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ABSTRACT 
 

In this paper we investigate the correction of generated synthetic text for resource-poor languages. In most 
cases, this synthetic text contains many errors that need to be carefully checked and corrected by additional 
tools. These errors must be corrected automatically to avoid degrading the performance of the system. Our 
approach to automatic error correction is based on the use of finite automata to suggest candidates for 
correction of the misspelled word. After selecting correction candidates, a language model is used to assign 
points to the correction candidates and choose the best correction in a given context. The proposed 
approach is language-independent and requires only dictionary and text data to construct the language 
model. The approach was evaluated in Kazakh and achieved an accuracy of 91%. 

Keywords: Synthetic Data, Language Model, Finite State Automata, Hidden Markov Model, Text 
Generation. 

 
1. INTRODUCTION  
 

In data processing tasks, natural 
language text is the main type of data. A large 
set of training and test data is required to 
achieve the goal in these tasks. Recently, many 
countries of the world have tightened the rules 
of user data collection at the legislative level. 
Therefore, the task of automatic generation of 
synthetic texts in natural language, preserving 
the main characteristics of real texts, is of great 
importance. Many methods of generating 
synthetic texts solve the problem of creating 
such texts. However, at the moment, the 
available synthetic data generators do not 
reproduce natural language text data well 
enough.  

In this paper, we present a preliminary 
study aimed at correcting the results of models 
for generating texts that have the characteristics 
of natural language texts. In a series of 
experiments using different datasets and finite 
state automata for the Kazakh language, we 
have shown that the models under study can 
generate texts with the required quality based 
on the Hidden Markov Model. 

The study has a fundamental novelty 
both in the formulation of the problem and in 
the choice of methods for solving the problem. 
The effectiveness of methods and approaches to 
solve the problem is based primarily on the 
comprehensive use of modern advances in the 
field of artificial intelligence, mathematical 
linguistics and computer technology related to 
the development of formal language models, 
the theory and practice of text generation in 
natural language. 

 
2. RELATED WORK 

For our study we consider the Kazakh 
language, which is the state language in the 
Republic of Kazakhstan. Kazakh is part of the 
Kypchak branch of the Turkic language family 
and is very rich in morphology compared to 
languages such as English. Kazakh, in which 
words are formed by adding affixes to the root 
form, is called an agglutinative language. We 
can form a new word by adding an affix to the 
root form, and then form another word by 
adding another affix to that new word, and so 
on. This iterative process can continue on 
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several levels. Thus, one word in an 
agglutinative language can correspond to a 
phrase consisting of several words in a non-
agglutinative language. For a review on 
comprehensive rule-based morphological 
analysis, we refer the reader to the following 
studies[1]. 

The general problem of error 
correction in texts obtained by different 
generation methods has attracted considerable 
attention of researchers in previous 
years[2][3][4]. Ideas for various error correction 
algorithms have been proposed by various 
authors, primarily in the development of natural 
language processing systems. For example, the 
application of large language models to error 
detection with sufficient efficiency is described 
here[5]. Error correction methods in Mandarin 
Chinese have also been presented[6]. Almost all 
the error correction algorithms presented first 
create lists of candidates, and then select by 
ranking the candidates with the help of a 
language model[7]. The Levenshtein distances 
are used to construct a set of candidates to 
replace the erroneous one, allowing more 
accurate correction of cases of erroneous word 
splitting into several worthwhile words. 

The following papers[8] propose 
improvements to the error correction step 
errors. Along with the used probabilistic 
language model of the text, a word reliability 
measure is introduced, which allows to correct 
some syntactic and semantic errors at the 
expense of the information on the neighboring 
words. The idea of the method is to rank a list 
of candidates for replacing an erroneous one.  

The selection of candidates is rather 
labor-intensive, due to numerous calculations 
on the language model. This paper proposes a 
method based on reducing the computational 
laboriousness of the error finding procedure. An 
extended language model is used, which takes 
into account their mutual information related on 
parts of speech[9]. 

The well-known Hidden Markov 
Model (HMM) is defined as a Markov process 
with hidden states and an observable 
variable[10]. These hidden states have a 
probability distribution over the possible 
observed outputs. The main task of an HMM is 
a supervised learning process in which the most 
likely model that produces the observed 
sequence is chosen.  

To generate synthetic text, HMM is 
applied as follows. In the first phase, the source 
text is tagged with a partial speech tagger, and 
then the process of computing the most likely 
model capable of producing the desired text is 
done[11][12]. All transitions from the hidden 
state and variable are counted and used to 
estimate transition probabilities. 

The correction method we use in this 
paper assumes that the dictionary is represented 
as a finite state machine (FSM). Our solution 
selects a number of dictionary words with 
corrections, and then measures the distance 
between the incorrect word and all selected 
words. Another method that works on the same 
principle is the similarity key method[13]. In 
this method, words are divided into classes 
according to their characteristics, where the 
comparison is made with the class of words. In 
addition to the considered method, there are 
other methods based on finite state automata, 
for example, in which words are considered a 
separate language over an alphabet[14].  

Our proposed method imposes no 
restrictions on the edit distance between the 
input word and the candidates. But it can accept 
several constraints on symbols that can replace 
certain other symbols. For context-dependent 
error correction, we mainly apply a candidate 
set ranking with respect to the context of the 
corrections. 
 
3. TEXT CORRECTION USING FSM 
3.1 Description of the method 

Our approach to correcting synthetic 
text consists of three main steps: detecting 
incorrect parts of a sentence, generating 
possible candidates for correction, and choosing 
the most appropriate corrections. The most 
obvious way to detect incorrect sentences is to 
search for each occurrence of a phrase in the 
dictionary and to look for words not found in 
the dictionary. However, we can represent the 
dictionary as a finite state automaton to make 
this process more efficient. In the proposed 
approach, we build an FSM that represents the 
path for each word in the input string. We then 
combine this with the dictionary FSM. The 
result of the operation is the intersection of 
these words, which are present in both the 
processed string and the dictionary. If we find 
the difference between the FSM containing all 
the words present and this FSM, we get the 
FSM for each incorrectly written text. Figure 1 
illustrates the FSM containing the input string. 
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Further the problem of generating 
candidates for incorrect phrases can be divided 
into the following subtasks: generating a list of 
words close to the input word by distance, and 
selecting a subset of words from the dictionary. 
To perform these tasks, we generate one 
transducer from FSM representing the word, 
which generates all the words within a certain 
distance from the input word. After finding the 
wrong words represented by the FSM, we can 
filter out the words that are not in the 
dictionary. 

 
 

Figure 1: the FSM containing the input string 

 
To select the best choices from the set 

of candidates, we use a language model to 
assign probability to the sequence of words. To 
obtain the desired word sequence, we consider 
the context in which the incorrect word 
appeared, replace the incorrect word with a 
fixed candidate, and retrieve n-grams 
containing candidates at probable positions in 
the n-gram. We then find a score for each n-
gram using the language model and assign the 
corresponding score to the candidate as the 
average score of all n-grams. Before choosing 
the best candidate, we downgrade the fixes that 
require more editing in order to give preference 
to candidates with minimal editing. 

 
3.2 Generating candidate corrections 

Here we give a description of the 
formal apparatus of two-level rules, as well as a 
full description of the two-level model of 
Kazakh language morphology and 
morphological analyzer built on its basis using 
our modified source formats of the PC-
K1MMO toolkit[15] and belonging to the class 
of pragmatic conceptual-formal models.  PC-
K1MMO is a computer program which uses a 
linguistic description of the phonology and 
morphology of the native language to recognize 
and generate words in this language. 

Models implemented using the PC-
KIMMO can be used as stand-alone modules in 
other language processors. In particular, the 

Kazakh morphological analyzer based on PC-
KIMMO is used as part of a rule based machine 
translation system from Kazakh to English[16]. 
The morphological analyzer can be effectively 
used also as a software tool for studying, 
researching and developing natural language 
morphology. 

PC-KIMMO, from the morphological 
analyzer's developer point of view, consists of 
two user created files. The first file is the rules 
file, which describes the alphabet and 
phonological rules. The second file is the 
Lexicon, which contains the vocabulary of the 
lexical units (root and affix morphemes) and 
their interpretations, as well as the description 
of the morphotactical rules. A lexicon consists 
of sub lexicons (sublexicons) divided by 
selective features and paradigmatic classes. The 
structure of the sublexicons forms a connected 
graph, with the root lexicon at its apex, which 
starts the analysis of the input word[17]. All the 
rules of the second morphology component are 
written in the language of regular 
expressions[18]. The analysis technology is 
based on a kind of finite-state transducer (FST). 
An FST is an automaton in which each 
transition between states in a network has an 
output label in addition to the input label. The 
original morphological lexicon is compiled into 
a lexicon transducer, and the rule component is 
compiled into a two-level rule transducer. The 
resulting lexical finite state machine, i.e. a 
complete morphological representation of a 
language, is a lexical transducer obtained by a 
composition of a lexicon transducer and a rule 
transducer. The character alphabet of a finite 
automaton is called Sigma. Sigma of lexical 
TCS consists of the alphabet of the analyzed 
natural language and special grammatical tags 
that express the meaning of the selective 
features and grammars (e.g., +Verb - verb, 
+Active - active voice, +P1 - 1st person, +P1 - 
plural, etc.). 

The root lexicon calls the sub-lexicons. 
Expressions in lexicons are a pair of forms: 
lexical and surface forms, separated by a colon. 
The TCS builder interprets such a pair as a 
regular relation. The '#' grid marks the end 
state. The uniqueness of the path of transitions 
in the finite automata network gives uniqueness 
to the morphological interpretation. The path 
variants leading to a finite state in the TCS 
network specify a plurality of interpretations for 
the surface form, which corresponds to 
morphological multivaluedness. 
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In the two-level approach, phonology 
is defined as the relationship between the 
lexical level of deep representation of words 
and their realization at the surface level, by 
virtue of which the theoretical model of PC-
KIMMO phonology is called a two-level 
phonology. PC-KIMMO includes two 
functional components - a generator and a 
recognizer. 

The generator inputs the lexical form, 
applies the rules of phonology, and returns the 
corresponding surface form. The lexicon is not 
used. The recognizer receives on the input the 
surface form, applies the rules of phonology, 
refers to the lexicon and returns the 
corresponding lexical forms with their 
comments (interpretations). Figure 2 shows the 
structural and functional diagram of the two-
level morphological analyzer. 

 
Figure 1: decompoings the surface form 

"bakshadan" into its components 

 
The generator, using the file of 

phonological rules, translates the lexical 
notation "baksha+da" into the surface form 
"bakshadanmyn" ("from the garden"). The 
recognizer, using both the file of phonological 
rules and the file of morpho-tactical rules, 
decomposes the word form (surface form) 
"bakshadanmyn" into its components and their 
corresponding substantive descriptions. 

Two-level rules are similar to the rules 
of classical generative phonology, but differ in 
several important points. Here is an example of 
a generative rule notation: (R1) RULE x -> y/z. 
The two-level rule has the following form: (R2) 
RULE x:y =>z. The difference between the 
formalisms of the two rules is not only in their 
writing, their meanings are also different. 

Generative rules have three main 
characteristics: 1) transformation rules - they 
transform or rewrite one character into another. 

Rule (R1) states that x becomes (changes into) 
y when it precedes it. After (R1) x is rewritten 
as y and x does not exist further; 2) consistently 
applied generation rules transform deep forms 
into surface forms through any number of 
intermediate levels of representation; 3) 
generative rules are unidirectional - they can 
only convert deep forms into surface forms, but 
not vice versa. 

In contrast to (R1), two-level rules are 
declarative. They establish certain relationships 
(connections) between lexical (i.e., deep) forms 
and their surface forms. (R2) establishes that 
the lexical x corresponds to the surface y before 
g; it does not change into y and only takes place 
after this rule is applied. Since the two-level 
rules express the connection of characters rather 
than their overwriting, they are applied in 
parallel rather than sequentially, not forming 
intermediate representations as with (R1). Only 
lexical and surface levels are allowed, no other 
intermediate levels. This is their property, 
which is why they are called two-levels. 
Moreover, since a two-level model is defined as 
a set of links between lexical and surface 
representations, two-level rules are 
bidirectional. A given lexical form PC-
K1MMO translates into a surface form and a 
surface form into a lexical form. 

An important characteristic of two-
level rules is that they require a one-to-one 
correspondence between lexical and surface 
letters, i.e., there must be an equal number of 
lexical and surface letters and each lexical letter 
must cover exactly one surface character and 
vice versa. A phonological process that 
removes or inserts characters corresponding to 
the NULL symbol into the two-level model is 
written as 0 (zero). Another special character is 
the BOUNDARY (boundary) character, written 
as #. It is a boundary character that represents 
either the beginning or the end of a word. It can 
only be used in the context of a rule and can 
only correspond to another boundary character, 
i.e. #. 

In PC-KIMMO, character classes are 
listed with one name (one or more characters, 
without a space). These character classes are 
defined in SUBSET statements in the rules file. 
For example, the following declarations define 
CS as the set of consonants, VOWEL as the set 
of vowels, S as the set of mute consonants, and 
NASAL as the set of nasals. 

The main mechanism for representing 
two-level rules as a two-level computer model 
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is the finite-state transducer technology. It 
consists of finite states and directed transient 
arcs. As a minimum, it must contain an initial 
state, a final state, and an arc between them. A 
successful transition from one state to another is 
possible when the next character of the input 
line matches the character on the arc connecting 
the states.  

Transducers differ from automata in 
that they operate on two input sequences. 
Transducers are automata in which each 
transition between states in the network has an 
output label in addition to the input label.  

For example, it recognizes whether 
two chains are valid correspondences (or 
translations) to each other. Suppose that the first 
input chain for a transducer is a language chain 
containing elements x and y and defined as 
b1={hunx\n> 0}. Correctly constructed chains 
for this language are: xx, xuh, xuhuh, xuhuh, 
etc. As the second input we define chains of the 
language b2 corresponding to chains of the 
language b1 where every second occurrence of 
the element y corresponds to an element. Fig. 3. 
shows a diagram of correspondence between 
languages b1 and b2. 

 

 
 

Figure 3: a diagram of correspondence between 
languages b1 and b2. 

Transducers can also be represented in 
the form of finite state tables, with the only 
difference being that the column headings will 
indicate pairs of correspondences, such as: x:x, 
y:y, and y:z. For example, the diagram shown 
in Fig. 3, can be represented as the following 
table of finite states: 

Table 1: finite state tables indicating pairs of 
correspondences. 

 x y y 

 x y z 

1. 2 0 0 

2. 4 3 0 

3. 4 0 2 

4: 0 0 0 

 

For example, let's take the execution of 
a two-level rule as an example: (R1) RULE t:d 
=>_y: 

The operator => in this rule means that 
the lexical symbol t is realized as a surface 
symbol d only when (but not always) it 
precedes the environment (context) y: y. 

The correspondence t:e declared in 
rule (R1) is special. The two-level description 
contained in rule (R1) must also contain a set of 
default correspondences, such as k:k, a:a, t:t, 
y:y, etc. The set of all special and default 
correspondences forms the set of probable 
pairs. 

Let the description contain (R1) and 
the set of all default matches. Suppose a lexical 
form(LF) “katyk” is fed to the input of the 
generator. The generator starts browsing from 
the first character of the input sequence and 
looks to see what correspondences are set for it. 
At a certain point in time the generator has a 
symbol t as its input, and for a successful t:d 
match by rule (R1) the next input symbol in the 
chain for it must be a y:y match. Having found 
that this condition is satisfied, the generator sets 
t:d. 

Table 2: the execution of a two-level rule. 

LF: K a t y k 

DC 3 2 1 2 1 

SF: K a t y k 

 

 
Figure 4: the execution of a two-level rule. 

Since there are no more input 
characters in the input lexical chain, the 
generator will produce a surface form of the 
“kadyk”. However, the generator does not 
complete its work. It continues to return to the 
previous characters and tries to find alternative 
implementations of the lexical form.  

First it makes a return to the last match 
of the input character y:y, then it recycles the 
third lexical character t again. A t:d 
correspondence has already been set for it, so 
the generator will set the next possible t:t 
correspondence, defined by default. Then the 



Journal of Theoretical and Applied Information Technology 
30th November 2021. Vol.99. No 22 

© 2021 Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
5564 

 

generator moves on to the last character k, for 
which the default correspondence (DC) k:k is 
set. All other rollbacks are unsuccessful. 
Therefore, the generator completes its work and 
will produce a second surface form (SF) of 
“katyk”. 

 
3.3 The phonological rules file description 

The rules file consists of a list of 
keyword declarations and their corresponding 
content. The rules file uses the following set of 
keywords: ALPHABET, NULL, ANY, 
BOUNDARY, SUBSET, RULE and END. 

1) ALPHABET. 
This is a list of 42 characters required 

for a complete representation of the Kazakh 
alphabet. 

In the base shell PC-KIMMO the Latin 
alphabet is used for symbols, so that 
complicates the realization of phonological 
rules file and Lexicon for languages based on 
the Cyrillic alphabet. In this connection we 
have carried out modification of program 
toolkit with use of system Visual Studio and 
programming language C#.  

The modified system was 
supplemented with additional capabilities to 
work with characters of the Unicode code table, 
respectively, providing an opportunity to use 
languages based on the Cyrillic alphabet. In 
addition we have developed plug-in .dll and 
.net-modules for morphological analysis and 
text synthesis. These libraries were developed 
in the Microsoft Visual Studio .NET application 
development environment, allowing the two-
level model to be used on any alphabetic basis, 
including Cyrillic, in cross-platform systems.  

There is also a lexical form of writing, 
which at the surface level is implemented 
according to phonological rules. % - is applied 
to words that do not obey the law of vowel 
harmony. For example, the word bale (trouble) 
attaches allomorphs with "soft" vowels, rather 
than "hard" vowels, as the rules of vowel 
harmony suggest (ends in a "hard" syllable). 
The lexical form of the word form construction 
of the word form bale+LY is formed as follows: 
bale%+LY, where the lexical symbol y in this 
case corresponds to the surface "soft" symbol 
and not to the "hard" symbol y according to the 
law of vowel harmony. 

2) NULL O 
3) ANY @ 
4) BOUNDARY # 

The components of the rules file 
indicate the purpose of the corresponding 
characters to be used in writing the rules. The 
SUBSET section is used to make the rule file 
more compact. 

5) SUBSET CS is the designation of 
the set of all (ConSonants) letters appearing as 
consonants (25 letters). 

The rules file is then followed by the 
Rules themselves, which establish character 
matching depending on the context, i.e. the 
character environment in the word form. The 
phonological rules indicate in what 
environment the appropriate lexical character is 
to be changed when the word-form is generated. 

 
3.4 Description of the lexical components file 

The Lexicon contains a list of lexical 
entries found in the description. Lexical input 
can be a single morpheme (such as root, prefix 
and suffix) or a morphological complex of 
words (prefix plus root and suffix; for 
agglutinative languages this order would be: 
root plus affix morpheme). In word recognition, 
lexical components work together with rule 
components. The general structure of the 
lexicon is a list of keyword declarations. The 
set of valid keywords includes 
ALTERNATION, LEXICON, INCLUDE and 
END. The declarations can occur in any order 
except that LEXICON must be declared after 
ALTERNATION. The obligatory single 
declaration is LEXICON INITIAL; that is, a 
lexical file must at least contain a sub lexicon 
called INITIAL (beginning). 

The skeleton of a LEXICON file looks 
like this:  ALTERNATION End End 
LEXICON INITIAL 0 End "[" LEXICON End 
0 # "]" END. 

Lexical components also use automata. 
Morphtactic constraints are represented in the 
lexicon by structuring it as automata. Since 
two-level phonological rules use transducers 
that can operate on two strings simultaneously, 
the process of recognizing morpheme 
sequences in the lexical form of a word deals 
with only one level. Thus, it uses a less 
complex automata formalism that operates on 
only one line. The PC-KIMMO lexicon is an 
automata in which (1) each changing name is a 
state; (2)-joining classes are arcs that point to 
the next state; (3)-the sublexicon of lexical 
occurrences are labels on the arcs. 

The morphotactic rules file is designed 
on the basis of morphotactic schemes and 



Journal of Theoretical and Applied Information Technology 
30th November 2021. Vol.99. No 22 

© 2021 Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
5565 

 

defines the relationships between the base and 
affixal groups.  The description of morphotactic 
rules for the verb in the file <kazakhV.lex> and 
for nouns in the file <kazakhN.lex> is 
demonstrated here. 

The lexicon of root lexemes is built on 
the basis of the modern Kazakh language and 
consists of a number of lexicons filled in 
according to the relevant PC-KIMMO 
requirements. The sub-lexicons contain rows of 
lexical entries consisting of the following three 
parts: the first part is a lexical atom (a Kazakh 
root word); the second part is an accession class 
(or continuation); that is, something that may 
follow immediately after this atom - a sub-
lexicon that may have other lexical units. 
Accession classes can follow many other 
morphemic units. The lexicon ALTERNATION 
in PC-KIMMO is a list of names of 
sublexicons, the order of which determines 
which class can be followed by which, while 
only one definition is possible, i.e. it is a 
restriction inherent to the sublexicon; the third 
part is its interpretation (description of 
grammatical features). As a rule, any 
morphological, grammatical, lexical, or 
semantic properties of a lexical unit are 
recorded here. When the word recognizer 
processes a word, the interpretation of each 
selected morpheme is added to the result line. 

(1) Nouns. The lexicon includes about 
20 thousand Root nouns. 

(2) Verbs. The lexicon contains about 
8 thousand verb roots. 

(3) Adjectives.  
As it is known, Kazakh is an 

agglutinative regular language subjected to 
strict rules. At the same time, as in any natural 
language, there are exceptions, most often also 
subject to certain rules. For example, 
superlative adjectives have prefixes written 
with a hyphen '-'. For example: the root word 
'red' in the superlative degree is written as kyp-
kyzyl ('very red'). The Lexicon of Adjectives 
contains over 3,000 basic roots and additionally 
includes a lexicon of 140 superlative adjectives 
with prefixes. The following Lexicons, which 
constitute a small fraction of the total 
vocabulary of about 30 thousand root words 
with specific morphotactic rules inherent to the 
selected word groups, are also defined: (4) 
Adverbs. (5) Pronouns. (6) Numerals. (7) 
Postpositions. (8) Conjunctions. (9) 
Interjections (Exclamations). 

The ALTERNATION parameter has 8 
inputs for word forms (So, in this description, it 
is defined that there are 8 different possibilities 
for a kazakh word's beginning): VERB (verb), a 
sublexicon for verbs; NOUN (noun), a 
sublexicon for nouns; ADJECTIVE (adjective), 
a sublexicon for adjectives; ADJECTIVE2 
(adjective2), a sublexicon for adjectives; 
NUMERAL, a sublexicon for numbers; 
PRONOUN, a sublexicon for pronouns, 
postpositions; ADVERB, a sublexicon for 
adverbs; SPECIAL, a sublexicon for 
conjunctions, interjections. 

 
3.5 Description of the base of morphotactic 

rules 
The list of verb forms for recognition 

is written to the special file <kazakh.rg>, which 
is fed to the input of the two-level 
morphological analyzer.  

Suppose the file <kazakh.rg> contains 
the following words: baru bargandar barma 
barmasa bardy. Then the recognition result 
recorded in the file <kazakh.rec> will be:  

bar+U[V(bar)+NOMINATIVE(y/Y/B)
]bar+GAN+DAR[V(6ap)+PAST_UNDEF(GA
N)+PLURAL(DAr)]bar+mA[V(6ap)+NEGAT
TVE(MA)]bar+mA+sA[Y(6ap)+NEGATIVE(
MA)+CONDITIONAL(cA)] bar+Y [ V(bar)+C 
OUSATIVE(DY)]. 

Next, here is a description of the 
morphotactic rules file for the Kazakh verb with 
examples and comments. 

Kazakh.lex {File containing 
sublexicons of all lexeme classes} 
ALTERNATION BEGIN VERBS {VERBS is 
a list of verb bases that are the initial input for 
the analyzer} Example: LEXICON VERB bar 
verb "V(6ap)" kel verb "U(kel)" kara verb 
"U(kara)" 

ALTERNATION verb { here the affix 
classes that can follow the verb are specified} 
REFLEX MODAL NOMINATIVE 
INFINITIVE PARTICIPAL CONTRARY 
IMPERATIVE REQUEST CONDITIONAL 
TENSES CONDJFUTURE1 End { in our case 
the specified affix classes, each of which is 
further predefined up to the corresponding affix 
group} 

ALTERNATION End End {Signify 
the end of affix accession or zero affix 
accession} LEXICON INITIAL O BEGIN "[" 
INCLUDE verb.Iex; {connect file containing 
verb bases} 
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What follows is a description of the 
affix base of Kazakh verb word forms. Here is a 
description of the fragment from this file. 
LEXICON REFLEX {group of reflexive affixes 
denoting the form of pledge} 

The first part of the lexicon gives the 
affix morpheme, then the name of the class of 
morphemes that may follow this affix. The third 
component reflects an interpretation, a 
commentary regarding a given lexical input. 

Morphotactic rules specify affix 
groups and their ordering. The recognition 
function accesses both the phonological and 
morphotactic rules file.  

The scheme of morphotactic 
transitions for verbs is constructed taking into 
account the grammatical categories of 
inflection, negation tense, voice, number and 
person of the verb. The verb stem is presented 
in the dictionary in the form of the 2nd person 
of the Imperative: e.g. bar - 'go', kel - 'come'. 
All affixes in the scheme are presented in the 
lexical form (LF), that is, depending on the 
environment; they acquire different surface 
forms (SF). For example, LF: bar (go) +Gan kel 
(come) + Gan SF: bargan (went) kelgen (came). 
As can be seen from the example, here the affix 
-GAn appears in two surface forms: -gan and -
gen. 

 
3.6 Description of the lexical semantics 

When describing the semantics of 
affixal morphemes, we proceed from the 
statement that each morpheme is used to encode 
a meaning in some context, reflecting some 
local "picture of the world. The use of affixal 
morphemes allows us to significantly reduce the 
number of root morphemes for the transmission 
(coding) of some meaning, i.e. serves as an 
element reducing the lexical space needed to 
form the context. 

A local "world picture" is a formalized 
description of some context reflecting objects 
and their relations. The division of lexemes or 
groups of lexemes into objects and relations is a 
rather conventional procedure and depends on 
semantic roles performed by lexemes or groups 
of lexemes reflecting certain meanings in a 
certain context. It is known that the meanings of 
morphemes form a certain context, which is 
most fully revealed in the semantic situation 
formed by the word-form or their combination, 
and each affix can be used in the formation of 
different contexts. 

Affixal morphemes as minimal 
meaningful units of the language, by definition, 
have at least one meaning, manifested when it 
is used in the word-form. In the Kazakh 
language, often, depending on the environment, 
affixal morphemes have different 
interpretations, i.e. depending on the context 
have different meanings, and the same situation 
is not always conveyed by the same class of 
morphemes. Formal semantic models allow us 
to most fully reflect the meanings of affixal 
morphemes in some fragment of the real world 
and build morpheme correspondence tables for 
the pair of translated languages and 
mathematical linguistic models of translation 
using these tables. The methodology of 
comparing the meanings of affixal morphemes 
based on the object-predicate relation system 
allows us to effectively identify the elements of 
similarity and difference between languages at 
the deep semantic level, and to build 
mathematical linguistic models to use them in 
the tasks of machine translation and 
multilingual search. 
 
4. EXPERIMENTS 

We are developing our model in a 
data-poor environment and mostly on synthetic 
Kazakh texts generated from very different data 
sources. Unlike the machine translation data we 
have previously collected, we do not yet have 
public texts to train our correction model, so we 
collect both training and evaluation data almost 
from scratch[19]. As training data, we mainly 
use generated data from synthetic text.  

Our hypothesis about this kind of data 
is that possible users who will actually try to 
generate the data follow our representation of it; 
accordingly the result will correspond to their 
possible intention, and from this sequence of 
possible text actions we can potentially extract 
samples of incorrectly and correctly written 
texts.  

Obviously, this in reality involves a 
much greater variety of actions on the data, and 
so additional filtering is required to obtain 
representative data to train the error correction 
model. By filtering the data from our dataset, 
we get about 2 million pairs of misspelled and 
corrected training data. For testing, we use the 
same dataset as in our previous work on 
machine translation. 
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Table 3: the training dataset. 

Text data, thousands training testing 

words 2584 500 

errors  713 181 

The software modules of the system 
are implemented on the basis of morphological 
models described in the second chapter of the 
paper. The modular structure of the system 
contains user and algorithmic parts, and the 
algorithmic part is language-independent, 
which, if necessary, allows you to build 
correction models for different languages. 

Table 4: the performance of correction model on the 
test data sets. 

Metrics Recall Precis F-score 
baseline 99.87 94.36 97.0368
pure random 71.49 71.59 71.54 
refined 99.91 89.91 94.65 
Test set1 71.52 75.86 73.63 
Test set2 86.23 86.57 86.40 
Test set3 88.69 92.15 90.39 
Test set4 60.55 69.17 64.57 
Test set5 62.92 66.18 64.51 
Test set6 76.05 79.21 77.60 

 
Let's consider the stages of execution 

of modules in the order of phrase processing on 
the example of Kazakh synthetic text. Let the 
following sequence of word forms, forming a 
sentence in the Kazakh language "Men kuzgi 
zhol bardym", come to the input of the system. 
Examples of processing of this phrase are given 
below as a result of execution of the module for 
the Kazakh language. 

1) The module Two-level 
morphological analyzer, described in chapter 2, 
using morphotactic files and two-level rules 
compiled into finite state automata, gives the 
analyzed word forms with assigned 
morphological features: 

1. men [Pro1_Sing(Men)]  
2. kuzgi[N(K63)+CASE_POINT(TBI)]   
3. zhol [(zhol)]  
4. bardym [V(6ap)+POST_DAF()+1 

PSJSing()] 
The morphological analyzer in the 

form of a plug-in dll-module is implemented in 
.NET application development environment, 
which provides compatibility of services in 
different application systems and its functioning 
in cross-platform systems. The word processing 

speed of the dll-module is about 100 word 
forms per second. 

2) The module sentence variant builder 
is used to build variants of sentences obtained 
as a result of multi-word morphological 
analysis of word forms related to lexical 
uncertainty. For our example, it generates all 
possible variant sentences: 

3) All variant sentences arrive at the 
input of the correct sentence construction 
module, where the correct sentence selection 
algorithm is executed to select one based on the 
input sentences, after which the module 
searches for the most relevant words from the 
input variants.  

4) Next, the found correct sentence is 
fed to the input of the verification module, 
where the affix and root morpheme database, 
based on a formal semantic model of affix 
values, is used to verify the elements of the 
sentence. 

5) As a result of all these actions, on 
the basis of data from the module of two-level 
morphological analyzer, using morphotactic 
files and two-level rules of the Kazakh 
language, compiled into finite state automata, 
the system will generate the output sequence 
"Men kuzgi zholmen bardym". 

6) The output data preparation module 
allows outputting the data with appropriate 
formatting of the input data. 

Figure 4: Distribution of F1-score values after 
correction of distorted texts. 

The proposed method is based on a 
multistage application of the approach 
described above; at each stage the text 
fragments that remained distorted after the 
previous stage are corrected. 

Non-word forms and word forms, the 
probability of occurrence of which in the text 
according to the chosen probabilistic model is 
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less than a given threshold, are considered 
distorted. Word forms are defined as continuous 
sequences of alphabetic characters separated 
from each other by spaces or punctuation 
marks. Fig.  4 shows the distribution graphs of 
F1-score values during the correction of 
distorted texts.  For the method, the F1-score 
distribution graph is calculated in cases where 
the list of candidate words was composed of 
words within a Levenshtein distance of up to 4 
from the word being corrected. 

 
5 DISCUSSION 
 

A two-level model of Kazakh 
morphology has been developed, which belongs 
to the class of formal models and is a complete 
computer model of Kazakh morphology. On its 
basis the two-level morphological analyzer, 
which generates word forms on the basis of 
phonological rules and decomposition of 
arbitrary word forms into morphemes on the 
basis of phonological and morphotactic rules, 
has been constructed. 

Mathematical linguistic model of 
morphology is described on the basis of two-
level formalisms of PC-K1MMO software 
toolkit modified by us for the tasks solved in 
the framework of this thesis. The two-level 
rules are implemented using finite state 
automata. The mathematical model of 
morphotactic rules is bi-directional and is 
implemented based on finite state transducers. 

In contrast to generative rules, two-
level rules are declarative and establish certain 
relations between lexical forms and their 
surface forms. Since two-level rules express the 
connection of characters rather than their 
overwriting, they are applied in parallel rather 
than sequentially, without forming intermediate 
representations, as with generative rules. Since 
the two-level model is defined as a set of 
relations between lexical and surface 
representations, the two-level rules are 
bidirectional; respectively the same 
mathematical linguistic model is used for both 
text generation and recognition. 

To describe the phonological rule file 
of the Kazakh language, 42 rule records are 
used. The rules implement the law of vowel 
harmony as well as a number of exceptions and 
irregularities caused mainly by the lack of 
phonetic assimilation of borrowed lexemes. 

The file of morphotactic rules is 
developed on the basis of morphotactic schemes 

and defines relations between the base and 
affixal groups. The lexicon of root lexemes is 
built on the base of Contemporary Kazakh 
language and consists of 9 lexicons filled 
according to PC-KIMMO requirements: Nouns, 
Verbs, Adjectives, Adverbs, Pronouns, 
Numerals, Postpositions, Conjunctions and 
Exclamations. The total volume of the 
dictionary is 30,000 root words. Complete 
morphotactic base for all selected classes of 
root lexemes was developed. 

 In the basic PC-KIMMO the Latin 
alphabet is used for symbols, so that there are 
difficulties in the implementation of the file of 
phonological rules and Lexicon for languages 
based on the Cyrillic alphabet. In this 
connection we have carried out modification of 
PC-KIMMO software toolkit using Visual 
Studio system and C# programming language. 
The modified system has been supplemented 
with the additional possibilities to work with 
symbols of Unicode code table, accordingly 
giving the opportunity to use languages on the 
Cyrillic alphabet. Besides, plug-in .dll and .net-
modules for morphological analysis and text 
synthesis have been created in Microsoft Visual 
Studio application development environment, 
which allows using two-level model on any 
alphabet basis, including Cyrillic, in cross-
platform systems. 
 
6 CONCLUSION 

 
Despite the adequacy of the described 

approach to error correction, it has 
disadvantages: the language models and 
correction models used in practice are rather 
crude. A possible compromise is multistage 
methods that provide successive 
approximations to the optimal solution. 

In addition to the Levenshtein distance 
[20], its modifications can also be used to 
construct a set of candidate words to replace an 
erroneous one, allowing for more precise 
correction of cases of erroneous word splitting 
or erroneous joining of adjacent words. 

To study the impact of text noisiness 
on the performance of machine translation 
systems, we propose to develop parallel corpora 
with artificially introduced distortions [21]. The 
following types of distortions are considered: 
changing the case of individual letters, 
replacing words with phonetically similar ones, 
dropping one or more letters in a word to 
reduce it, dropping words from a sentence to 
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reduce it, merging neighboring words in a 
sentence. 

The paper studies distorted texts of 
natural way. Distortions in such texts are 
sometimes made by the users themselves when 
writing for speed of writing or due to illiteracy. 
The method allows to noticeably increasing the 
accuracy of the correction. In the experiments 
conducted the quality of correction in F1-
measure values for medium distorted texts 
increased by 6%. 
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