
Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5559

 CORRECTION OF KAZAKH SYNTHETIC TEXT USING
FINITE STATE AUTOMATA

1KARTBAYEV A., 2MAMYRBAYEV O., 3KHAIROVA N., 4*YBYTAYEVA G., 5ABILKAIYR N.,
6MUSSAYEVA D.

1Institute of Information and Computer Technologies, Kazakhstan
2Department of Computer Sciences, Al-Farabi Kazakh National University, Kazakhstan

3National Technical University “Kharkiv Polytechnic Institute”,
4 Department of Cybersecurity, Information Processing and Storage, Satbayev University, Kazakhstan

5,6High Schoool of Economics and Business, Al-Farabi Kazakh National University, Kazakhstan
E-mail: 1a.kartbayev@gmail.com, 2morkenj@mail.ru, 3nina_khajrova@yahoo.com,

4ybytayeva.galiya@gmail.com, 5abilkaiyr.nazerke@gmail.com, 6d_i_n_mus@mail.ru

ABSTRACT

In this paper we investigate the correction of generated synthetic text for resource-poor languages. In most
cases, this synthetic text contains many errors that need to be carefully checked and corrected by additional
tools. These errors must be corrected automatically to avoid degrading the performance of the system. Our
approach to automatic error correction is based on the use of finite automata to suggest candidates for
correction of the misspelled word. After selecting correction candidates, a language model is used to assign
points to the correction candidates and choose the best correction in a given context. The proposed
approach is language-independent and requires only dictionary and text data to construct the language
model. The approach was evaluated in Kazakh and achieved an accuracy of 91%.

Keywords: Synthetic Data, Language Model, Finite State Automata, Hidden Markov Model, Text
Generation.

1. INTRODUCTION

In data processing tasks, natural
language text is the main type of data. A large
set of training and test data is required to
achieve the goal in these tasks. Recently, many
countries of the world have tightened the rules
of user data collection at the legislative level.
Therefore, the task of automatic generation of
synthetic texts in natural language, preserving
the main characteristics of real texts, is of great
importance. Many methods of generating
synthetic texts solve the problem of creating
such texts. However, at the moment, the
available synthetic data generators do not
reproduce natural language text data well
enough.

In this paper, we present a preliminary
study aimed at correcting the results of models
for generating texts that have the characteristics
of natural language texts. In a series of
experiments using different datasets and finite
state automata for the Kazakh language, we
have shown that the models under study can
generate texts with the required quality based
on the Hidden Markov Model.

The study has a fundamental novelty
both in the formulation of the problem and in
the choice of methods for solving the problem.
The effectiveness of methods and approaches to
solve the problem is based primarily on the
comprehensive use of modern advances in the
field of artificial intelligence, mathematical
linguistics and computer technology related to
the development of formal language models,
the theory and practice of text generation in
natural language.

2. RELATED WORK

For our study we consider the Kazakh
language, which is the state language in the
Republic of Kazakhstan. Kazakh is part of the
Kypchak branch of the Turkic language family
and is very rich in morphology compared to
languages such as English. Kazakh, in which
words are formed by adding affixes to the root
form, is called an agglutinative language. We
can form a new word by adding an affix to the
root form, and then form another word by
adding another affix to that new word, and so
on. This iterative process can continue on

Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5560

several levels. Thus, one word in an
agglutinative language can correspond to a
phrase consisting of several words in a non-
agglutinative language. For a review on
comprehensive rule-based morphological
analysis, we refer the reader to the following
studies[1].

The general problem of error
correction in texts obtained by different
generation methods has attracted considerable
attention of researchers in previous
years[2][3][4]. Ideas for various error correction
algorithms have been proposed by various
authors, primarily in the development of natural
language processing systems. For example, the
application of large language models to error
detection with sufficient efficiency is described
here[5]. Error correction methods in Mandarin
Chinese have also been presented[6]. Almost all
the error correction algorithms presented first
create lists of candidates, and then select by
ranking the candidates with the help of a
language model[7]. The Levenshtein distances
are used to construct a set of candidates to
replace the erroneous one, allowing more
accurate correction of cases of erroneous word
splitting into several worthwhile words.

The following papers[8] propose
improvements to the error correction step
errors. Along with the used probabilistic
language model of the text, a word reliability
measure is introduced, which allows to correct
some syntactic and semantic errors at the
expense of the information on the neighboring
words. The idea of the method is to rank a list
of candidates for replacing an erroneous one.

The selection of candidates is rather
labor-intensive, due to numerous calculations
on the language model. This paper proposes a
method based on reducing the computational
laboriousness of the error finding procedure. An
extended language model is used, which takes
into account their mutual information related on
parts of speech[9].

The well-known Hidden Markov
Model (HMM) is defined as a Markov process
with hidden states and an observable
variable[10]. These hidden states have a
probability distribution over the possible
observed outputs. The main task of an HMM is
a supervised learning process in which the most
likely model that produces the observed
sequence is chosen.

To generate synthetic text, HMM is
applied as follows. In the first phase, the source
text is tagged with a partial speech tagger, and
then the process of computing the most likely
model capable of producing the desired text is
done[11][12]. All transitions from the hidden
state and variable are counted and used to
estimate transition probabilities.

The correction method we use in this
paper assumes that the dictionary is represented
as a finite state machine (FSM). Our solution
selects a number of dictionary words with
corrections, and then measures the distance
between the incorrect word and all selected
words. Another method that works on the same
principle is the similarity key method[13]. In
this method, words are divided into classes
according to their characteristics, where the
comparison is made with the class of words. In
addition to the considered method, there are
other methods based on finite state automata,
for example, in which words are considered a
separate language over an alphabet[14].

Our proposed method imposes no
restrictions on the edit distance between the
input word and the candidates. But it can accept
several constraints on symbols that can replace
certain other symbols. For context-dependent
error correction, we mainly apply a candidate
set ranking with respect to the context of the
corrections.

3. TEXT CORRECTION USING FSM
3.1 Description of the method

Our approach to correcting synthetic
text consists of three main steps: detecting
incorrect parts of a sentence, generating
possible candidates for correction, and choosing
the most appropriate corrections. The most
obvious way to detect incorrect sentences is to
search for each occurrence of a phrase in the
dictionary and to look for words not found in
the dictionary. However, we can represent the
dictionary as a finite state automaton to make
this process more efficient. In the proposed
approach, we build an FSM that represents the
path for each word in the input string. We then
combine this with the dictionary FSM. The
result of the operation is the intersection of
these words, which are present in both the
processed string and the dictionary. If we find
the difference between the FSM containing all
the words present and this FSM, we get the
FSM for each incorrectly written text. Figure 1
illustrates the FSM containing the input string.

Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5561

Further the problem of generating
candidates for incorrect phrases can be divided
into the following subtasks: generating a list of
words close to the input word by distance, and
selecting a subset of words from the dictionary.
To perform these tasks, we generate one
transducer from FSM representing the word,
which generates all the words within a certain
distance from the input word. After finding the
wrong words represented by the FSM, we can
filter out the words that are not in the
dictionary.

Figure 1: the FSM containing the input string

To select the best choices from the set

of candidates, we use a language model to
assign probability to the sequence of words. To
obtain the desired word sequence, we consider
the context in which the incorrect word
appeared, replace the incorrect word with a
fixed candidate, and retrieve n-grams
containing candidates at probable positions in
the n-gram. We then find a score for each n-
gram using the language model and assign the
corresponding score to the candidate as the
average score of all n-grams. Before choosing
the best candidate, we downgrade the fixes that
require more editing in order to give preference
to candidates with minimal editing.

3.2 Generating candidate corrections

Here we give a description of the
formal apparatus of two-level rules, as well as a
full description of the two-level model of
Kazakh language morphology and
morphological analyzer built on its basis using
our modified source formats of the PC-
K1MMO toolkit[15] and belonging to the class
of pragmatic conceptual-formal models. PC-
K1MMO is a computer program which uses a
linguistic description of the phonology and
morphology of the native language to recognize
and generate words in this language.

Models implemented using the PC-
KIMMO can be used as stand-alone modules in
other language processors. In particular, the

Kazakh morphological analyzer based on PC-
KIMMO is used as part of a rule based machine
translation system from Kazakh to English[16].
The morphological analyzer can be effectively
used also as a software tool for studying,
researching and developing natural language
morphology.

PC-KIMMO, from the morphological
analyzer's developer point of view, consists of
two user created files. The first file is the rules
file, which describes the alphabet and
phonological rules. The second file is the
Lexicon, which contains the vocabulary of the
lexical units (root and affix morphemes) and
their interpretations, as well as the description
of the morphotactical rules. A lexicon consists
of sub lexicons (sublexicons) divided by
selective features and paradigmatic classes. The
structure of the sublexicons forms a connected
graph, with the root lexicon at its apex, which
starts the analysis of the input word[17]. All the
rules of the second morphology component are
written in the language of regular
expressions[18]. The analysis technology is
based on a kind of finite-state transducer (FST).
An FST is an automaton in which each
transition between states in a network has an
output label in addition to the input label. The
original morphological lexicon is compiled into
a lexicon transducer, and the rule component is
compiled into a two-level rule transducer. The
resulting lexical finite state machine, i.e. a
complete morphological representation of a
language, is a lexical transducer obtained by a
composition of a lexicon transducer and a rule
transducer. The character alphabet of a finite
automaton is called Sigma. Sigma of lexical
TCS consists of the alphabet of the analyzed
natural language and special grammatical tags
that express the meaning of the selective
features and grammars (e.g., +Verb - verb,
+Active - active voice, +P1 - 1st person, +P1 -
plural, etc.).

The root lexicon calls the sub-lexicons.
Expressions in lexicons are a pair of forms:
lexical and surface forms, separated by a colon.
The TCS builder interprets such a pair as a
regular relation. The '#' grid marks the end
state. The uniqueness of the path of transitions
in the finite automata network gives uniqueness
to the morphological interpretation. The path
variants leading to a finite state in the TCS
network specify a plurality of interpretations for
the surface form, which corresponds to
morphological multivaluedness.

Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5562

In the two-level approach, phonology
is defined as the relationship between the
lexical level of deep representation of words
and their realization at the surface level, by
virtue of which the theoretical model of PC-
KIMMO phonology is called a two-level
phonology. PC-KIMMO includes two
functional components - a generator and a
recognizer.

The generator inputs the lexical form,
applies the rules of phonology, and returns the
corresponding surface form. The lexicon is not
used. The recognizer receives on the input the
surface form, applies the rules of phonology,
refers to the lexicon and returns the
corresponding lexical forms with their
comments (interpretations). Figure 2 shows the
structural and functional diagram of the two-
level morphological analyzer.

Figure 1: decompoings the surface form

"bakshadan" into its components

The generator, using the file of

phonological rules, translates the lexical
notation "baksha+da" into the surface form
"bakshadanmyn" ("from the garden"). The
recognizer, using both the file of phonological
rules and the file of morpho-tactical rules,
decomposes the word form (surface form)
"bakshadanmyn" into its components and their
corresponding substantive descriptions.

Two-level rules are similar to the rules
of classical generative phonology, but differ in
several important points. Here is an example of
a generative rule notation: (R1) RULE x -> y/z.
The two-level rule has the following form: (R2)
RULE x:y =>z. The difference between the
formalisms of the two rules is not only in their
writing, their meanings are also different.

Generative rules have three main
characteristics: 1) transformation rules - they
transform or rewrite one character into another.

Rule (R1) states that x becomes (changes into)
y when it precedes it. After (R1) x is rewritten
as y and x does not exist further; 2) consistently
applied generation rules transform deep forms
into surface forms through any number of
intermediate levels of representation; 3)
generative rules are unidirectional - they can
only convert deep forms into surface forms, but
not vice versa.

In contrast to (R1), two-level rules are
declarative. They establish certain relationships
(connections) between lexical (i.e., deep) forms
and their surface forms. (R2) establishes that
the lexical x corresponds to the surface y before
g; it does not change into y and only takes place
after this rule is applied. Since the two-level
rules express the connection of characters rather
than their overwriting, they are applied in
parallel rather than sequentially, not forming
intermediate representations as with (R1). Only
lexical and surface levels are allowed, no other
intermediate levels. This is their property,
which is why they are called two-levels.
Moreover, since a two-level model is defined as
a set of links between lexical and surface
representations, two-level rules are
bidirectional. A given lexical form PC-
K1MMO translates into a surface form and a
surface form into a lexical form.

An important characteristic of two-
level rules is that they require a one-to-one
correspondence between lexical and surface
letters, i.e., there must be an equal number of
lexical and surface letters and each lexical letter
must cover exactly one surface character and
vice versa. A phonological process that
removes or inserts characters corresponding to
the NULL symbol into the two-level model is
written as 0 (zero). Another special character is
the BOUNDARY (boundary) character, written
as #. It is a boundary character that represents
either the beginning or the end of a word. It can
only be used in the context of a rule and can
only correspond to another boundary character,
i.e. #.

In PC-KIMMO, character classes are
listed with one name (one or more characters,
without a space). These character classes are
defined in SUBSET statements in the rules file.
For example, the following declarations define
CS as the set of consonants, VOWEL as the set
of vowels, S as the set of mute consonants, and
NASAL as the set of nasals.

The main mechanism for representing
two-level rules as a two-level computer model

Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5563

is the finite-state transducer technology. It
consists of finite states and directed transient
arcs. As a minimum, it must contain an initial
state, a final state, and an arc between them. A
successful transition from one state to another is
possible when the next character of the input
line matches the character on the arc connecting
the states.

Transducers differ from automata in
that they operate on two input sequences.
Transducers are automata in which each
transition between states in the network has an
output label in addition to the input label.

For example, it recognizes whether
two chains are valid correspondences (or
translations) to each other. Suppose that the first
input chain for a transducer is a language chain
containing elements x and y and defined as
b1={hunx\n> 0}. Correctly constructed chains
for this language are: xx, xuh, xuhuh, xuhuh,
etc. As the second input we define chains of the
language b2 corresponding to chains of the
language b1 where every second occurrence of
the element y corresponds to an element. Fig. 3.
shows a diagram of correspondence between
languages b1 and b2.

Figure 3: a diagram of correspondence between
languages b1 and b2.

Transducers can also be represented in
the form of finite state tables, with the only
difference being that the column headings will
indicate pairs of correspondences, such as: x:x,
y:y, and y:z. For example, the diagram shown
in Fig. 3, can be represented as the following
table of finite states:

Table 1: finite state tables indicating pairs of
correspondences.

 x y y

 x y z

1. 2 0 0

2. 4 3 0

3. 4 0 2

4: 0 0 0

For example, let's take the execution of
a two-level rule as an example: (R1) RULE t:d
=>_y:

The operator => in this rule means that
the lexical symbol t is realized as a surface
symbol d only when (but not always) it
precedes the environment (context) y: y.

The correspondence t:e declared in
rule (R1) is special. The two-level description
contained in rule (R1) must also contain a set of
default correspondences, such as k:k, a:a, t:t,
y:y, etc. The set of all special and default
correspondences forms the set of probable
pairs.

Let the description contain (R1) and
the set of all default matches. Suppose a lexical
form(LF) “katyk” is fed to the input of the
generator. The generator starts browsing from
the first character of the input sequence and
looks to see what correspondences are set for it.
At a certain point in time the generator has a
symbol t as its input, and for a successful t:d
match by rule (R1) the next input symbol in the
chain for it must be a y:y match. Having found
that this condition is satisfied, the generator sets
t:d.

Table 2: the execution of a two-level rule.

LF: K a t y k

DC 3 2 1 2 1

SF: K a t y k

Figure 4: the execution of a two-level rule.

Since there are no more input
characters in the input lexical chain, the
generator will produce a surface form of the
“kadyk”. However, the generator does not
complete its work. It continues to return to the
previous characters and tries to find alternative
implementations of the lexical form.

First it makes a return to the last match
of the input character y:y, then it recycles the
third lexical character t again. A t:d
correspondence has already been set for it, so
the generator will set the next possible t:t
correspondence, defined by default. Then the

Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5564

generator moves on to the last character k, for
which the default correspondence (DC) k:k is
set. All other rollbacks are unsuccessful.
Therefore, the generator completes its work and
will produce a second surface form (SF) of
“katyk”.

3.3 The phonological rules file description

The rules file consists of a list of
keyword declarations and their corresponding
content. The rules file uses the following set of
keywords: ALPHABET, NULL, ANY,
BOUNDARY, SUBSET, RULE and END.

1) ALPHABET.
This is a list of 42 characters required

for a complete representation of the Kazakh
alphabet.

In the base shell PC-KIMMO the Latin
alphabet is used for symbols, so that
complicates the realization of phonological
rules file and Lexicon for languages based on
the Cyrillic alphabet. In this connection we
have carried out modification of program
toolkit with use of system Visual Studio and
programming language C#.

The modified system was
supplemented with additional capabilities to
work with characters of the Unicode code table,
respectively, providing an opportunity to use
languages based on the Cyrillic alphabet. In
addition we have developed plug-in .dll and
.net-modules for morphological analysis and
text synthesis. These libraries were developed
in the Microsoft Visual Studio .NET application
development environment, allowing the two-
level model to be used on any alphabetic basis,
including Cyrillic, in cross-platform systems.

There is also a lexical form of writing,
which at the surface level is implemented
according to phonological rules. % - is applied
to words that do not obey the law of vowel
harmony. For example, the word bale (trouble)
attaches allomorphs with "soft" vowels, rather
than "hard" vowels, as the rules of vowel
harmony suggest (ends in a "hard" syllable).
The lexical form of the word form construction
of the word form bale+LY is formed as follows:
bale%+LY, where the lexical symbol y in this
case corresponds to the surface "soft" symbol
and not to the "hard" symbol y according to the
law of vowel harmony.

2) NULL O
3) ANY @
4) BOUNDARY #

The components of the rules file
indicate the purpose of the corresponding
characters to be used in writing the rules. The
SUBSET section is used to make the rule file
more compact.

5) SUBSET CS is the designation of
the set of all (ConSonants) letters appearing as
consonants (25 letters).

The rules file is then followed by the
Rules themselves, which establish character
matching depending on the context, i.e. the
character environment in the word form. The
phonological rules indicate in what
environment the appropriate lexical character is
to be changed when the word-form is generated.

3.4 Description of the lexical components file

The Lexicon contains a list of lexical
entries found in the description. Lexical input
can be a single morpheme (such as root, prefix
and suffix) or a morphological complex of
words (prefix plus root and suffix; for
agglutinative languages this order would be:
root plus affix morpheme). In word recognition,
lexical components work together with rule
components. The general structure of the
lexicon is a list of keyword declarations. The
set of valid keywords includes
ALTERNATION, LEXICON, INCLUDE and
END. The declarations can occur in any order
except that LEXICON must be declared after
ALTERNATION. The obligatory single
declaration is LEXICON INITIAL; that is, a
lexical file must at least contain a sub lexicon
called INITIAL (beginning).

The skeleton of a LEXICON file looks
like this: ALTERNATION End End
LEXICON INITIAL 0 End "[" LEXICON End
0 # "]" END.

Lexical components also use automata.
Morphtactic constraints are represented in the
lexicon by structuring it as automata. Since
two-level phonological rules use transducers
that can operate on two strings simultaneously,
the process of recognizing morpheme
sequences in the lexical form of a word deals
with only one level. Thus, it uses a less
complex automata formalism that operates on
only one line. The PC-KIMMO lexicon is an
automata in which (1) each changing name is a
state; (2)-joining classes are arcs that point to
the next state; (3)-the sublexicon of lexical
occurrences are labels on the arcs.

The morphotactic rules file is designed
on the basis of morphotactic schemes and

Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5565

defines the relationships between the base and
affixal groups. The description of morphotactic
rules for the verb in the file <kazakhV.lex> and
for nouns in the file <kazakhN.lex> is
demonstrated here.

The lexicon of root lexemes is built on
the basis of the modern Kazakh language and
consists of a number of lexicons filled in
according to the relevant PC-KIMMO
requirements. The sub-lexicons contain rows of
lexical entries consisting of the following three
parts: the first part is a lexical atom (a Kazakh
root word); the second part is an accession class
(or continuation); that is, something that may
follow immediately after this atom - a sub-
lexicon that may have other lexical units.
Accession classes can follow many other
morphemic units. The lexicon ALTERNATION
in PC-KIMMO is a list of names of
sublexicons, the order of which determines
which class can be followed by which, while
only one definition is possible, i.e. it is a
restriction inherent to the sublexicon; the third
part is its interpretation (description of
grammatical features). As a rule, any
morphological, grammatical, lexical, or
semantic properties of a lexical unit are
recorded here. When the word recognizer
processes a word, the interpretation of each
selected morpheme is added to the result line.

(1) Nouns. The lexicon includes about
20 thousand Root nouns.

(2) Verbs. The lexicon contains about
8 thousand verb roots.

(3) Adjectives.
As it is known, Kazakh is an

agglutinative regular language subjected to
strict rules. At the same time, as in any natural
language, there are exceptions, most often also
subject to certain rules. For example,
superlative adjectives have prefixes written
with a hyphen '-'. For example: the root word
'red' in the superlative degree is written as kyp-
kyzyl ('very red'). The Lexicon of Adjectives
contains over 3,000 basic roots and additionally
includes a lexicon of 140 superlative adjectives
with prefixes. The following Lexicons, which
constitute a small fraction of the total
vocabulary of about 30 thousand root words
with specific morphotactic rules inherent to the
selected word groups, are also defined: (4)
Adverbs. (5) Pronouns. (6) Numerals. (7)
Postpositions. (8) Conjunctions. (9)
Interjections (Exclamations).

The ALTERNATION parameter has 8
inputs for word forms (So, in this description, it
is defined that there are 8 different possibilities
for a kazakh word's beginning): VERB (verb), a
sublexicon for verbs; NOUN (noun), a
sublexicon for nouns; ADJECTIVE (adjective),
a sublexicon for adjectives; ADJECTIVE2
(adjective2), a sublexicon for adjectives;
NUMERAL, a sublexicon for numbers;
PRONOUN, a sublexicon for pronouns,
postpositions; ADVERB, a sublexicon for
adverbs; SPECIAL, a sublexicon for
conjunctions, interjections.

3.5 Description of the base of morphotactic

rules
The list of verb forms for recognition

is written to the special file <kazakh.rg>, which
is fed to the input of the two-level
morphological analyzer.

Suppose the file <kazakh.rg> contains
the following words: baru bargandar barma
barmasa bardy. Then the recognition result
recorded in the file <kazakh.rec> will be:

bar+U[V(bar)+NOMINATIVE(y/Y/B)
]bar+GAN+DAR[V(6ap)+PAST_UNDEF(GA
N)+PLURAL(DAr)]bar+mA[V(6ap)+NEGAT
TVE(MA)]bar+mA+sA[Y(6ap)+NEGATIVE(
MA)+CONDITIONAL(cA)] bar+Y [V(bar)+C
OUSATIVE(DY)].

Next, here is a description of the
morphotactic rules file for the Kazakh verb with
examples and comments.

Kazakh.lex {File containing
sublexicons of all lexeme classes}
ALTERNATION BEGIN VERBS {VERBS is
a list of verb bases that are the initial input for
the analyzer} Example: LEXICON VERB bar
verb "V(6ap)" kel verb "U(kel)" kara verb
"U(kara)"

ALTERNATION verb { here the affix
classes that can follow the verb are specified}
REFLEX MODAL NOMINATIVE
INFINITIVE PARTICIPAL CONTRARY
IMPERATIVE REQUEST CONDITIONAL
TENSES CONDJFUTURE1 End { in our case
the specified affix classes, each of which is
further predefined up to the corresponding affix
group}

ALTERNATION End End {Signify
the end of affix accession or zero affix
accession} LEXICON INITIAL O BEGIN "["
INCLUDE verb.Iex; {connect file containing
verb bases}

Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5566

What follows is a description of the
affix base of Kazakh verb word forms. Here is a
description of the fragment from this file.
LEXICON REFLEX {group of reflexive affixes
denoting the form of pledge}

The first part of the lexicon gives the
affix morpheme, then the name of the class of
morphemes that may follow this affix. The third
component reflects an interpretation, a
commentary regarding a given lexical input.

Morphotactic rules specify affix
groups and their ordering. The recognition
function accesses both the phonological and
morphotactic rules file.

The scheme of morphotactic
transitions for verbs is constructed taking into
account the grammatical categories of
inflection, negation tense, voice, number and
person of the verb. The verb stem is presented
in the dictionary in the form of the 2nd person
of the Imperative: e.g. bar - 'go', kel - 'come'.
All affixes in the scheme are presented in the
lexical form (LF), that is, depending on the
environment; they acquire different surface
forms (SF). For example, LF: bar (go) +Gan kel
(come) + Gan SF: bargan (went) kelgen (came).
As can be seen from the example, here the affix
-GAn appears in two surface forms: -gan and -
gen.

3.6 Description of the lexical semantics

When describing the semantics of
affixal morphemes, we proceed from the
statement that each morpheme is used to encode
a meaning in some context, reflecting some
local "picture of the world. The use of affixal
morphemes allows us to significantly reduce the
number of root morphemes for the transmission
(coding) of some meaning, i.e. serves as an
element reducing the lexical space needed to
form the context.

A local "world picture" is a formalized
description of some context reflecting objects
and their relations. The division of lexemes or
groups of lexemes into objects and relations is a
rather conventional procedure and depends on
semantic roles performed by lexemes or groups
of lexemes reflecting certain meanings in a
certain context. It is known that the meanings of
morphemes form a certain context, which is
most fully revealed in the semantic situation
formed by the word-form or their combination,
and each affix can be used in the formation of
different contexts.

Affixal morphemes as minimal
meaningful units of the language, by definition,
have at least one meaning, manifested when it
is used in the word-form. In the Kazakh
language, often, depending on the environment,
affixal morphemes have different
interpretations, i.e. depending on the context
have different meanings, and the same situation
is not always conveyed by the same class of
morphemes. Formal semantic models allow us
to most fully reflect the meanings of affixal
morphemes in some fragment of the real world
and build morpheme correspondence tables for
the pair of translated languages and
mathematical linguistic models of translation
using these tables. The methodology of
comparing the meanings of affixal morphemes
based on the object-predicate relation system
allows us to effectively identify the elements of
similarity and difference between languages at
the deep semantic level, and to build
mathematical linguistic models to use them in
the tasks of machine translation and
multilingual search.

4. EXPERIMENTS

We are developing our model in a
data-poor environment and mostly on synthetic
Kazakh texts generated from very different data
sources. Unlike the machine translation data we
have previously collected, we do not yet have
public texts to train our correction model, so we
collect both training and evaluation data almost
from scratch[19]. As training data, we mainly
use generated data from synthetic text.

Our hypothesis about this kind of data
is that possible users who will actually try to
generate the data follow our representation of it;
accordingly the result will correspond to their
possible intention, and from this sequence of
possible text actions we can potentially extract
samples of incorrectly and correctly written
texts.

Obviously, this in reality involves a
much greater variety of actions on the data, and
so additional filtering is required to obtain
representative data to train the error correction
model. By filtering the data from our dataset,
we get about 2 million pairs of misspelled and
corrected training data. For testing, we use the
same dataset as in our previous work on
machine translation.

Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5567

Table 3: the training dataset.

Text data, thousands training testing

words 2584 500

errors 713 181

The software modules of the system
are implemented on the basis of morphological
models described in the second chapter of the
paper. The modular structure of the system
contains user and algorithmic parts, and the
algorithmic part is language-independent,
which, if necessary, allows you to build
correction models for different languages.

Table 4: the performance of correction model on the
test data sets.

Metrics Recall Precis F-score
baseline 99.87 94.36 97.0368
pure random 71.49 71.59 71.54
refined 99.91 89.91 94.65
Test set1 71.52 75.86 73.63
Test set2 86.23 86.57 86.40
Test set3 88.69 92.15 90.39
Test set4 60.55 69.17 64.57
Test set5 62.92 66.18 64.51
Test set6 76.05 79.21 77.60

Let's consider the stages of execution

of modules in the order of phrase processing on
the example of Kazakh synthetic text. Let the
following sequence of word forms, forming a
sentence in the Kazakh language "Men kuzgi
zhol bardym", come to the input of the system.
Examples of processing of this phrase are given
below as a result of execution of the module for
the Kazakh language.

1) The module Two-level
morphological analyzer, described in chapter 2,
using morphotactic files and two-level rules
compiled into finite state automata, gives the
analyzed word forms with assigned
morphological features:

1. men [Pro1_Sing(Men)]
2. kuzgi[N(K63)+CASE_POINT(TBI)]
3. zhol [(zhol)]
4. bardym [V(6ap)+POST_DAF()+1

PSJSing()]
The morphological analyzer in the

form of a plug-in dll-module is implemented in
.NET application development environment,
which provides compatibility of services in
different application systems and its functioning
in cross-platform systems. The word processing

speed of the dll-module is about 100 word
forms per second.

2) The module sentence variant builder
is used to build variants of sentences obtained
as a result of multi-word morphological
analysis of word forms related to lexical
uncertainty. For our example, it generates all
possible variant sentences:

3) All variant sentences arrive at the
input of the correct sentence construction
module, where the correct sentence selection
algorithm is executed to select one based on the
input sentences, after which the module
searches for the most relevant words from the
input variants.

4) Next, the found correct sentence is
fed to the input of the verification module,
where the affix and root morpheme database,
based on a formal semantic model of affix
values, is used to verify the elements of the
sentence.

5) As a result of all these actions, on
the basis of data from the module of two-level
morphological analyzer, using morphotactic
files and two-level rules of the Kazakh
language, compiled into finite state automata,
the system will generate the output sequence
"Men kuzgi zholmen bardym".

6) The output data preparation module
allows outputting the data with appropriate
formatting of the input data.

Figure 4: Distribution of F1-score values after
correction of distorted texts.

The proposed method is based on a
multistage application of the approach
described above; at each stage the text
fragments that remained distorted after the
previous stage are corrected.

Non-word forms and word forms, the
probability of occurrence of which in the text
according to the chosen probabilistic model is

Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5568

less than a given threshold, are considered
distorted. Word forms are defined as continuous
sequences of alphabetic characters separated
from each other by spaces or punctuation
marks. Fig. 4 shows the distribution graphs of
F1-score values during the correction of
distorted texts. For the method, the F1-score
distribution graph is calculated in cases where
the list of candidate words was composed of
words within a Levenshtein distance of up to 4
from the word being corrected.

5 DISCUSSION

A two-level model of Kazakh
morphology has been developed, which belongs
to the class of formal models and is a complete
computer model of Kazakh morphology. On its
basis the two-level morphological analyzer,
which generates word forms on the basis of
phonological rules and decomposition of
arbitrary word forms into morphemes on the
basis of phonological and morphotactic rules,
has been constructed.

Mathematical linguistic model of
morphology is described on the basis of two-
level formalisms of PC-K1MMO software
toolkit modified by us for the tasks solved in
the framework of this thesis. The two-level
rules are implemented using finite state
automata. The mathematical model of
morphotactic rules is bi-directional and is
implemented based on finite state transducers.

In contrast to generative rules, two-
level rules are declarative and establish certain
relations between lexical forms and their
surface forms. Since two-level rules express the
connection of characters rather than their
overwriting, they are applied in parallel rather
than sequentially, without forming intermediate
representations, as with generative rules. Since
the two-level model is defined as a set of
relations between lexical and surface
representations, the two-level rules are
bidirectional; respectively the same
mathematical linguistic model is used for both
text generation and recognition.

To describe the phonological rule file
of the Kazakh language, 42 rule records are
used. The rules implement the law of vowel
harmony as well as a number of exceptions and
irregularities caused mainly by the lack of
phonetic assimilation of borrowed lexemes.

The file of morphotactic rules is
developed on the basis of morphotactic schemes

and defines relations between the base and
affixal groups. The lexicon of root lexemes is
built on the base of Contemporary Kazakh
language and consists of 9 lexicons filled
according to PC-KIMMO requirements: Nouns,
Verbs, Adjectives, Adverbs, Pronouns,
Numerals, Postpositions, Conjunctions and
Exclamations. The total volume of the
dictionary is 30,000 root words. Complete
morphotactic base for all selected classes of
root lexemes was developed.

 In the basic PC-KIMMO the Latin
alphabet is used for symbols, so that there are
difficulties in the implementation of the file of
phonological rules and Lexicon for languages
based on the Cyrillic alphabet. In this
connection we have carried out modification of
PC-KIMMO software toolkit using Visual
Studio system and C# programming language.
The modified system has been supplemented
with the additional possibilities to work with
symbols of Unicode code table, accordingly
giving the opportunity to use languages on the
Cyrillic alphabet. Besides, plug-in .dll and .net-
modules for morphological analysis and text
synthesis have been created in Microsoft Visual
Studio application development environment,
which allows using two-level model on any
alphabet basis, including Cyrillic, in cross-
platform systems.

6 CONCLUSION

Despite the adequacy of the described

approach to error correction, it has
disadvantages: the language models and
correction models used in practice are rather
crude. A possible compromise is multistage
methods that provide successive
approximations to the optimal solution.

In addition to the Levenshtein distance
[20], its modifications can also be used to
construct a set of candidate words to replace an
erroneous one, allowing for more precise
correction of cases of erroneous word splitting
or erroneous joining of adjacent words.

To study the impact of text noisiness
on the performance of machine translation
systems, we propose to develop parallel corpora
with artificially introduced distortions [21]. The
following types of distortions are considered:
changing the case of individual letters,
replacing words with phonetically similar ones,
dropping one or more letters in a word to
reduce it, dropping words from a sentence to

Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5569

reduce it, merging neighboring words in a
sentence.

The paper studies distorted texts of
natural way. Distortions in such texts are
sometimes made by the users themselves when
writing for speed of writing or due to illiteracy.
The method allows to noticeably increasing the
accuracy of the correction. In the experiments
conducted the quality of correction in F1-
measure values for medium distorted texts
increased by 6%.

ACKNOWLEDGMENTS

This research has been funded by the
Science Committee of the Ministry of
Education and Science of the Republic
Kazakhstan (Grant No. AP09259309).

REFRENCES

[1] Bekbulatov E. and Kartbayev A., “A study

of certain morphological structures of
Kazakh and their impact on the machine
translation quality”, In Proceedings of the
IEEE 8th International Conference on
Application of Information and
Communication Technologies, 2014, p.495-
501.

 [2] Joseph J Pollock. "Automatic Spelling
Correction in Scientific and Scholarly
Text", Communication of the ACM, 1984,
No.4, pp.358-368.

[3] Golding, A.R., Schabes, Y., “Combining
trigram-based and feature-based methods
for context-sensitive spelling correction”, In
Proceedings of the 34th annual meeting on
Association for Computational Linguistics,
Morristown, 1996, p.71–78.

[4] Sjobergh J., Chunking: an unsupervised
method to find errors in text. In Proceedings
of the 15th NoDaLiDa conference, 2005,
p.180–185.

[5] Andersen O.E., “Grammatical error detection
using corpora and supervised learning”, In
Proceedings of the 12th Student Session of
the European Summer School for Logic,
Language and Information, 2007, p.269-
275.

[6] Lei Zhang, Ming Zhou, "Changning Huang.
Multifeature-based Approach to Automatic
Error Detection and Correction of Chinese
Text", Microsoft Research China Paper
Collection, 2000, p. 193-197.

[7] Hwee Tou Ng, Siew Mei Wu, Ted Briscoe,
Christian Hadiwinoto, Raymond Hendy
Susanto and Christopher Bryant. The
CoNLL-2014 Shared Task on grammatical
error correction. Proceedings of the 18th
Conference on Computational Natural
Language Learning: Shared Task, 2014,
p.1–14.

[8] Yin, F., Long, Q., Meng, T., Chang, K.-W.,
“On the Robustness of Language Encoders
against Grammatical Errors”, In
Proceedings of the 58th Annual Meeting of
the Association for Computational
Linguistics, Stroudsburg, 2020, p. 3386–
3403.

[9] Samanta, P., Chaudhuri B.B., “A simple real-
word error detection and correction using
local word bigram and trigram”, In
Proceedings of the 25th Conference on
Computational Linguistics and Speech
Processing, ROCLING 2015, Kaohsiung,
Taiwan, 2013, p.124-138.

[10] Rabiner, L.R., “A Tutorial on Hidden
Markov Models and Selected Applications
in Speech Recognition”, Proceedings of the
IEEE, 1989, p.257-286.

[11] Y. Li, H. Duan, and C. Zhai, “A generalized
hidden markov model with discriminative
training for query spelling correction,” in
Proceedings of the 35th International ACM
SIGIR Conference on Research and
Development in Information Retrieval,
2012, p. 611–620.

[12] E. Brill and R. Moore. An improved error
model for noisy channel spelling correction.
In Proceedings of the 38th Annual Meeting
of the Association for Computational
Linguistics, Hong Kong, 2000, p.378-395.

[13] Kukich K., "Techniques for Automatically
Correcting Words in Text". ACM
Computing Surveys, 1992, Vol.24, No.4, p.
377-439.

[14] Bojanowski, P. Grave, E. Joulin, A.,
Mikolov, T., Enriching Word Vectors with
Subword Information. Trans.Assoc.
Comput. Linguist., 2017, p.135–146.

[15] Antworth E.L., “PC-KIMMO: a two-level
processor for morphological analysis”.
Technical Report Occasional Publications in
Academic Computing, Summer Institute of
Linguistics, Dallas, Texas, 1994.

[16] Kartbayev A., SMT: A Case Study of
Kazakh-English Word Alignment. ICWE
Workshops, 2015, p.40-49.

Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5570

[17] Kartunen L., Constructing Lexical
Transducers, 15th International Conference
on Computational Linguistics, 1994, p.406-
411.

[18] Xerox, MLTT-95/Application of Finite-
State Networks. Report, 1995, p154.

[19] Kartbayev A., Using Kazakh Morphology
Information to Improve Word Alignment
for SMT, AECIA 2015, Paris, 2015, p.351-
359.

[20] Levenshtein V., Binary codes capable of
correcting deletions, insertions, and
reversals. Soviet Physics Doklady 10(8),
1966, p.707–710.

[21] Khairova, N.; Kolesnyk, A.; Mamyrbayev,
O.; Ybytayeva, G.; Lytvynenko, Y.
Automatic multilingual ontology gen-
eration based on texts focused on criminal
topic. In CEUR Workshop Proceedings,
2021, 2870, pp. 108–117.

