented program variants, the
authors integrate design by contract (DbC) with
FOP.

In [22], the authors propose a formal process to
specify, verify and correct the security policy
using the decision tree formalism, which consists
of four steps. First, they define the security policy
specifications and write it in a natural language.
Second, the security policy will be translated into a
formal language. Third, they verify the security
policy correctness. If this latter is plugged with
anomalies, they correct it in the last step. To
achieve these goals, they present a decision tree
based formalism for security policy verification
and propose a correction algorithm to guarantee
the security policy correctness. In [23], the paper
gives a description of testing methods based on
algebraic specifications, and a brief presentation of
some tools and case studies, and presents some
applications to other formal methods involving
data types.

In [24], authors have studied the multi-
objective test data generation problem. The authors
in [25] present a robustness modeling
methodology that allows modeling robustness

behavior as aspects. The goal is to have a complete
and practical methodology that covers all features
of state machines and aspect concepts necessary
for model-based robustness testing.

In [26], the authors propose a theoretical
framework for model based robustness testing
together with an implementation within the If
validation environment. In [27], the authors
present a survey of some of the most prominent
techniques of automated test data generation. The
techniques presented include: structural testing
using symbolic execution, model-based testing,
combinatorial testing, random testing and its
variant of adaptive random testing, and search-
based testing.

In [28], the basic ACO algorithm is reformed
into discrete version so as to generate test data for
structural testing. First, the technical roadmap of
combining the adapted ACO algorithm and test
process together is introduced. In order to improve
algorithm׳s searching ability and generate more
diverse test inputs, some strategies such as local
transfer, global transfer and pheromone update are
defined and applied. In [29], the proposed
approach generates the test data using Bi-
Objective function based on genetic algorithm.
The objective function includes space dispersity
and path disparity which will produce better spatial
distribution of input space. Furthermore,
Clustering technique is applied to the generated
test data to reduce the time of error finding ability.

The study of [30] aims to propose a novel
fitness function of metaheuristic algorithms to
generate test data based on the mutation technique
for the Simulink models (Simulink is an
environment widely used in industry to design and
simulate critical systems). The fitness function is
designed by analyzing each mutation operator and
the features of blocks in the Simulink environment
in order to guide the search process to reach the
test data killing mutants more easily. Then, this
fitness function is used in the multi-parent
crossover genetic algorithm to generate test sets.
The obtained results indicated that the mutation
score has been significantly improved for all
models when using the novel fitness function. In
[31], they have focused on resolving the multi-
objective optimization of coverage based test data
by proposing Multi-Objective Ant Lion
Optimization (MOALO) algorithm. Further, they
have discussed that how the proposed algorithm
enhance the path coverage with reduced number of
tests. To validate the proposed algorithm, they
have compared the obtained experimental results

Journal of Theoretical and Applied Information Technology
15th December 2021. Vol.99. No 23

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5727

with random resting and conventional genetic
algorithm's data.

3. MODEL OF CONSTRAINTS FOR
CONFORMITY TESTING

The work of [11] can be used for testing the
conformity of an overriding method in derived
classes during the inheritance operation by using
constraint models of basic classes and constraints
propagations.

3.1 Model of constraint for basic classes

The conformity contract (Fig.2) can be
represented by the constraint model H.

Definition
The conformity constraint H of a method
m(x1,x2,…,xn) of a class C is a property of the
pair (x,o) (x=(x1,x2,…,xn) is the vector of input
parameters and o is the receiver object) such
that:

() ()(,): (,) () (,) () ,(,)bef aft cH x o P x o Inv o Q x o Inv o x o E I          
- Where o(bef) is the class object o in the state
before the calling of the method m() and o(aft) is
the class object o in the state after the calling of
the method m() (Fig.4).

Figure 4: Input-Output Constraints Of M()

3.2 Model of conformity testing in inheritance

In [11] we have used the model of constraint H
for testing the conformity of methods in derived
classes (Fig.5).

Figure 5: Principle Of Conformity Testing

 Constraints propagation in inheritance

We consider a method m of a class C2 which
inherits from the class C1 such that m overrides a
method of C1. The original method and its
overriding method in the subclass C2 will be
denoted respectively by m(1), m(2) (Fig.6).

Figure 6: Constraints Of (m(1),m(2))
The problem of behavioural constraints of

types (classes) and subtypes (subclasses) of object
oriented programs is resolved by Meyer [6,7,8]
and Liskov, Wing [32] (Fig.7).

Figure 7: Specification Of m(2)

In this approach, the specification
(P(2),Q(2),Inv(2)) of the overriding method m(2) is
constituted by two specifications (Fig.7).
 Constraint of conformity testing

 Conformity testing of overridden methods:
-The overridden method m(1)is in
conformity with its specification if:

(1)

1(,) : (,)Cx o E I H x o  
-The overridden method m(1) is not in
conformity with its specification if:

(1)
1(,) : Cx o E I H (x,o)  

 Conformity testing of overriding methods:
-The overriding method m(2) is in
conformity with its specification if:

(2)

2(,) : (,)Cx o E I H x o  
-The overriding method m(2) is not in
conformity with its specification if :

2(,) : (2)
Cx o E I H (x,o)  

3.3 Similarity model
The similarity approach of our previous works

[14] is used for assuring if the overriding method
m(2) has the same behaviour as its original version
m(1) in the superclass according to the inherited
specification (P(1),Q(1),Inv(1)). For each input value
(x,o) of the overriding method m(2), we associate
the matrix:

Similarity(x,o)=(a,b,a',b'). The matrix
represents the 16 values of the quadruplet (a ,b, a',
b') (Fig.8).

Journal of Theoretical and Applied Information Technology
15th December 2021. Vol.99. No 23

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5728

Figure 8: Condition And Equivalence Partitioning Of

Similarity
The methods m(1) and m(2) are similar to the

specification (P(1),Q(1), Inv(1)) if and only if :
(a,b)=(a',b') and (a,b,a',b')∈{0,1}4 (Fig.8).

In the approach of this paper we show that the
similarity of behaviour is not obligatory for
verifying conformity in sub classes. So the
conformity of dissimilar methods can be tested.
The purpose of next sections is to generalize the
model of [14] in order to test the conformity of an
overridden and overriding methods (m(1) and m(2))
even if methods are not necessarily similar.

4. OPTIMAL MODEL OF CONSTRAINTS
AND INPUT DATA PARTITIONING

We have shown in [12] that there is no
requirement to use the constraint model H(2) in
subclasses for testing conformity contracts of
overriding methods. In our approach, we propose
an optimal model of constraints Hop. The optimal
model Hop is a refinement of the current model H
by eliminating unnecessary constraints and
reducing some responsibilities of test data.

4.1 Optimal model of constraints
The Conjunctive Normal Form (CNF) can be

used to reduce all invalid and unnecessary
constraints.
The constraint model H(2)in the CNF :

(1) ' (1) (1) ' '

2 2 2

(1) (1) (1) ' (1) ' '

2 2 2

' (1) ' ' (1) ' ' ' (1) (1)

2 2 2 2 2 2

[[] []]

[()] [()]

[()] [()] [()]

P P Q Inv Q Inv

P Q Inv P P Q Inv

P P Q Inv P Q Inv P Q Inv

     

      

        

In conformity testing, input constraints must be
compatible with output constraints, and therefore

the two constraints
(1) ' '

2 2
[()]P Q Inv  and

' (1) (1)

2
[()]P Q Inv  should be eliminated from the

constraint model H(2).
In principle, the overriding method m(2) must

satisfy only two contracts of conformity:
 The contract of the superclass (Fig.9).
 The contract of its class (Fig.10).

Figure 9: Conformity Contract Of m(2) To Its Superclass

Figure 10: Conformity Contract Of m(2) To Its Class

The second anomaly of the constraint model H
is that some test data (Category 2 (Tab.1)) can be
have simultaneously two responsibilities in the
conformity assessment of overriding methods of
inheritance process.

In the table 1, the test data (x,o) of the category

2 has two responsibilities in the conformity testing
process : this (x,o) is used for conformity
assessments of an overriding method m(2)

according to (P(1),Q(1),Inv(1) and
' ' '

2 2 2
(), ,P Q Inv .

Table 1: Responsibilities Of A Test Data In The Current
Model H

In order to improve the conformity testing

quality it is essetial that each test data (x,o)
assumes only one responsibility. This means that
all input data of the category 2 must be used for
testing the conformity contract only according to
the inherited specification (P(1),Q(1),Inv(1).

To satisfy this criteria, the constraint
' ' '

2 2 2

(1)
[]P P Q Inv  should be eliminated from

the constraint model H.

Definition (Constraint Model Hop)
The optimal model of constraint Hop of m(2) is defined as
follow :

 (P(1),Q(1), Inv(1)) is the inherited specification of

m(2).


' ' '

2 2 2
(), ,P Q Inv is the specific specification of m(2).

(1) ' (1) (1) (1) ' (1) ' '
2 2 2 2:[] [(()) (() ())]opH P P P Q Inv P P Q Inv       

(x,o)
P(1)(x,

o)
P'2(x,o) Responsibility of (x,o)

Category 1 1 0
 Conformity testing of

m(2) to (P(1),Q(1),Inv(1)

Category 2 1 1

Category 3 0 1
 Conformity testing of

m(2) to (P'2,Q'2,Inv'2)

Category 4 0 0

No responsibility

Journal of Theoretical and Applied Information Technology
15th December 2021. Vol.99. No 23

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5729

4.2 Input values partitioning and test data
generation

The equivalence classes partitionnig is an
important technique for testing conformity
contracts. In this technique, the input data domain
of the program under test is divided into different
equivalence classes.

 Equivalence classes and conformity behaviors
In our work, we use the optimal model of

constraints Hop as a criterion to select input values,
and to identify conformity behaviors (B1,B2,...,Bn):
each equivalence class of the quotient set is used to
represent a specific conformity behavior of
overriding methods (Fig.11).

The equivalence classes partitioning can also
be used to reduce the number of test data that must
be generated in the conformity testing process of
overriding methods.

Figure 11: Equivalence Classes And Conformity

Behaviors

The input domain EIC2 of an overriding
method m(2) is divided into 9 sets (Fig.12)

2 2{(,) : (,)} and {(,) : (,)}c op c opA x o E I H x o B x o E I H x o     

(1) ' (1) (1) ' '
2 2 2 2{(,) : (, , , , ,) (1,?,1,1,?,?)} op cA x o E I P P Q Inv Q Inv   

(1) ' (1) (1) ' '

2 2 2 2

' {(,) : (, , , , ,) (0,1,?,?,1,1)} op cA x o E I P P Q Inv Q Inv   
'' (1) ' (1) (1) ' '

2 2 2 2{(,) : (, , , , ,) (0,0,?,?,?,?)} op cA x o E I P P Q Inv Q Inv   
1 (1) ' (1) (1) ' '

2 2 2 2{(,) : (, , , , ,) (1,?,1,0,?,?)} op cB x o E I P P Q Inv Q Inv   
2 (1) ' (1) (1) ' '

2 2 2 2{(,) : (, , , , ,) (1,?,0,1,?,?)} op cB x o E I P P Q Inv Q Inv   
3 (1) ' (1) (1) ' '

2 2 2 2{(,) : (, , , , ,) (1,?,0,0,?,?)} op cB x o E I P P Q Inv Q Inv   
'1 (1) ' (1) (1) ' '

2 2 2 2{(,) : (, , , , ,) (0,1,?,?,1,0)} op cB x o E I P P Q Inv Q Inv   
'2 (1) ' (1) (1) ' '

2 2 2 2{(,) :(, , , , ,) (0,1,?,?,0,1)} op cB x o E I P P Q Inv Q Inv   
'3 (1) ' (1) (1) ' '

2 2 2 2{(,) :(, , , , ,) (0,1,?,?,0,0)} op cB x o E I P P Q Inv Q Inv   

Figure 12: Tree Structure Of The Input Domain

Partitioning

 Algorithm of conformity testing
The algorithm of conformity testing (Fig.13) is

developed for generating input test data of
overridden and overriding methods. This algorithm
is based on the optimal model of constraints Hop
and the equivalence partitioning
 ' 1 2 3 '1 '2 '3(, , , , , , ,)op op op op op op op opA A B B B B B B

for testing

conformity behaviours of m(2) (The constant N is
the test threshold limit) (Fig.12 and Fig.13).
The condition of the do..while loop can be
exploited to deduce all conformity states of m(2) (
|Aop| is the cardinal number of the set Aop) :

1

2 (2) (1) (1) (1)

3

(,): (,) does not staisfy (P ,Q ,Inv).

op

op op

op

B

B x o H x o m

B


       



'1

'2 (2) ' ' '
2 2 2

'3

(,) : (,) does not staisfy (P ,Q ,Inv).

op

op op

op

B

B x o H x o m

B


       




   1 1 2 2

'
op

(2)

A A (,) (, o), , (,), ... : (,)

 m satisfies its conformity contracts.

N N opop x o x x o H x oN N  



    

Figure 13: Algorithm Of Conformity Testing

5. APPROACH OF ROBUSTNESS
TESTING BY THE OPTIMAL MODEL OF
CONSTRAINTS

The robustness approach of [14] can be used to
test robustness contracts of subclasses from test
result of super classes. This reusability of test
sequences is only possible if overriding and
overridden methods are similar (Fig.8). In this
section we present an approach of robustness for
testing the robustness of overriding methods in
subclasses in the general case where m(2) and m(1)
are not necessarily similar.

5.1 Principle and constraints of robustness

Journal of Theoretical and Applied Information Technology
15th December 2021. Vol.99. No 23

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5730

testing
In [14], we have proposed an approach of

robustness testing by similarity of behaviours for
OO classes. The robustness testing is based on
input data which don’t satisfy the precondition
constraints (P(DT)=0). In our approach, an invalid
input data must induce only invalid output
constraints (Fig.14), and is not an undefined data:
an invalid data is a data for which P, Q, and Inv
are well defined (a test data DT that induces a
division by 0 is an undefined data and must be
ignored by the system of testing…).

Figure 14: Principle And Constraints Of Robustness

Testing

A method m(…){…} of an OO class is robust if

the constraint Hrobustness is satisfied (Fig.15).

Figure 15: Constraint Model Of Robustness Testing

5.2 Optimal model of constraints and
robustness verification of inheritance

The optimal model of constraint Hop can be
used for modeling the conformity contract of
overriding methods in subclasses of the inheritance
mechanism. In this section, we present an optimal
model of robustness constraints to verify not only
the conformity property but also the robustness
contract of OO programs.

 Optimal model of constraints
rob
opH

The optimal model of robustness constraints
rob
opH

(optimal robustness) can be constructed from the
constraint model Hrobustness (Fig.15) by adding
specific constraints of subclasses (Fig.16). This
model must be also a strengthening of the
conformity model Hop by using complementary
constraints for modeling not only the conformity
assessment but also the robustness contract.

Definition

The optimal model of robustness
rob
opH of m(2) is

defined as follows:
(1) (1) (1) (1) ' (1) (1)

2

' (1) ' ' (1) ' ' '
2 2 2 2 2 2

:[()] [() ()]

 [() ()] [() ()]

rob
opH P Q Inv P P Q Inv

P P Q Inv P P Q Inv

      

      

Figure 16: Constraints Of The Robustness Optimal

Model

 Robustness contracts of overriding methods

The robustness optimal model
rob
opH is an

important mathematical entity for modeling the
robustness in subclasses.

Corollary
 m(2) is robust according to its specification if :

2
(,) : (,)rob

oC p
x o E I H x o  

 m(2) is not robust according to its specification

if :
2

(,) : (,)rob

C op
x o E I H x o  

Definition
 m(2) is robust according to (P(1),Q(1), Inv(1)) if :

(1) (1) (1)

2

(1) ' (1) (1)

2

(,) :[(,) ((,) ())]

 [()(,) ((,) ())]

C
x o E I P x o Q x o Inv o

P P x o Q x o Inv o

     

  

 m(2) is robust according to
' ' '

2 2 2
(), ,P Q Inv if :

' (1) ' '

2 2 2 2

(1) ' ' '

2 2 2

(,) :[((,) (,)) ((,) ())]

 [()(,) ((,) ())]

C
x o E I P x o P x o Q x o Inv o

P P x o Q x o Inv o

      

  

Corollary
 m(2) is not robust to (P(1),Q(1), Inv(1)) if :

(1) ' (1) (1)
2 2(,) :[()(,)] [((,) ())]Cx o E I P P x o Q x o Inv o     

 m(2) is not robust to
' ' '

2 2 2
(), ,P Q Inv if :

(1) ' ' '
2 2 2 2(,) :[()(,)] [((,) ())]Cx o E I P P x o Q x o Inv o     

5.3 Input data partitioning and robustness

behaviours
In this work we define the relationship between

robustness behaviours and the equivalence classes
partitioning. Then we propose an algorithm of the
robustness test data generation.

 Input data partitioning

Journal of Theoretical and Applied Information Technology
15th December 2021. Vol.99. No 23

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5731

Our input data partitioning is based on the

optimal model
rob
opH to generate all classes of test

data of overriding methods m(2). This partitioning
where the precondition is in the logical state False
gives all possible behaviors of robustness contracts
(Fig.17 and Fig.18):

(1) ' (1) (1) ' '

2 2 2 2

'' {(,) (, , , , ,) (0,0,?,?,?,?)} :copA x o E I P P Q Inv Q Inv   

Figure 17: Input Data Partitioning Of m(2) According To
((1) (1) (1), ,P Q Inv)

Figure 18: Input Data Partitioning Of m(2) According

To (' ' '

2 2 2, ,P Q In v)

 Robustness testing of overriding methods
The algorithm of robustness testing (Fig.19 and

Fig.20) is developed for generating input test data
of overriding methods. This algorithm is based on
the optimal model of constraints and the domain
partitioning

''1.1 ''1.2 ''1.3 ''1.4 '' 2.1 '' 2.2 '' 2.3 ''2.4(, , , , , ,),
op op op op op op op op

A A A A A A A A for testing

robustness behaviours of m(2) (The constant N is
the test threshold limit).

Figure 19: Algorithm Of Robustness Testing To

((1) (1) (1), ,P Q Inv)

 Figure 20: Algorithm Of Robustness Testing To

(' ' '

2 2 2, ,P Q In v)

6. EVALUATION
In this section we present an example of test

data generation of the overridden method
withdraw(1) and the overriding method withdraw(2)

for two java classes (Fig.21).

Figure 21: Java Implementation Of withdraw Methods

In the figure 22 we present specifications of the
overridden and the overriding methods withdraw:

Figure 22: Specification (P(1),Q(1),Inv(1)) And
(P'2,Q'2,Inv'2) Of Methods (withdraw(1),withdraw(2))

6.1 Test data generation of conformity
constraints

The table 2 illustrates an example of test data
generation of the method withdraw(2) (x1 and
balance(o) are in]-200,200[; The threshold limit
N=100).

Journal of Theoretical and Applied Information Technology
15th December 2021. Vol.99. No 23

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5732

Table 2: Result Of A Conformity Test Of Withdraw(2)
 x1 O P(1) P'

2 |Aop| |A'
op| Hop

1 68 Account2(185,0.23) 1 0 1 0 1
2 80 Account2(167,0.18) 1 0 2 0 1
3 40 Account2(114,0.22) 1 0 3 0 1
4 91 Account2(126,0.12) 0 1 3 1 1
… … … … … … … …
71 130 Account2(197,0.25) 0 1 47 24 1
72 33 Account2(88,0.27) 1 0 48 24 1
73 70 Account2(103,0.13) 0 1 48 25 1

… … … … … … … …

99 49 Account2(150,0.16) 1 0 69 30 1

100 38 Account2(99,0.12) 1 0 70 30 1
101 58 Account2(142,0.07) 1 0 71 30 1
… … … … … … … …

136 104 Account2(176,0.13) 0 1 99 37 1

137 19 Account2(47,0.17) 1 0 100 37 1

138 27 Account2(111,0.12) 1 0 101 37 1

… … … … … … … …
189 14 Account2(77,0.08) 1 0 123 66 1

190 119 Account2(191,0.04) 0 1 123 67 1

191 73 Account2(189,0.19) 1 0 124 67 1
… … … … … … … …

199 86 Account2(153,0.14) 0 1 126 73 1

200 12 Account2(35,0.28) 1 0 127 73 1

201 52 Account2(78,0.05) 0 1 127 74 1
… … … … … … … …

240 81 Account2(164,0.21) 1 0 142 98 1
241 90 Account2(130,0.24) 0 1 142 99 1
242 57 Account2(129,0.15) 1 0 143 99 1
243 111 Account2(182,0.10) 0 1 143 100 1

For (2.N+i) iterations (N=100,i=43) of the
do…while loop of the algorithm of conformity
testing (Fig.13), the optimal model is always
satisfied (Hop=1). Therefore, the method
withdraw(2) meets its conformity contract.

6.2 Test data generation of robustness

constraints

Our approach is used to test the robustness
contract even if similarity is not satisfied, the table
3 illustrates an example of test data generation of
the overriding method withdraw(2)(x1 and
balance(o) are in]-200,200[; The threshold limit
N=100).

Table 3: Result Of A Robustness Test Of withdraw(2)
 x1 O (P(1)∨ P'2)(x1,o)

rob
o p 1H (x ,o)

1 173 Account2(146,0.18) 0 1
2 118 Account2(99,0.23) 0 1
3 121 Account2(112,0.29) 0 1

… … … … …
20 110 Account2(103,0.15) 0 1

21 88 Account2(77,0.06) 0 1
22 159 Account2(114,0.22) 0 1
… … … … …
45 101 Account2(89,0.16) 0 1
46 131 Account2(91,0.25) 0 1
47 176 Account2(187,0.11) 0 0

In the iteration number 47 of the do…while
loop of the algorithm of robustness testing (Fig.19
and Fig.20), the optimal model is not satisfied (

rob
opH =0). Therefore, the method withdraw(2) does

not meet its robustness contract.

7. CONCLUSION

We have proposed in this paper an optimal
model of constraints to validate conformity and
robustness contracts between OO programs and
their specifications. Our approach is based on
some mathematical entities (set theory and logical
axioms) to represent conformity and robustness
behaviors, and therefore to generate test data of
OO classes. Our work is an important way to
verify conformity and robustness behaviours of
subclasses of inheritance mechanism.

The first approach of this work is an algorithm
of test data generation based on input data
partitioning for testing the conformity contract of
an OO model. The second approach is a way to
generate test data of robustness by using the
invalid input data partitioning. This paper shows
how the equivalence partitioning can be used to
reduce the test data generation and therefore, to
improve software testing.

References

[1] B. Randell, The origins of digital computers.
Berlin: Springer-Verlag, 1973.

[2] R.W. Floyd, “Assigning Meanings to
Programs”, In: Program Verification, Studies
in Cognitive Systems, vol 14. Springer,1993,
pp.65-81.

[3] C. Hoare, “An axiomatic basis for computer
programming”, Communications of the ACM,
vol. 12, no. 10, pp. 576-580, 1969.

[4] P. Naur, “Proof of algorithms by general
snapshots”, BIT, vol. 6, no. 4, pp. 310-316,
1966.

[5] E. Dijkstra, “Guarded commands,
nondeterminacy and formal derivation of
programs”, Communications of the ACM, vol.
18, no. 8, pp. 453-457, 1975.

[6] B. Meyer, “Applying 'design by contract' ”,
Computer, vol. 25, no. 10, pp. 40-51, 1992.

[7] B. Meyer, Object-oriented software
construction, Upper Saddle River, N.J.:
Prentice Hall PTR, 1997.

[8] B. Meyer, Eiffel, New York: Prentice-Hall,
1998.

[9] B. K. Aichernig and P. A. P. Salas, “Test case
generation by OCL mutation and constraint
solving”, Fifth International Conference on
Quality Software (QSIC'05), Melbourne,
Victoria, Australia, 2005, pp. 64-71.

Journal of Theoretical and Applied Information Technology
15th December 2021. Vol.99. No 23

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5733

[10] Y. Cheon, Z. Cao, and K. Rahad, “Writing
JML specifications using Java 8 streams,”
University of Texas at El Paso, vol. 500, pp.
79968-0518, 2016.

[11] K. Louzaoui, K. Benlhachmi, J.A.
Chentoufi, “Conformity testing by optimal
constraints for object oriented programs” In
Information Science and Technology
(CiSt),IEEE, Tangier, Morocco, 2016. pp. 21-
29.

[12] K. Louzaoui and K. Benlhachmi, “An
Optimal Model of Conformity Constraints of
Inheritance for an Object Oriented
Specification”, In International Journal of
Tomography and simulation, Vol. 30, No. 3,
pp. 86-102, 2017.

[13] K. Louzaoui, “An Optimal Constraint
Model of Robustness Behavior for Object
Oriented Programs”, 2018 International
Conference on Electronics, Control,
Optimization and Computer Science
(ICECOCS), Kenitra, 2018, pp. 1-6.

[14] K. Louzaoui and K. Benlhachmi, “A
Robustness Testing Approach for an Object
Oriented Model”, Journal of Computers, vol.
12, no. 4, pp. 335-353, 2017.

[15] F. Bouquet, F. Dadeau, B. Legeard, M.
Utting, “Symbolic Animation of JML
Specifications”. In: International Symposium
on Formal Methods, Springer, Berlin,
Heidelberg, 2005, pp. 75-90.

[16] V. Rahli, D. Guaspari, M. Bickford and R.
Constable, “EventML: Specification,
verification, and implementation of crash-
tolerant state machine replication
systems”, Science of Computer Programming,
vol. 148, pp. 26-48, 2017.

[17] Y. Cheon and C. E. Rubio-Medrano.
“Random Test Data Generation for Java
Classes Annotated with JML Specifications”.
In Proceedings of the 2007 International
Conference on Software Engineering
Research and Practice, Las Vegas, Nevada,
vol 2, June 2007, pp. 385–392.

[18] Y. Cheon, A. Cortes, M. Ceberio, and G. T.
Leavens, “Integrating Random Testing with
Constraints for Improved Efficiency and
Diversity”. In Proceedings of SEKE 2008, The

20-th International Conference on Software
Engineering and Knowledge Engineering, San
Francisco, CA, July 2008, pp. 861–866.

[19] W. Huang and J. Peleska, “Complete
model-based equivalence class
testing”, International Journal on Software
Tools for Technology Transfer, vol. 18, no. 3,
pp. 265-283, 2014.

[20] A. Vallecillo, M. Gogolla, L. Burgueño, M.
Wimmer, L. Hamann, “Formal Specification
and Testing of Model Transformations”, In :
International School on Formal Methods for
the Design of Computer, Communication and
Software Systems, Springer, Berlin,
Heidelberg, 2012, pp. 399-437.

[21] T. Thüm, I. Schaefer, M. Kuhlemann, S.
Apel, G. Saake, “Applying Design by
Contract to Feature-Oriented Programming”,
In : International Conference on Fundamental
Approaches to Software Engineering,
Springer, Berlin, Heidelberg, 2012, pp. 255-
269.

[22] K. Karoui, , F. B. Ftima, H. B. Ghezala,
“Formal specification, verification and
correction of security policies based on the
decision tree approach”. International
Journal of Data & Network Security, vol. 3,
no 3, pp. 92-111, 2013.

[23] M-C. Gaudel and P. L. Gall, “Testing Data
Types Implementations from Algebraic
Specifications”, In Formal Methods and
Testing, Springer, Berlin, Heidelberg, 2008,
pp. 209–239.

[24] J. Ferrer, F. Chicano and E. Alba,
“Evolutionary algorithms for the multi-
objective test data generation
problem”, Software: Practice and Experience,
vol. 42, no. 11, pp. 1331-1362, 2011.

[25] S. Ali, L. Briand and H. Hemmati,
“Modeling robustness behavior using aspect-
oriented modeling to support robustness
testing of industrial systems”, Software &
Systems Modeling, vol. 11, no. 4, pp. 633-670,
2011.

[26] JC. Fernandez, L.Mounier, C. Pachon. “A
Model-Based Approach for Robustness
Testing”. In : IFIP International Conference
on Testing of Communicating Systems.

Journal of Theoretical and Applied Information Technology
15th December 2021. Vol.99. No 23

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5734

Springer, Berlin, Heidelberg, 2005, pp. 333-
348.

[27] S. Anand et al., “An orchestrated survey of
methodologies for automated software test
case generation”, Journal of Systems and
Software, vol. 86, no. 8, pp. 1978-2001, 2013.

[28] C. Mao, L. Xiao, X. Yu and J. Chen,
“Adapting ant colony optimization to generate
test data for software structural
testing”, Swarm and Evolutionary
Computation, vol. 20, pp. 23-36, 2015.

[29] R. L. Bai and C. P. Indumathi, “Test data
generation using bi-objective function”, 2016
International Conference on Advanced
Communication Control and Computing
Technologies (ICACCCT), Ramanathapuram,
2016, pp. 650-654.

[30] L. Hanh, N. Binh and K. Tung, “A Novel
Fitness function of metaheuristic algorithms
for test data generation for simulink models
based on mutation analysis”, Journal of
Systems and Software, vol. 120, pp. 17-30,
2016.

[31] M. Singh, V. M. Srivastava, K. Gaurav and
P. K. Gupta, “Automatic test data generation
based on multi-objective ant lion optimization
algorithm”, 2017 Pattern Recognition
Association of South Africa and Robotics and
Mechatronics (PRASA-RobMech),
Bloemfontein, 2017, pp. 168-174.

[32] B.H. Liskov and J.M. WING, “Behavioral
subtyping using invariants and constraints”,
Technical Report CMU CS-99-156, School of
Computer Science, Carnegie Mellon
University, July 1999.

