
Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5527

 DEEP ARTIFICIAL NEURAL NETWORKS OPTIMIZATIONS
USING SECOND-ORDER NEWTON'S METHOD

1RAWAN GHNEMAT, 2AHMAD GHANNAM, 3ABRAR M. AL-SOWI

1Professor, Princess Sumaya University for Technology, Computer Science Department, Jordan
2Princess Sumaya University for Technology, Computer Science Department, Jordan

3The University of Jordan, Computer Information Systems Department, Jordan

E-mail: 1r.ghnemat@psut.edu.jo, 2ahm20178072@std.psut.edu.jo, 3abrar.sowi@gmail.com

ABSTRACT

Optimization is the process of finding parameters that return the maximum or minimum value of a function,
where the function symbolizes the effort needed or the desired benefit. First-order stochastic gradient (SG)
methods are often used to solve deep learning models that involve a hard non-convex optimization problem.
Although second-order methods can ensure faster convergence, they have been less explored because
processing time and costs are high. Optimizing deep learning models is a challenging problem; many deep
learning companies spend a lot of their resources on training deep models. This paper proposes an
implementation and evaluation of Newton's second-order optimization method, Hessian Free Optimization
(HFO), on fully connected feed-forward networks, and enhances the method by the integration with some
acceleration techniques such as Momentum and Root Mean Square Propagation (RMSProp). The paper also
proposed a hybrid algorithm capable of combining two-degree orders, first-order, and second-order
optimization methods. The hybrid algorithm can achieve better convergence (5% better in testing loss)
compared to first-order methods with approximately the same time consumption.

Keywords: Machine Learning, Optimization Method, Deep Neural Network, Newton’s Method, Deep
Learning Models, Hessian Free Optimization (HFO).

1. INTRODUCTION

Recently, machine learning and deep learning
have grown in quick paces. This improves the
development of different theoretical and applied
fields. Solving machine learning and deep learning
models, the artificial neural network models and
their different forms, such as feed-forward neural
networks, recurrent neural networks, and
conventional neural networks, usually require a high
amount of numerical computation for achieving their
minimum value when computing the loss function
and updating the models’ parameters in every step,
and by going back to apply the same computation
several times to reach the desired output. This
iterative process is called the optimization process.

Optimization process solves mathematical problems
in iterative steps to update estimates of the solution,
instead of finding analytically a short form formula

that provides a symbolic expression of the solution.
The common operations include optimization which
is finding the value/conditions of an argument that
minimizes or maximizes a function and solving
systems of linear equations [1].

The optimization process in the neural
networks is vital because it is highly correlated with
the model's performance, where the optimization
leads to models that perform better. Overall, the
difference between a neural network model that
performs well and another that performs poorly is
due to the quality of the optimization.

Optimization of artificial neural networks is
considered the most critical step in the developing
phase, in which the training process goes through
two significant steps, first the feed-forward
propagation wherein this step, the network is fed the
input features from the training samples and passes

Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5528

the computation results to the output layer through
some hidden-layers, the computation and activation
functions, and then comparing the final output with
the actual one to compute the error for the network,
second the back-propagation wherein this step the
network goes back to every layer to adjust the
weights based on the error, trying to minimize it to
make the network’s prediction better in every
iteration.

Optimizing deep learning models suffers
from some challenges, such as vanishing gradients.
In previous publications, Optical Back Propagation
(OBP) algorithm [2] was introduced to overcome the
problem of vanishing gradients of non-linear
activation functions such as Sigmoid and Tanh. In
numerical analysis, Newton's method [3], or
Newton–Raphson method, is a root-finding
algorithm that computes consecutively better
approximations to the roots (or zeros) of a real-
valued function.

Optimization algorithms can be categorized
in terms of their use of momentum and/or root mean
squared, which are called acceleration techniques
and can be integrated with the optimizers to enhance
the convergence at a faster speed to the goal.

Gradient-Based optimization is one of the
most dominant techniques for optimization; it is used
almost in optimizing most of the deep learning
models. It can minimize the error very fast due to the
low cost of computation of the first derivative.
However, it is not always accurate when compared
to higher-order derivatives. Gradient-based
optimization is found very efficient in training neural
network models, which resulted in breakthroughs in
applications such as face recognition [4], speech
recognition [5], and natural language processing [6].
It is derived from Newton's method, and it adds a
constant value to the optimization function, which is
called the learning rate, and it does not rely on the
second derivative of the targeted function.

The usage of machine learning and deep
learning is increasing in this revolutionary time in all
fields. Consequently, the importance of having
accurate models requires powerful optimization
methods, training data, and of course, having a

meaningful objective function as well. In machine
learning and deep learning, exceedingly hard non-
convex optimization problems have appeared, which
are often solved by first-order stochastic methods
(SG).

This paper focuses on the optimization
function, a second-order Newton’s method that will
provide faster and accurate convergence because of
the high and more critical information that can be
obtained from computing the second-order
derivative.

Developing deep learning models is the
process of finding the parameters that yield the best
performance. Finding the parameters is known as
training, and those parameters are found using an
optimization process. It is well known that the
performance of deep learning depends on the size of
the training data; the more extensive set of data is
fed, the better the model is given. Machine learning
practitioners are used to say that “a dumb model with
more data is better than a smart model with less
amount of it”.

It is a time-consuming process to train deep
learning models or networks over several iterations,
where for every iteration, it may take several hours
or days. Hence enhancing the efficiency of the
training is very important for deep learning.

With the specific requirements and nature
of deep learning models’ applications, the need to
develop accurate and efficient deep learning models
arises. As a representative of first-order optimization
methods, the gradient descent method has been used
widely in recent years and is developing at an
exceedingly high pace. However, the characteristics
or application scope of these methods have not been
paid attention to by users. Second-order optimization
methods, compared with first-order optimization
methods, converge rapidly in which the search
direction is made more efficient by the curvature
information. These methods attract far-flung
attention, but they face some challenges. The
obstacles in second-order methods exist in the
computation time and storing cost to handle the
Hessian matrix's inverse matrix. Approximations of
Newton’s method have been developed to solve this

Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5529

problem. The approximation of the Hessian matrix
via some techniques [7] [8] is considered a solution
for most of them.

This paper aims to improve the efficiency
of training deep learning models by decreasing the
number of required iterations to achieve the desired
output of the models.

The proposed method aims to reduce the
number of iterations by implementing a second-
order Newton's method to optimize the neural
network. This work also aims at investigating the
integration between the acceleration techniques with
second-order Newton's method.

The main contribution to this thesis is the
proposal of several acceleration techniques for deep
learning optimization algorithms, which surpass
traditional optimization techniques and result in
faster convergence time and more intelligent agents.
The main contributions in this research are given
below:

 Integrating Hessian Free Optimization with

momentum to accelerate the optimization of a

deep learning algorithm.

 Integrating Hessian Free Optimization with

Root Mean Square Propagation (RMSProp) to

accelerate the optimization of a deep learning

algorithm.

 Proposing a novel technique combining first-

order and second-order methods to be named

Hybrid Hessian Free Optimization (HHFO).

 Evaluation of the proposed optimization

techniques and demonstrating the superiority of

the combination of two order optimization

methods.

The rest of the paper is organized as follows:
Section 2 provides a brief background and related
works. In Section 3, we present the research
methodology in detail. Section 4 shows the
experimental results with the evaluation and

discussion. Finally, in section 5, we conclude our
work and identify future work avenues

2. BACKGROUND AND RELATED WORKS

The development cycle of machine learning is
outlined in three critical phases. These phases are
designed to define the model architecture, identify
the loss function, and overcome the minimum loss
function to determine the model's parameters.
Machine learning modelling architecture is the first
two phases, while the last phase is to find an answer
to the coveted model through some optimization
techniques [9]. In this section a comprehensive
related work is presented, optimization methods are
introduced: First-order methods, second order
methods and Hessian free method.

2.1. Optimization Methods

From the gradient-based information point of
view, optimization methods are classified into first-
order optimization methods, high-order optimization
methods, which includes second-order methods.
Such techniques have a long journey and are
continuously developing, and in various
applications, they are improving, and they perform
well. For more details on the equations in this
section, the reader is referred to [3], [9].

 First-order methods

In the machine learning field, gradient descent-
based approaches are the most widely used first-
order optimizations. In this section, some gradient
descent methods, along with the algorithms’
development, are introduced.

The Gradient Descent (GD) approach is one of
the first and most popular methods for optimization.
The principle of this approach is to change variables
in the opposite direction of the objective function's
gradients iteratively. The updated variables are used
to converge gradually to the optimal value of the
objective function. For every iteration, the training
speed defines the step size and consequently affects
the number of steps to achieve the optimum value. A
well-known algorithm is the steepest descent
algorithm. The steepest descent algorithm aims to
choose an appropriate search path in every iteration
so that the objective function's value minimizes

Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5530

extremely fast. Steepest descent and gradient descent
and are different due to the negative gradient
direction does not always descend as fast as possible.
An example of the steepest descent is gradient
descent using the Euclidean norm. First, we give the
gradient descent method's formal expression.

For the simplest machine learning model, the
linear regression function, let 𝑓ఏ(𝑥) be the desired
model to be trained, 𝐿(𝜃) is the loss function for the
model, and 𝜃 is the function’s parameter to be
optimized for minimizing the loss function.

𝐿(𝜃) =
ଵ

ଶே
∑ (𝑦௜ − 𝑓ఏ(𝑥௜))ଶே

௜ୀଵ (1)

𝑓ఏ(𝑥) = ∑ 𝜃௝𝑥௝
஽
௝ୀଵ (2)

where 𝑁 is the amount of training samples,

𝐷 is the input dimension size, 𝑥௜ is an input variable,

and 𝑦௜ is the output target. The gradient descent
performs iteratively the two steps below until a
satisfied convergence occurs.

First, as shown in equation
డ௅(ఏ)

డఏೕ
=

−
ଵ

ே
∑ (𝑦௜ − 𝑓ఏ(𝑥௜))𝑥௝

௜ே
௜ୀଵ (3), deriving 𝐿(𝜃) for 𝜃௝

to compute the gradient for every 𝜃௝. Then, as in

equation 𝜃ሖ௝ = 𝜃௝ + η ⋅
ଵ

ே
∑ (𝑦௜ − 𝑓ఏ(𝑥௜))𝑥௝

௜ே
௜ୀଵ

 (4), updating every 𝜃௝ in the opposite

gradient direction for minimizing the error function:

డ௅(ఏ)

డఏೕ
= −

ଵ

ே
∑ (𝑦௜ − 𝑓ఏ(𝑥௜))𝑥௝

௜ே
௜ୀଵ (3)

𝜃ሖ௝ = 𝜃௝ + η ⋅
ଵ

ே
∑ (𝑦௜ − 𝑓ఏ(𝑥௜))𝑥௝

௜ே
௜ୀଵ (4)

The gradient descent method is simply to be
implemented and used since it is derived from
Newton’s Raphson Method. Also, it immediately
manipulates the first-order derivative of the loss
function, which is easy to compute in almost all
objective functions. If the objective function is
convex, the solution is considered as global optimal.
Although it is easy to implement when dealing with
large-scale data, the cost is high as all training
samples are used on every iteration step.

Batch gradient descent is another name of
the gradient descent. Consequently, the mini-batch

gradient descent and stochastic gradient descent
methods arise. In the batch gradient descent, 𝑂(𝑁𝐷)
is the computational complexity for every iteration.
This is expensive for every iteration and this method
does not allow online updates. Consequently, several
methods of parallelization have been suggested to
minimize the expense of calculation and stochastic
gradient descent (SGD) was introduced [10] [3].

Stochastic gradient descent (SGD) uses one
random sample for updating the gradient iteratively
instead of calculating the gradient value for all
training samples at once. Consequently, the cost of
the SGD algorithm is independent of the number of
samples and can reach a sublinear convergence
computing time [11]. SGD shortens the time
required for updating the gradient when dealing with
large-scale data and eliminates a particular amount
of redundant computations, which makes the process
faster significantly. The method can reach an
optimum convergence speed in the sense of a strong
convex problem [12], [13], [14], [15].

SGD overcomes a batch gradient descent
since the latter cannot be utilized for online learning.
SGD loss function is expressed as the following:

𝐿(𝜃) =
ଵ

ே
∑

ଵ

ଶ
(𝑦௜ − 𝑓ఏ(𝑥௜))ଶே

௜ୀଵ =

ଵ

ே
∑ 𝑐𝑜𝑠𝑡(𝜃, (𝑥௜, 𝑦௜))ே

௜ୀଵ (5)

When SGD selects a random sample 𝑖 the
loss function will be 𝐿∗(𝜃):

𝐿∗(𝜃) = 𝑐𝑜𝑠𝑡 ቀ𝜃, (𝑥௜ , 𝑦௜)ቁ =
ଵ

ଶ
(𝑦௜ − 𝑓ఏ(𝑥௜))ଶ

 (6)

The SGD updates the gradient by using a
random training sample 𝑖 in every iteration, rather
than all training samples.

𝜃ሖ = 𝜃 + η(𝑦௜ − 𝑓ఏ(𝑥௜))𝑥௜ (7)

Because SGD requires just one sample for
every iteration, the computational complexity is
𝑂(𝐷) per iteration, where 𝐷 is the number of
features. When the number of samples 𝑁 is high, the
update frequency for every iteration of SGD is much
faster than that of the batch gradient descent. SGD

Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5531

increases overall optimization performance for every
iteration, but this is negligible compared to the high
number of iterations caused by many samples.

In general, only a small number of samples
can be used to get an optimal solution even if the
sample size is considerable. As a result, SGD can
reduce the computational complexity and accelerate
the speed of convergence compared to batch
methods. However, one difficulty in SGD is that due
to the additional noise caused by random selection,
the gradient path oscillates, and the search method
becomes blind in the space of the answer. Unlike the
batch gradient descent that always moves over the
opposite direction of the gradient towards the
optimal value, the gradients’ variance that is created
in SGD is large, and the movement’s direction in
SGD is biased. The mini-batch gradient descent
method (MSGD) was introduced as a compromise
between the two methods (GD and SGD).

As the test involves parameter changes in
every iteration, the Mini-Batch Gradient Descent
(MSGD) uses 𝑐 independent, equally distributed
samples (𝑐 is usually between 64 and 256 [16]). It
reduces gradient variance and stabilizes
convergence, which increases optimization rate.
Mini-Batch Gradient Descent has a better
opportunity of exploring an optimal global solution
in case of complex problems as it allows the target
function to reach a new minimum. However, MSGD
is always fluctuating, which can slow down the
convergence process.

Other information concerning the use of
MSGD in the concrete optimization process is yet to
be noted [16], such as the selection of an appropriate
learning rate. A too low rate of learning will lead to
a slower rate of convergence, while an overly high
rate of learning will impede convergence and reduce
loss function. To resolve the problem, a predefined
list of study levels or a certain threshold can be
identified and the learning rate changed during the
test process [17], [18]. Such lists or thresholds must
however be specified in advance based on the data
set features. It is also unacceptable for all variables
to use the same learning rate. When there are
fragmented data and features at different
frequencies, the resulting parameters are not

supposed to be modified with the same learning rate.
With features that are less common, a higher
learning rate is often expected [19], [20]. In addition
to the learning rate, a common challenge is how to
avoid the target function getting stuck in constant
local minimum numbers. Some experiments have
found that this problem originates from the "saddle
point" [21] rather than the local minimum values.
The slopes around the saddle points are in opposite
directions, consequently, these points increase the
opportunity for MSGB of being trapped. Some
researchers have been conducted to avoid trapping at
saddle points [22], [23].

SGD and MSGB are popular and widely
used, but they sometimes extend the learning
process. It is worth investigating how to improve the
optimizers' parameters, such as the learning rate that
affects the convergence speed, avoiding being
trapped at saddle points during the search. A lot of
work is being done to boost SGD and MSGD. For
example, it was suggested that the momentum
concept could be implemented in both methods [24].
The definition of momentum is inferred from
physics mechanics, which describes the objects'
inertia. The idea of using momentum in SGD is to
retain, to some degree, the effect of the previous
update direction on the next iteration. The
momentum method will speed convergence in the
case of high curvatures, low but stable gradients, or
noisy gradients [1].

The variable 𝑣 is provided by the
momentum algorithm as the speed, describing the
direction and rate of motion of the parameter in
space. The speed is determined as the exponential
moving average (EMA), which is a method that
applies weighting factors that reduce the average's
dependence on the previous points exponentially
[25], of the negative gradient. The speed update in
gradient descent method is defined as, 𝑣 = η ⋅

ቀ−
డ௅(ఏ)

డఏ
ቁ every iteration. The usage of the

momentum algorithm takes into consideration the
friction factor as it takes the previous update 𝑣௢௟ௗ
multiplied 𝑚𝑡𝑚 factor, its range between [0, 1] in
addition to the speed 𝑣 which is calculated by
gradient descent. The new formulation for the speed
is expressed as:

Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5532

𝑣 = η ⋅ ቀ−
డ௅(ఏ)

డఏ
ቁ + 𝑣௢௟ௗ ⋅ 𝑚𝑡𝑚 (8)

Where the momentum factor is 𝑚𝑡𝑚. If
new gradient has the same direction for prior speed
𝑣௢௟ௗ , the prior speed will accelerate the search
mission. The proper momentum is used to speed up
the convergence if a small learning rate is used. If
new gradient comes close to 0, the method will
continue to update 𝑣 to achieve balance and be faded
away by friction. In the training process it is
desirable to break from the local minimum so that
search processes are converged faster [24], [26]. If
the new gradient direction is contrary to the prior
𝑣௢௟ௗ direction, the 𝑣௢௟ௗ value will decelerate this
search.

Another important issue is how the learning
rate can be determined. The oscillation is more
probable if the solution is close to the optimal point.
Consequently, the learning rate must be changed.
Some research has introduced the learning rate decay
method which reduces the learning rate over the
iteration period [27]. The learning rate decay
formula is defined as:

η௧ =
஗బ

ଵାௗ⋅௧
 (9)

Where η௧ is the 𝑡th iteration learning rate,
η଴ is the initial learning rate, and 𝑑 is the decay
factor, its range between [0, 1]. As the equation
indicates, the larger the 𝑑 is, the higher the decay will
be. if 𝑑 = 0, the learning rate maintains the same
value, likewise, if 𝑑 = 1 the learning rate fades away
more quickly.

Manually controlling the learning rate has a
major impact on the efficiency of the SGD method.
Choosing a proper value of the learning rate is a
tricky problem [19], [20], [28]. Several adaptive
methods have been introduced to automatically tune
the learning rate. Such approaches are variable-free
modification, easy to converge, and generally do not
produce bad results. They are used extensively in
deep neural networks to solve the problem
optimizations. AdaGrad [19] is the most obvious
enhancement for SGD. In some previous iterations,
AdaGrad dynamically tunes the learning rate using
information from the previous gradients. The
equations for the update are the following:

⎩
⎪
⎨

⎪
⎧ 𝑔௧ =

డ௅(ఏ೟)

డఏ

𝑉௧ = ඥ∑ (𝑔௜)ଶ௧
௜ୀଵ + 𝜖

𝜃௧ାଵ = η
௚೟

௏೟

 (10)

Where 𝑔௧ is the parameter 𝜃 gradient in 𝑡
iteration, 𝑉௧ is the cumulative previous gradient of
the parameter 𝜃 in 𝑡 iteration, and 𝜃௧ is the value of
parameter 𝜃 in 𝑡 iteration. AdaGrad differs from the
SGD in the learning rate that is no longer
predetermined in a parameter update process but
computed on all the previous gradients accumulated
to current iteration. AdaGrad removes the
requirement to manually change the learning rate.
The default value of most implementations is 0.01
for η in the equation (10).

Although AdaGrad adapts the learning rate,
there are still two problems. 1) The global/initial
learning rate still has to be set manually for the
algorithm. 2) As the time of training increases, the
cumulative gradient becomes very large, making the
learning rate tends to zero, resulting in an inefficient
adjustment of the parameters. AdaGrad has been
further enhanced to AdaDelta [29] and RMSProp
[30] in order to solve the issue for the learning rate
of recaching a value of zero. The aim is not to
accumulate all previous gradients, but to focus only
on some gradients inside a window over a period of
time and to use the EMA to measure the accumulated
momentum of the second order:

𝑉௧ = ඥ𝛽𝑉௧ିଵ + (1 − 𝛽)(𝑔௧)ଶ (11)

where 𝛽 is the parameter of exponential
decay. AdaDelta and RMSProp were developed at
the same time independently to overcome AdaGrad's
dramatically decreasing learning rates which tends
to reach a value of zero.

Another innovative SGD tool, Adaptive
Moment Estimation (Adam) [20], implements
adaptive learning rates on every parameter. It merges
momentum methods and the adaptive learning rate
together. Besides saving an exponentially decaying
average of previous square gradients 𝑉௧, similar to
RMSProp and AdaDelta, Adam maintains an
exponentially decaying average of previous

Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5533

gradients 𝑚௧ as well, identical to the momentum
method:

𝑚௧ = 𝛽ଵ𝑚௧ିଵ + (1 − 𝛽ଵ)𝑔௧ (12)

𝑉௧ = ඥ𝛽ଶ𝑉௧ିଵ + (1 − 𝛽ଶ)(𝑔௧)ଶ (13)

where 𝛽ଵ and 𝛽ଶ are the exponential rate of
decay. The final parameter 𝜃 update formula is:

𝜃௧ାଵ = 𝑚௧ − η
ඥଵିఉమ

ଵିఉభ

௠೟

௏೟ାఢ
 (14)

It is suggested that the default values of 𝛽ଵ,
𝛽ଶ and 𝜖 are set to 0.9, 0.999, and 10ି଼,
respectively. In practice, Adam performs better
compared to other adaptive learning-rate algorithms.

Table 2 at the end of this section outlines First-

Order Optimization Methods, their features, pros,
and cons.

 Second-order methods

Second-order optimization methods are
derived directly from Newton's method, which the
latter is considered a principal optimization method
in the numerical analysis field [3]. These
optimization methods have been less explored due to
the high amount of memory needed to store the
hessian information and the cost needed for these
computations [31]. Various alternative methods of
second-order derivatives are consequently proposed
over the years to address these challenges. The
additional hessian information makes these methods
able to provide a better route towards the curvature
of the error surface.

Table 2 at the end of this section outlines

Second-Order Optimization Methods, their features,
pros, and cons.

Hessian matrices are used to ease the
hyperparameter's tuning by adjusting the step size
according to the different phases of learning. In the
section, some second-order optimization methods
are introduced.

Newton's method computes the parameters’
updates iteratively by integrating inverse Hessian

matrices, ቀ
డమ௅(ఏ)

డఏమ ቁ
ିଵ

= 𝐻ିଵ. The new formulation

for Newton's method is expressed as:

𝜃௧ାଵ = 𝜃௧ − η ቀ
డమ௅(ఏ)

డఏమ ቁ
ିଵ

డ௅(ఏ)

డఏ
 (15)

Newton's method is extremely powerful.
One iteration is only required to reach minimum
value [32]. However, the computational cost for
every iteration is 𝑂(𝑁ଷ) and requires an enormous
amount of memory to save 𝑁𝑥𝑁 matrices.
Consequently, this method is unacceptable to be
explicitly applied to deep neural network models that
have billions of parameters in critical cases.
Consequently, some approximate of inverse Hessian
matrices have been proposed to overcome this issue
and to be used for actual usage.

Another powerful optimization technique is
the CG (Conjugate Gradient) approach, which solves
a system of large-scale linear equations, and for non-
linear optimization problems [3]. The methods of the
first order, as we know, converge slowly despite
their simplicity. In general, optimization methods of
a higher-order, such as second-order, require high
and expensive computations. The CG algorithm
comes in the middle between the lower order and the
higher-order optimization approaches as it balances
between the simplicity from one hand and the fast
convergence from the other hand. CG approach has
been suggested early in the 1960s to solve a linear
equation and replace the standard Gaussian
elimination technique [33]. Then, the CG technique
was developed further in 1946 to include non-linear
functions and generalized optimization techniques
such as Polak&Ribiere and Fletcher&Reeves [3].

The linear conjugate gradient method is
described for solving the following model. Consider
a linear system:

Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5534

𝐴𝜃 = 𝑏 (16)

where 𝐴 is an 𝑛 × 𝑛 positive, symmetric-
definite matrix. The goal is to find a proper solution
of the 𝜃 value given that the matrix 𝐴 and vector 𝑏
are predefined and known in advanced. The model
𝐴𝜃=𝑏 (16) can be
declared equivalently as the following minimization
problem, both 𝐴𝜃=𝑏

(
1
6
)

a
n
d

R
E
F

_
R
e
f
8
1
1
6
8
9
1
2

\
h

\
*

M
E
R
G
E
F
O
R

𝑚𝑖𝑛
ఏ

𝐹(𝜃) =
ଵ

ଶ
𝜃ఁ𝐴𝜃 − 𝑏𝜃 + 𝑐 (17)

The conjugate gradient method can be
viewed as either an algorithm for solving linear
systems or as a technique for minimizing convex
quadratic functions. The gradient of 𝐹(𝜃) and can be
obtained simply, and it equals the residual of the
linear system [3], that is:

𝑟(𝜃) = 𝛻𝐹(𝜃) = 𝐴𝜃 − 𝑏 (18)

A set of non-zero vectors
{𝑑ଵ, 𝑑ଶ, 𝑑ଷ, … , 𝑑௡} is said to be conjugate with
respect to 𝐴 if any two unequal vectors, 𝑑௜ , 𝑑௝ are

conjugate with respect to 𝐴 [3], that is:

𝑑௜
ఁ𝐴𝑑௝ = 0 (19)

Consequently, the starting point 𝜃଴can be
updated by generating the update sequence
{𝜃ଵ, 𝜃ଶ, 𝜃ଷ, … , 𝜃௡} given a set of conjugate directions
{𝑑ଵ, 𝑑ଶ, 𝑑ଷ, … , 𝑑௡ିଵ}

𝜃௧ାଵ = 𝜃௧ + 𝜂௧𝑑௧ (20)

where η௧ is the unknown step size and it can
be found by any search method. One simple search
technique is the linear search where η௧ is updated
a
c
c
o
r
d
i
n
g

t
o

t

η௧ =
௥೟

ಃ௥೟

ௗ೟
ಃ஺ௗ೟

 (21)

The search direction 𝑑௧ is calculated by
linearly combining the previous search direction
𝑑௧ିଵ with the negative residual, that is:

𝑑௧ = −𝑟௧ + 𝛽௧𝑑௧ିଵ (22)

Where 𝑟௧ can be updated by:

𝑟௧ = 𝑟௧ିଵ + η௧ିଵ𝐴𝑑௧ିଵ (23)

and after several derivations of 𝛽௧ [3], the simplified
version of 𝛽௧ can be obtained by:

𝛽௧ =
௥೟

ಃ௥೟

௥೟షభ
ಃ ௥೟షభ

 (24)

The linear conjugate gradient algorithm is
shown in Algorithm Error! No text of specified
style in document..1.

Algorithm Error! No text of specified style in
document..1 Linear Conjugate Gradient Method
(CG) [34]

Input: 𝐴, 𝑏, 𝜃଴

Output: The solution 𝜃∗

set 𝑟଴ ← 𝐴𝜃଴ − 𝑏, 𝑑଴ ← −𝑟଴, 𝑡 ← 0;

while “Unsatisfied convergence condition” do

η௧ ←
𝑟௧

஋𝑟௧

𝑑௧
஋𝐴𝑑௧

𝜃௧ାଵ ← 𝜃௧ + η௧𝑑௧

𝑟௧ାଵ ← 𝑟௧ + η௧𝐴𝑑௧

𝛽௧ାଵ ←
𝑟௧ାଵ

஋ 𝑟௧ାଵ

𝑟௧
஋𝑟௧

𝑑௧ାଵ ← −𝑟௧ାଵ + 𝛽௧ାଵ𝑑௧

𝑡 ← 𝑡 + 1

end (while)

It was found that the CG method can be
viewed as a minimization algorithm for the convex
q
u
a
d
r
a
t
i
c

f
u
n

Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5535

Fletcher-Reeves (FR), and Polak-Ribiere
(PR) methods have been introduced, as an extension
of the conjugate gradient method, that are capable to
optimize general convex and other non-linear
functions [3]. Two simple changes have been made
in Algorithm Error! No text of specified style in
document..1. First, the step size η௧ should perform a
line search that identifies an approximate minimum
of the non-linear function 𝑓 along 𝑑௧. Second, the
residual 𝑟, gradient of 𝐹(𝜃), must be replaced by the
gradient of the non-linear objective function 𝑓.
These modifications lead to the following non-linear
optimizations Algorithm Error! No text of
specified style in document..2 Fletcher-Reeves
Method (FR) and Algorithm Error! No text of
specified style in document..3 Polak-Ribiere Method
(PR).

Algorithm Error! No text of specified style in
document..2 Fletcher-Reeves Method (FR) [3]

Input: 𝐴, 𝑏, 𝜃଴

Output: The solution 𝜃∗

set 𝑓(𝜃଴) = ‖𝐴𝜃଴ − 𝑏‖ଶ

set 𝑟଴ ← ∇𝑓(𝜃଴), 𝑑଴ ← −𝑟଴, 𝑡 ← 0;

while “Unsatisfied convergence condition” do

𝑢𝑝𝑑𝑎𝑡𝑒 {η௧ , 𝜃௧ାଵ, 𝑟௧ାଵ, 𝛽௧ାଵ, 𝑑௧ାଵ}

𝑡 ← 𝑡 + 1

end (while)

Algorithm Error! No text of specified style in
document..3 Polak-Ribiere Method (PR) [3]

Input: 𝐴, 𝑏, 𝜃଴

Output: The solution 𝜃∗

set 𝑓(𝜃଴) = ‖𝐴𝜃଴ − 𝑏‖ଶ

set 𝑟଴ ← ∇𝑓(𝜃଴), 𝑑଴ ← −𝑟଴, 𝑡 ← 0;

while “Unsatisfied convergence condition” do

𝛽௧ାଵ
௉ோ ←

𝑟௧ାଵ
஋ (𝑟௧ାଵ − 𝑟௧)

𝑟௧
஋𝑟௧

,

𝛽௧ାଵ ← 𝛽௧ାଵ
௉ோ

𝑢𝑝𝑑𝑎𝑡𝑒 {η௧ , 𝜃௧ାଵ, 𝑟௧ାଵ, 𝛽௧ାଵ, 𝑑௧ାଵ}

𝑡 ← 𝑡 + 1

end (while)

The CG algorithm is graceful, that is,
generating a new vector 𝑑௧ depends only on the
previous vector 𝑑௧ିଵ, which does not require the
knowledge or store all the prior vectors
𝑑଴, 𝑑ଵ, 𝑑ଶ, … , 𝑑௧ିଶ. CG reduces the demands of high
computational power as it is an 𝑂(𝑁) method.

Newton's method is designed to use both
orders of derivatives, the gradient, which is also
called the Jacobian matrix (first-order), and the
Hessian matrix (second-order), to minimize the loss
function with the quadratic function and to find the
minimum value of the function. This process is
iterated while a satisfying convergence occurs.
Recall the main equation Error! Reference source
not found. for Newton's method and generalize the
formula for high dimension variable, that is:

𝜃௧ାଵ = 𝜃௧ − ∇ଶ𝑓(𝜃௧)ିଵ∇𝑓(𝜃௧) (25)

where ∇ଶ𝑓, ∇𝑓 are Hessian matrix and
gradient of 𝑓 respectively. The formula 𝜃𝑡+1= 𝜃௧ −

η ቀ
డమ௅(ఏ)

డఏమ ቁ
ିଵ

డ௅(ఏ)

డఏ
 (15) is derived from

Taylor series expansion on 𝜃௧ = 𝜃௧ାଵ, that is:

𝑓(𝜃௧) ≈ 𝑓(𝜃௧ାଵ) + ∇𝑓(𝜃௧ାଵ)஋(𝜃௧ − 𝜃௧ାଵ)

+
ଵ

ଶ
(𝜃௧ − 𝜃௧ାଵ)஋∇ଶ𝑓(𝜃௧ାଵ)(𝜃௧ − 𝜃௧ାଵ) (26)

More exactly if step size is existed, the
Newton's method formula can be written as shown:

൜
𝑑௧ = −𝛻ଶ𝑓(𝜃௧)ିଵ𝛻𝑓(𝜃௧),

𝜃௧ାଵ = 𝜃௧ + 𝜂௧𝑑௧
 (27)

where 𝑑௧ is the movement direction and η௧
is the learning rate. Since the original Newton’s
method has computation and storage challenges, a
Quasi-Newton method has been proposed. Quasi-
Newton [35] uses Hessian's inverse estimate, 𝐻௧ =

𝐵௧
ିଵ, to calculate every iteration update by using

some available estimations. Broyden-Fletcher-
Golfarb-Shanno (BFGS) [3] is the most popular
estimate algorithm. The inverse estimate of Hessian,

𝐻௧
(஻ிீௌ) is calculated at every iteration as the

following equations:

Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5536

൞
𝐵௧ାଵ

(஻ிீௌ)
= 𝐵௧ −

஻೟௦೟௦೟
೹஻೟

௦೟
೹஻೟௦೟

+
௨೟௨೟

೹

௨೟
೹௦೟

𝐻௧ାଵ
(஻ிீௌ)

= ቀ𝐼 −
௦೟௨೟

೹

௦೟
೹௨೟

ቁ 𝐻௧ ቀ𝐼 −
௨೟௦೟

೹

௦೟
೹௨೟

ቁ +
௨೟௦೟

೹

௦೟
೹௨೟

 (28)

where, 𝐼 is the identity matrix, 𝑠௧ = 𝜃௧ାଵ −

𝜃௧ and 𝑢௧ = ∇𝑓(𝜃௧ାଵ) − ∇𝑓(𝜃௧) = 𝐵௧ାଵ𝑠௧ . The
search direction of quasi-Newton method is:

𝑑௧ = −𝐻௧𝑔௧ (29)

where 𝑔௧ = ∇𝑓(𝜃௧) is the gradient of 𝑓, and
the update formula is:

𝜃௧ାଵ = 𝜃௧ + 𝜂௧𝑑௧ (30)

The BFGS Algorithm Error! No text of
specified style in document..4 is shown below.

A novel method named Stochastic Variance
Reduced Nesterov Accelerated Quasi-Newton
method (SVR-NAQ) was introduced to solve the
problem of high stochastic variance noise incurred
when combining Nesterov and Quasi-Newton
together [36], the high stochastic variance noise
leads to slowing down the convergence.

Algorithm Error! No text of specified style in
document..4 Broyden-Fletcher-Golfarb-Shanno
(BFGS)

Input: 𝜃଴ ∈ 𝑅௡ , 𝜖 > 0

Output: The solution 𝜃∗

set 𝑔଴ ← ∇𝑓଴, 𝑢଴ ← 1, 𝑠଴ ← 1, 𝐻଴ ←
௦೟

ಃ௨೟

‖௨೟‖మ 𝐼, 𝑡 ←

0;

while ‖𝑔௧‖ > 𝜖 do

𝑑௧ ← −𝐻௧𝑔௧

𝜃௧ାଵ ← 𝜃௧ + η௧𝑑௧

where η௧ is computed by using
line searches min

஗೟

𝑓(𝜃௧ + η௧𝑑௧)

𝑠௧ ← 𝜃௧ାଵ − 𝜃௧

𝑢௧ ← 𝑔௧ାଵ − 𝑔௧

update 𝐻௧ାଵ
(஻ிீௌ) from Error!

Reference source not found.

𝑡 ← 𝑡 + 1

end (while)

Quasi-Newton has a computation cost of
𝑂(𝑁ଶ) instead of 𝑂(𝑁ଷ) compared to original
Newton's method. However, the storage needs of
𝑁𝑥𝑁 matrices remains. A limited memory version of
the quasi-Newton method called L-BFGS [37] [38]
is designed to reduce the memory space required for
every iteration.

 Hessian-free method

Hessian-free [8] method, or truncated-Newton
method, runs first by approximating a scaled-down
copy of Hessian to locate the local curvature.
Hessian-free uses conjugate gradient for
optimization. While the original Hessian is too
expensive to be computed in every iteration, the
Hessian-free method employs a scaled-down copy of
Hessian matrix, 𝐻𝑣 with finite differences at the cost
of a single extra gradient evaluation by identity:

𝐻𝑣 = lim
ఌ→ା଴

∇௙(ఏାఌ௩)ି∇௙(ఏ)

ఌ
 (31)

The approximate Hessian implemented by
the Hessian-free algorithm is innovative since the
matrix-vector products are needed only to optimize
the quadratic objective functions. However, the
method only works with conjugate gradient
assistance. Conjugate gradient normally makes
tremendous progress in optimizing for training
iterations.

Algorithm Error! No text of specified style in
document..5 Hessian Free Optimization Method
[8]

Input: 𝜃଴, ∇𝑓(𝜃଴), 𝜆

Output: The solution 𝜃∗

set 𝑡 ← 0;

while “Unsatisfied convergence condition” do

𝑔௧ ← ∇𝑓(𝜃௧)

𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝜆 𝑏𝑦 𝑠𝑜𝑚𝑒 𝑚𝑒𝑡ℎ𝑜𝑑𝑠

𝐵௧(𝑣) ≡ 𝐻(𝜃௧)𝑣 + 𝜆𝑣

𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 η௧

𝑑௧ ← 𝐶𝐺(𝐵௧ , −𝑔௧)

Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5537

𝜃௧ାଵ ← 𝜃௧ + η௧𝑑௧

𝑡 ← 𝑡 + 1

end (while)

The Hessian Free Optimization Algorithm
Error! No text of specified style in document..5 is
shown above, where 𝑑௧ is the search direction. HF
method applies the CG method to compute an
approximate solution 𝑑௧ for the linear system.

𝐵௧𝑑௧ = −∇𝑓(𝜃௧) (32)

𝐵௧ is the Hessian matrix and is often defined as:

𝐵௧ = 𝐻(𝜃௧) + 𝜆𝐼, 𝜆 ≥ 0 (33)

Hessian Free Optimization reduces the
computation cost to 𝑂(𝑁ଶ) instead of 𝑂(𝑁ଷ)
compared to original Newton's method. However,
the storage needs of 𝑁𝑥𝑁 matrices remain.

The following tables: Table 1 and Table 2,
outline the First Order and second-Order
optimizations methods consequently. Summarizing
their features, pros, and cons.

Table 1 First-Order Optimization Methods Outline

Method Features Pros Cons
GD Solves the optimal value and

converges at a linear rate. The
method takes all training samples
and compute the gradient at once.

When the objective function is
convex, the solution is globally
optimal.

The calculation cost is high as the
gradients of total samples must be
calculated in order to update every
parameter.

SGD Uses a random sample to update
the model parameters in every
iteration.

Faster than GD since it takes random
samples for every iteration instead of
the total number of samples.

Choosing a proper learning rate is
difficult.
The method can be trapped into
saddle points in some cases.

NAG Momentum method is used to
accelerate the convergence
speed.

The method is robust when dealing
with unstable gradients which change
the gradients’ direction suddenly.

Choosing a proper learning rate is
difficult.

AdaGrad The learning rate is tuned based
on all previous gradients over the
time.

Gives better results in early iterations.
Tunes the learning rate over the time.

As training iterations increases, the
learning rate reaches a value zero.
Choosing manual learning rates are
mandatory.

AdaDelta /
RMSProp

Updates the model parameter
based on the accumulation of
exponential moving average
gradients.

Enhancement for AdaGrad at later
stages.
The method is suitable for optimizing
non-convex and non-stationary
problems.

The method can be trapped into
saddle points in some cases during
the late training phase.

Adam Merges the adaptive methods
with the momentum method.

The method is relatively stable for
most optimization problems with
large-scale data.

In some cases, the method does not
converge.

Table 2 Second-Order Optimization Methods Outline

Method Features Pros Cons
Newton’s
Method

The method retrieves more
information from the inverse
matrix of the Hessian matrix.

Provide a faster convergence speed
compared to first-order methods
since

The method requires heavy
computation, and it makes the
iteration step slow

Conjugate
Gradient

It is a method of optimization
between methods of the first and
second order gradients.

The method needs to calculate the
first order gradient only. The

The method is suitable for batch
learning only. conjugate gradient
computation is more complex

Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5538

method converges faster than the
gradient descent method.

compared with the first-order
gradient method.

Quasi-Newton
Method

This method employs some
estimation algorithms to get
approximation of the Hessian
matrix or its inverse matrix.

This method does not require heavy
calculations compared to Newton’s
method.

It has to be run on a large storage
space; consequently, it is not
suitable for large-scale problems.

Hessian Free
Method

The HF uses the CG to
approximate the inverse of the
Hessian matrix

The HFO employs the second-order
gradient information from the
estimates. It is consequently useful
for high dimensional data.

The method is not designed to
handle large-scale problems.

3. METHODOLOGY

In this thesis, the proposed method aims to
reduce the number of iterations by implementing a
second-order Newton's method to optimize the
neural network, Hessian Free Optimization from
Martens [8] and Martens and Sutskever [39]. This
work also aims at investigating the integration
between acceleration techniques with Hessian Free
Optimization.

3.1. Hessian Free Optimization

As mentioned in Chapter2, the Hessian-free
method works first by approximating a scaled-down
copy of Hessian to define the local curvature and
uses conjugate gradient (CG) for optimization. The
strength of the CG process is another attractive
feature of the HF approach. Unlike the non-linear
CG approach (NCG) commonly used in machine
learning, linear CG makes good use of the quadratic
complexity of the optimization problem it solves in
order to iteratively generate a set of "conjugate
paths" and optimize them independently and
precisely. In particular, the movement along every
direction is precisely what Newton's method prefers;
the reduction divided by the curvature that follows
from the conjugation property. On the other hand,
when applying the non-linear CG method, the
directions it generates do not stay conjugated for a
very long time, only approximately, and the line
search is typically performed incorrectly and at a
fairly high expense.

Hessian Free Optimization has been
implemented as in [8], and [39], the same steps have
been followed to make HFO work properly with for
optimization of the neural network Algorithm

Error! No text of specified style in document..5.
HFO is also integrated with acceleration techniques
such as Momentum (Nesterov Accelerated Gradient
Descent) and Root Mean Square Propagation
(RMSProp). Both techniques take the gradient
(delta) from the conjugate gradient algorithm to
accelerate the convergence based on previous steps.

HFO with momentum

The proposed method applies the
momentum technique to Hessian free optimization
on the Gradient (delta) derived from the conjugate
gradient algorithm. Consequently, recalling the
equations from Chapter Error! Reference source

not found., 𝑣=η ⋅ ቀ−
డ௅(ఏ)

డఏ
ቁ + 𝑣௢௟ௗ ⋅ 𝑚𝑡𝑚 (8) and

𝜃𝑡+1= 𝜃௧ + 𝜂௧𝑑௧ (20), the update
on the CG algorithm by substitution both equations
is:

ቐ

∆௧ାଵ= ∆௧ + η௧𝑑௧

𝑣 = ∆௧ାଵ + 𝑣௢௟ௗ ⋅ 𝑚𝑡𝑚
𝜃௧ାଵ = 𝜃௧ + 𝛼𝑣

 (34)

where ∆ is the CG update, 𝑣 is the
accumulated gradient and 𝑚𝑡𝑚 is the momentum
ranging between [0, 1].

Substituting Error! Reference source not
found. on Algorithm Error! No text of specified
style in document..1 Linear Conjugate Gradient
Method (CG) produces the Algorithm Error! No
text of specified style in document..6.

Algorithm Error! No text of specified style in
document..6 Linear Conjugate Gradient Method
with Momentum

Input: 𝐴, 𝑏, 𝜃଴

Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5539

Output: The solution 𝜃∗

set 𝑟଴ ← 𝐴𝜃଴ − 𝑏, 𝑑଴ ← −𝑟଴, 𝑡 ← 0;

while “Unsatisfied convergence condition” do

η௧ ←
𝑟௧

஋𝑟௧

𝑑௧
஋𝐴𝑑௧

ቐ

∆௧ାଵ= ∆௧ + η௧𝑑௧

𝑣 = ∆௧ାଵ + 𝑣௢௟ௗ ⋅ 𝑚𝑡𝑚
𝜃௧ାଵ = 𝜃௧ + 𝛼𝑣

𝑟௧ାଵ ← 𝑟௧ + η௧𝐴𝑑௧

𝛽௧ାଵ ←
𝑟௧ାଵ

஋ 𝑟௧ାଵ

𝑟௧
஋𝑟௧

𝑑௧ାଵ ← −𝑟௧ାଵ + 𝛽௧ାଵ𝑑௧

𝑡 ← 𝑡 + 1

end (while)

HFO with RMSProp

Recall the equations from chapter2 𝑉௧ =

ඥ𝛽𝑉௧ିଵ + (1 − 𝛽)(𝑔௧)ଶ (11) and 𝜃௧ାଵ = 𝜃௧ +

𝜂௧𝑑௧ (20)the update on the CG
algorithm by substitution both equations is:

൞

∆௧ାଵ= ∆௧ + η௧𝑑௧

𝑉௧ = ඥ𝛽𝑉௧ିଵ + (1 − 𝛽)(∆௧)ଶ

𝜃௧ାଵ =
ఈ∆೟

௏೟ାఢ

 (35)

where 𝛽 is the parameter of exponential

decay. Substituting ൞

∆௧ାଵ= ∆௧ + η௧𝑑௧

𝑉௧ = ඥ𝛽𝑉௧ିଵ + (1 − 𝛽)(∆௧)ଶ

𝜃௧ାଵ =
ఈ∆೟

௏೟ାఢ

 (35) on Algorithm Error! No text of
specified style in document..1 Linear Conjugate
Gradient Method (CG) produces the Algorithm
Error! No text of specified style in document..7.

Algorithm Error! No text of specified style in
document..7 Linear Conjugate Gradient Method
with RMSProp

Input: 𝐴, 𝑏, 𝜃଴

Output: The solution 𝜃∗

set 𝑟଴ ← 𝐴𝜃଴ − 𝑏, 𝑑଴ ← −𝑟଴, 𝑡 ← 0;

while “Unsatisfied convergence condition” do

η௧ ←
𝑟௧

஋𝑟௧

𝑑௧
஋𝐴𝑑௧

⎩
⎪
⎨

⎪
⎧ ∆௧ାଵ= ∆௧ + η௧𝑑௧

𝑉௧ = ඥ𝛽𝑉௧ିଵ + (1 − 𝛽)(∆௧)ଶ

𝜃௧ାଵ =
𝛼∆௧

𝑉௧ + 𝜖

𝑟௧ାଵ ← 𝑟௧ + η௧𝐴𝑑௧

𝛽௧ାଵ ←
𝑟௧ାଵ

஋ 𝑟௧ାଵ

𝑟௧
஋𝑟௧

𝑑௧ାଵ ← −𝑟௧ାଵ + 𝛽௧ାଵ𝑑௧

𝑡 ← 𝑡 + 1

end (while)

3.2. Hybrid Hessian Free Optimization

This section explains the hybrid algorithm for
combining two-degree orders, first-order, and
second-order optimization. The hybrid algorithm
uses the first-order method for a set number of steps
followed by the second-order method, which
decreases the calculation time relative to the second-
order method alone, making the convergence much
faster than the first-order method alone. This is an
in-between method.

A set number of parameters have been tested to
evaluate this method, but it was found that for every
dataset, there was an optimal number; consequently,
an automatic algorithm has been proposed to switch
automatically between the first-order and second-
order methods.

Algorithm Error! No text of specified style in
document..8 Hybrid Optimization Algorithm
(HOA)

Input: 𝜃

Output: The solution 𝜃∗

set 𝐿𝑟 ← 0.1, 𝑆଴ ← 0, 𝑆ଵ ← 15;

while “Unsatisfied convergence condition” do

𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑙𝑜𝑠𝑠, 𝐿௧ାଵ

𝑟 ←
𝐿௧ାଵ

𝐿௧

If 𝑟 < 1 + 𝐿𝑟 or 𝑟 > 1 − 𝐿𝑟 then

Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5540

𝑆ଵ =
𝑆ଵ

𝑟

end (if)

If 𝑆଴ ≥ 𝑆ଵ then

𝑆଴ = 0

run_second()

else

run_first()

end (if)

𝑆଴ = 𝑆଴ + 1

end (while)

The Algorithm Error! No text of specified
style in document..8 shows the step for the hybrid
method, where 𝐿𝑟 is the loss residual range, 𝑟 is the
loss residual, 𝑆଴ is the current step number and 𝑆ଵ is
the step number ceiling to execute the second-order
method.

Since the hybrid algorithm uses Hessian Free
Optimization and Gradient Descent Optimization,
the computation cost for the method is 𝑂(𝑁ଶ) and
the storage needs of 𝑁𝑥𝑁 matrices is needed as well.

4. EXPERIMENTS

In this section, all experiments, including
datasets description, model architecture, training
process, and results, are covered.

4.1. Numerical Example

In this section, a numerical example has been
applied for most of the optimization methods to
minimize the value of a two-independent variable
function. The example uses Newton’s method,
gradient descent method, conjugate gradient descent,
quasi-Newton method, and Hessian free
optimization method this example explain and
justify the results analysis criteria by means of which
a conclusion was reached.

Let the function 𝑓(𝑥ଵ, 𝑥ଶ) = 𝑥ଵ
ଶ − 2 ⋅ 𝑥ଵ𝑥ଶ +

4 ⋅ 𝑥ଶ
ଶ consequently the Hessian matrix of𝑓(𝑥ଵ, 𝑥ଶ),

𝐻 = ቂ
2 −2

−2 8
ቃ, figure 1 illestrate the contour lines

for the given example and figure 2 give the surface
visilization for the same function. The initial

values of the parameters (𝑥ଵ, 𝑥ଶ) = (−3,2) and the
global minimum occurs when the parameter have the
value of (0,0). The optimizers have been applied
until they reached satisfied convergence table 3
gives the updated parameters for all the iterations.

4.2. Datasets Used

For experiments, 6 different data sets have
been considered, as shown in Table 4. Where 𝑁଴ is
the number of features, 𝑙 is the number of training
instances, 𝑙௧ is the number of testing instances and
𝐾 is the number of classes. All datasets, come with
training sets and testing sets expect for Sensorless
is split.

Table 3 The Updated Parameters (x1,x2) for every
iteration

It
er

at
io

n (𝒙𝟏, 𝒙𝟐) Values

Newton’s
Method

GD CG QN HFO

1
(-3.00,
2.00)

(-3.00,
2.00)

(-3.00,
2.00)

(-3.00,
2.00)

(-
3.00,
2.00)

2
(0.00,
0.00)

(-1.50, -
1.30)

(-1.50,
-1.30)

(-2.00,
-0.20)

(-
1.01,
-0.46)

3 -
(-1.44, -

0.19)
(-1.30,
-0.50)

(-1.46,
-0.13)

(-
0.19,
0.12)

4 -
(-1.06, -

0.39)
(-1.04,
-0.22)

(-1.00,
-0.19)

(0.02,
0.01)

5 -
(-0.86, -

0.24)
(-0.64,
-0.10)

(-0.73,
-0.26)

(0.02,
0.00)

6 -
(-0.68, -

0.21)
(-0.27,
-0.11)

(-0.44,
-0.20)

(0.00,
0.00)

7 -
(-0.54, -

0.16)
(-0.17,
-0.06)

(-0.12,
-0.06)

-

8 -
(-0.42, -

0.13)
(-0.10,
-0.02)

(-0.03,
0.01)

-

9 -
(-0.34, -

0.10)
(-0.05,
-0.01)

(0.01, -
0.00)

-

4.3. Networks Architecture

For all experiments, the following neural
network architecture that has been implemented is
explained below for all datasets. The four
measurements (training loss, training accuracy,
testing loss, and testing accuracy) have been
compared between the first-order technique,
gradient descent, and second-order optimization, the
Hessian Free Optimization.

Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5541

The neural network architecture consists of the input
shape, and it depends on the dataset used, followed
by two hidden layers with 200 and 100 hidden nodes
respectively, transformed to a non-linear form using
sigmoid activation function, and finally, a SoftMax
layer and the layer’s output shape depends also on

the dataset that would be classified as shown in
Figure 3. For the sake of simplicity, all experiments
were done on the same network architecture, but
with different learning, rates to figure out what is the
best learning rate used for every optimization
algorithm and for every dataset.

Figure 1 Contour Lines for x1
2 - 2.x1x2 + 4.x2

2 and optimizations

Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5542

Figure 2 Surface of x1
2 – 2. x1 x2 + 4. x2

2 and optimizations

Table 4 Datasets Summary.

Dataset Dataset Description 𝑵𝟎
Scaled
Values

𝒍 𝒍𝒕 𝑲

Letter
This collection is from the Statlog collection [40] and values have
been scaled to [−1, 1] for every of the features.

16 (-1.0, 1.0) 15,000 5,000 26

MNIST

This handwritten digit recognition data set [41] is commonly
used for benchmarking classification algorithms. A scaled
edition has been considered, in which 255 divides every value of
the features.

784 (0.0, 1.0) 60,000 10,000 10

Pendigits This set of data originated in Alimoglu and Alpaydin [42]. 16 (0, 100) 7,494 3,498 10

Satimage
This set is from the Statlog collection [40] and values have been
scaled in
[−1, 1] for every of the features.

36 (-1.0, 1.0) 4,435 2,000 6

SensIT
Duarte and Hu [43] data collection contains signals from acoustic
and seismic sensors to identify the different vehicles. The original
edition has been used, unscaled edition.

100 (-0.811, 1.0) 78,823 19,705 3

Sensorless

The Paschke et al. [44] data collection. Values have been scaled
for every function to be in [0, 1], and then conducted stratified
random sampling to pick 10,000 instances to be the test set and
the rest of the data to be the training set.

48 (0.0, 1.0) 48,509 10,000 11

Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5543

Figure 3 Neural Network Architecture

Below, Table 5, illustrates the done
experiments in detail for every dataset. The number
of done experiments is 486, 81 for every dataset. In
the next section 4.4 below, we compared the results
among the optimizers.

Table 5 Experiments Summary

Dataset Optimization Type
Acceleration and
Learning Rates

Letter

GD
HFO

Hybrid_auto
(1epoch, 20step,
30step, 1,2,3,4)

Normal: [0.25, 0.30,
0.35]

Momentum: [0.005,
0.006, 0.007]

RMSProp: [0.0005,
0.0006, 0.0007]

MNIST

Pendigits

Satimage

SensIT

Sensorless

4.4. Experimental Part

In this section, a comparison of different
optimizers on different datasets is shown. All
experiments were done on Google Cloud Virtual
Machine (VM), using TensorFlow v1.5 running on a
single CPU core.

The datasets were selected because they were
available online, and most of the studies were based
on these datasets [45], [46]. A single unified neural
network architecture has been implemented for all
datasets because the cloud VM used for this thesis is
not big enough to manage extremely complex
computation. The parameters of the neural network
architecture have been optimized using the first-

order methods, second-order methods, and hybrid
methods.

The number of conducted experiments was 486
(6 datasets x 9 optimization methods x 3 acceleration
techniques x 3 different learning rates). Details are
shown in Table 5. For the sake of simplicity, only the
best model of every distinguished optimization
technique has been selected. The distinguished
techniques are shown in Table 6.

Every model was trained on the same
neural network architecture for the same batch size
(100), and the training was terminated after reaching
3000 steps. Consequently, optimization techniques
were the only variable in all experiments for every
dataset. Figure 5 shows the best testing loss, for each
optimization order, for every dataset.

The outcomes of the techniques are
summarized in Table 8. The second-order
optimization method with RMSprop acceleration
surpassed all other techniques in four datasets out of
six in terms of achieving the lowest training loss. For
the other two datasets, the hybrid technique with
RMSprop achieved the lowest training loss. In
general, RMSprop was better than the momentum
acceleration technique and better than the
optimization method without an acceleration in
terms of accuracy.

Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5544

Table 6 Distinguished Optimization Techniques

Order-Degree Optimization

First-Order

Gradient Descent

Gradient Descent with Momentum

Gradient Descent with RMSProp

Second-Order

Hessian Free Optimization

Hessian Free Optimization with Momentum

Hessian Free Optimization with RMSProp

Hybrid

Hybrid: Gradient Descent and Hessian Free
Optimization

Hybrid with Momentum

Hybrid with RMSProp

For the Letter dataset and Sensorless
dataset, second-order optimization outperformed
both the first-order and the hybrid techniques
significantly. Second, with RMSprop achieved a
training loss of 0.73 while the next method was
limited to 0.95 on the Letter dataset. Same for the
sensorless dataset with 0.32 for the second-order,
followed by 0.89 for achieved by the first order. The
second-order and the hybrid achieved similar results
on MNIST and Satimage datasets with a slight
advantage for the second order. The difference
between the training loss was around 0.2 as the
results were 0.11 for the second order and 0.13 for
the hybrid on MNIST, while the training loss on
Satimage was 0.31 for the 2nd order and 0.33 for the
hybrid. However, the hybrid surpassed the second-
order significantly on PenDigits with 0.1 training
loss for the hybrid against 0.4 for the second order.

The reason why the hybrid technique has
achieved better results in two datasets (PenDigits
and SensIT) is due to the nature of the datasets,
especially in the PenDigits dataset, explained in

Figure 5. PenDigits has achieved a very smaller
testing loss compared to the second-order methods.

Although the hybrid technique with
RMSprop did not surpass the second-order
technique with RMSprop in most datasets in terms
of testing loss, the hybrid technique was better than
the first order in five datasets out of six.

PenDigits has a relatively small input
dimension with a broader range in the input values
(0-100), which cannot be scaled due to the nature of
the dataset. This contributes to the presence of high
stochastic variance noise problems, which make the
convergence more slowly and often unstable [36].
Figure 4 shows the instability of the PenDigits
testing loss.

The hybrid method was selected properly
among four hybrid parameters to figure out the best
parameters for this method. Table 9 shows that the
hybrid method with AUTO_3 parameters integrated
with RMSProp has the best testing loss in four
datasets out of six. For the remaining two datasets,
the difference was minimal (less than 3.5%). Table
7 shows the parameters used in every hybrid method.

Table 7 Hybrid Optimization Method Params

Methods/Params 𝑳𝒓 𝑺𝟎 𝑺𝟏

AUTO_1 0.1 0 20

AUTO_2 0.1 0 17

AUTO_3 0.1 0 10

AUTO_4 0.1 0 15

Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5545

Table 8 Results Comparison (Testing Loss)

Optimization/
Dataset

Letter MNIST PenDigits Satimage SensIT Sensorless

1st order

GD 0.9614 0.1976 0.1497 0.3504 0.5399 1.0498

Momentum 2.1800 0.3762 0.1726 0.4295 0.6097 1.6149

RMSProp 1.0028 0.1339 0.1240 0.3324 0.5171 0.8897

2nd order

HFO 0.7668 0.1734 0.9915 0.3338 0.5277 0.5943

Momentum 1.5682 0.2948 0.8061 0.3910 0.5450 1.1129

RMSProp 0.7342 0.1084 0.4077 0.3108 0.5469 0.3155

Hybrid

Hybrid 0.9351 0.1951 0.3094 0.3493 0.5384 1.3768

Momentum 2.0081 0.3814 0.1775 0.4259 0.6053 1.5429

RMSProp 0.9728 0.1269 0.1045 0.3341 0.5162 0.8534

Table 9 Results Comparison between Hybrid Methods (Testing Loss)

Optimization/
Dataset

Letter MNIST PenDigits Satimage SensIT Sensorless

AUTO_1 0.9491 0.1929 0.1430 0.3490 0.5433 0.9726

AUTO_1 + Momentum 2.0603 0.3728 0.1676 0.4294 0.6092 1.5982

Figure 4 Testing Loss Plots for every Dataset (Best Optimizers)

Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5546

AUTO_1 + RMSProp 0.9928 0.1323 0.1121 0.3325 0.5167 0.8239

AUTO_2 0.9411 0.1932 0.1756 0.3503 0.5393 1.0452

AUTO_2 + Momentum 2.0597 0.3756 0.1701 0.4215 0.6096 1.5975

AUTO_2 + RMSProp 0.9675 0.1344 0.1248 0.3330 0.5167 0.8572

AUTO_3 0.9351 0.1951 0.3094 0.3493 0.5384 1.3768

AUTO_3 + Momentum 2.0081 0.3814 0.1775 0.4259 0.6053 1.5429

AUTO_3 + RMSProp 0.9728 0.1269 0.1045 0.3341 0.5162 0.8534

AUTO_4 0.9424 0.1947 0.3737 0.3525 0.5453 0.9232

AUTO_4 + Momentum 2.0423 0.3780 0.1798 0.4266 0.6054 1.5625

AUTO_4 + RMSProp 0.9721 0.1332 0.1268 0.3330 0.5174 0.8749

Figure 5 Testing Loss Plots for PenDigits Dataset

The hybrid technique was introduced to
balance the model’s performance and training time.
Experiments have shown that the running time of the
hybrid is almost equivalent to the first order.
However, it is extremely better than the second
order. Quantitatively, the running time of the

second-order methods is 5-6 times slower than the
hybrid, as shown in Figure 6.

Moreover, the number of steps and training
time comparison for reaching set values of testing

Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5547

loss was expressed, as shown in Table 10 and Table
11, respectively.

As a result, the hybrid method with the
RMSProp acceleration technique is recommended
for optimizing deep learning models when high
performance is required in a short duration.

In Figure 6, Table 10, and Table 11, each
experiment has been repeated 50 times to eliminate
the possibility of the randomness in the reported
results, and the average value has been reported.
Moreover, the significance of the results was tested.
Scientific Python library (Scipy) was used to
conduct the hypothesis test by comparing the
distribution of the results obtained from different
models (i.e., the hybrid algorithm and the first-order
algorithm). The p-values for all the tests were less
than 0.001, which means that the reported results are
scientifically significant.

Figure 6 Time Comparison for Optimization Methods

Table 10 Number of Steps vs Testing Loss Reached

Optimization GD HFO Hybrid
Testing
Loss ≤

Steps
Reached

285 37 196 1.00

429 124 357 0.50

1647 972 1538 0.20

2604 1704 2417 0.15

Table 11 Training Time (Seconds) vs Testing Loss
Reached

Optimization GD HFO Hybrid
Testing
Loss ≤

Training
Time (s)

27 20 19 1.00

41 68 35 0.50

156 535 151 0.20

247 938 238 0.15

5. CONCLUSION

This paper investigated the second-order
methods of optimization and showed that utilizing
the second derivative results in faster convergence
by implementing and evaluating Newton's second-
order optimization method and Hessian Free
Optimization (HFO) on fully connected feed-
forward networks. This thesis has proposed
enhancing second-order methods by the integration
with some acceleration techniques such as
Momentum and Root Mean Square Propagation
(RMSProp). The experimental results demonstrated
the superiority of second-order methods in terms of
performance, up to 28% enhancement on testing loss
in four datasets out of six, despite the additional
overhead (time and computation).

This paper proposed a novel hybrid algorithm
capable of combining first-order and second-order
optimization methods to balance the pros and cons
of increasing the order of optimization methods.
Four possible approaches to hybrid algorithms were
developed and evaluated. The experimental results
showed the superiority of the hybrid method. The
experimental results showed that the proposed
hybrid algorithm had balanced the trade-of between
training time from one side and the performance of
optimized models from the other side. The hybrid
algorithms yielded better-optimized models than
first-order methods, up to 5% enhancement on
testing loss in five datasets out of six, while
consuming almost the same training time. Moreover,
the training time of the hybrid model was 5-6 times
faster than second-order methods.

This research improved the efficiency of
training deep learning models by decreasing the
number of required iterations to achieve the desired

281

1646

290 285

1650

297 284

1651

295

G
D

H
FO

H
yb

ri
d

G
D

 +
 M

om
en

tu
m

H
FO

 +
 M

om
en

tu
m

H
yb

ri
d

+ …

G
D

 +
 R

M
SP

ro
p

H
FO

 +
 R

M
SP

ro
p

H
yb

ri
d

+
RM

SP
ro

p

TI
M

E
(S

)

Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5548

output of the models. This work provides the
integration between the acceleration techniques with
second-order Newton's method and reduced the
number of iterations by implementing a second-
order Newton's method to optimize the neural
network.

For future work a hybrid model of three degrees
of order will be investigated in addition to
extending the evaluation to include deeper and more
complex neural networks architectures.

REFERENCES:

[1] I. Goodfellow, Y. Bengio and A. Courville,
Deep Learning, MIT Press, 2016.

[2] M. A. Otair and W. A. Salameh, "Speeding Up
Back-Propagation Neural Networks,"
Proceedings of the 2005 Informing Science
and IT Education Joint Conference, vol. 1, pp.
167-173, 2005.

[3] J. Nocedal and S. J. Wright, Numerical
Optimization, Springer, 2006.

[4] M. M. Kasar, D. Bhattacharyya and T.-h. Kim,
"Face Recognition Using Neural Network: A
Review," International Journal of Security
and Its Applications, vol. 10, pp. 81-100,
2016.

[5] A. B. Nassif, I. Shahin, I. Attili, M. Azzeh and
K. Shaalan, "Speech Recognition Using Deep
Neural Networks: A Systematic Review,"
IEEE Access, vol. 7, pp. 19143-19165, 2019.

[6] Y. Goldberg, "A Primer on Neural Network
Models for Natural Language Processing,"
Journal of Artificial Intelligence Research ,
vol. 57, pp. 45-420, 2016.

[7] J. E. Dennis, Jr. and J. J. Moré, "Quasi-Newton
Methods, Motivation and Theory," SIAM
Review, vol. 19, pp. 46-89, 1977.

[8] J. Martens, "Deep learning via Hessian-free
optimization," in International Conference on
Machine Learning, 2010.

[9] S. Sun, Z. Cao, H. Zhu and J. Zhao, "A Survey
of Optimization Methods From a Machine
Learning Perspective," IEEE Transactions on
Cybernetics, pp. 1-14, 2019.

[10] J. Alspector, R. Meir, B. Yuhas, A. Jayakumar
and D. Lippe, "A Parallel Gradient Descent
Method for Learning in Analog VLSI Neural
Networks," in Advances in Neural Information

Processing Systems 5, Morgan-Kaufmann,
1993, pp. 836-844.

[11] R. Johnson and T. Zhang, "Accelerating
Stochastic Gradient Descent using Predictive
Variance Reduction," in Advances in Neural
Information Processing Systems, 2013.

[12] A. S. Nemirovsky and D. B. Yudin, "Problem
Complexity and Method Efficiency in
Optimization," SIAM Review, vol. 27, no. 2,
pp. 264-265, 1985.

[13] A. Nemirovski, A. Juditsky, G. Lan and A.
Shapiro, "Robust Stochastic Approximation
Approach to Stochastic Programming," SIAM
Journal on Optimization, vol. 19, no. 4, pp.
1574-1609, 2009.

[14] A. Agarwal, P. L. Bartlett, P. Ravikumar and
M. J. Wainwright, "Information-Theoretic
Lower Bounds on the Oracle Complexity of
Stochastic Convex Optimization," IEEE
Transactions on Information Theory, vol. 58,
no. 5, pp. 3235-3249, 2012.

[15] N. L. Roux, M. Schmidt and F. R. Bach, "A
Stochastic Gradient Method with an
Exponential Convergence Rate for Finite
Training Sets," in Advances in Neural
Information Processing Systems 25, Curran
Associates, Inc., 2012, pp. 2663-2671.

[16] S. Ruder, "An overview of gradient descent
optimization algorithms," arXiv e-prints, p.
arXiv:1609.04747, 2016.

[17] H. Robbins and S. Monro, "A Stochastic
Approximation Method," The Annals of
Mathematical Statistics, vol. 22, no. 3, pp.
400-407, 1951.

[18] C. Darken, J. Chang and J. Moody, "Learning
Rate Schedules for Faster Stochastic Gradient
Search," in Neural Networks for Signal
Processing II Proceedings of the 1992 IEEE
Workshop, 1992, pp. 3-12.

[19] J. Duchi, E. Hazan and Y. Singer, "Adaptive
Subgradient Methods for Online Learning and
Stochastic Optimization," Journal of Machine
Learning Research, vol. 12, pp. 2121-2159,
2011.

[20] D. P. Kingma and J. L. Ba, "Adam: A Method
for Stochastic Optimization," in International
Conference on Learning Representations,
2015, pp. 1-15.

[21] I. Sutskever, "Training Recurrent Neural
Networks," Ph.D. dissertation, University of
Toronto, Ontario, Canada, 2013.

Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5549

[22] Z. Allen-Zhu, "Natasha 2: Faster Non-Convex
Optimization Than SGD," in Advances in
Neural Information Processing Systems 31,
Curran Associates, Inc., 2018, pp. 2675-2686.

[23] R. Ge, F. Huang, C. Jin and Y. Yuan,
"Escaping From Saddle Points --- Online
Stochastic Gradient for Tensor
Decomposition," in Proceedings of The 28th
Conference on Learning Theory, PMLR,
2015, pp. 797-842.

[24] B. Polyak, "Some Methods of Speeding up the
Convergence of Iteration Methods," USSR
Computational Mathematics and
Mathematical Physics, vol. 4, no. 5, pp. 1-17,
1964.

[25] F. Klinker, "Exponential moving average
versus moving exponential average,"
Mathematische Semesterberichte, vol. 58, no.
1, pp. 97-107, 2011.

[26] I. Sutskever, J. Martens, G. Dahl and G.
Hinton, "On the Importance of Initialization
and Momentum in Deep Learning," in
International Conference on Machine
Learning, 2013.

[27] L. C. Baird III and A. W. Moore, "Gradient
Descent for General Reinforcement
Learning," in Advances in Neural Information
Processing Systems 11, MIT Press, 1999, pp.
968-974.

[28] C. Darken and J. E. Moody, "Note on Learning
Rate Schedules for Stochastic Optimization,"
in Advances in Neural Information Processing
Systems 3, Morgan-Kaufmann, 1991, pp. 832-
838.

[29] M. D. Zeiler, "ADADELTA: An Adaptive
Learning Rate Method," arXiv e-prints, p.
arXiv:1212.5701, 2012.

[30] T. Tieleman and G. Hinton, "Divide the
Gradient by a Running Average of Its Recent
Magnitude," COURSERA: Neural Networks
for Machine Learning, vol. 4, pp. 26-31, 2012.

[31] H. H. Tan and K. H. Lim, "Review of Second-
Order Optimization Techniques in Artificial
Neural Networks Backpropagation," IOP
Conference Series: Materials Science and
Engineering, vol. 495, p. 012003, 2019.

[32] B. S. Goh, "Greatest Descent Algorithms in
Unconstrained Optimization," Journal of
Optimization Theory and Applications, vol.
142, no. 2, p. 275–289, 2009.

[33] M. R. Hestenes and E. Stiefel, "Methods of
Conjugate Gradients for Solving Linear

Systems," Journal of Research of the National
Bureau of Standards, vol. 49, no. 6, 1952.

[34] J. R. Shewchuk, "An Introduction to the
Conjugate Gradient Method Without the
Agonizing Pain," Carnegie Mellon University,
1994.

[35] J. Sohl-Dickstein, B. Poole and S. Ganguli,
"Fast Large-Scale Optimization by Unifying
Stochastic Gradient and Quasi-Newton
Methods," arXiv e-prints, p. arXiv:1311.2115,
2013.

[36] S. Yasuda, S. Mahboubi, S. Indrapriyadarsini,
H. Ninomiya and H. Asai, "A Stochastic
Variance Reduced Nesterov’s Accelerated
Quasi-Newton Method," arXiv e-prints, p.
arXiv:1910.07939, 2019.

[37] D. C. Liu and J. Nocedal, "On the limited
memory BFGS method for large scale
optimization," Mathematical Programming,
vol. 45, no. 1, pp. 503-528, 1989.

[38] Y. Xiao, Z. Wei and Z. Wang, "A limited
memory BFGS-type method for large-scale
unconstrained optimization," Computers &
Mathematics with Applications, vol. 56, no. 4,
pp. 1001-1009, 2008.

[39] J. Martens and I. Sutskever, "Training Deep
and Recurrent Networks with Hessian-Free
Optimization," in Neural Networks: Tricks of
the Trade: Second Edition, Springer Berlin
Heidelberg, 2012, pp. 479-535.

[40] D. Michie, D. J. Spiegelhalter, C. C. Taylor
and J. A. Campbell, Machine learning, neural
and statistical classification, NJ, United States:
Ellis Horwood, Imprint of Simon and Schuster
One Lake Street Upper Saddle River, 1995.

[41] Y. Lecun, L. Bottou, Y. Bengio and P.
Haffner, "Gradient-based learning applied to
document recognition," Proceedings of the
IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.

[42] F. Alimoglu and E. Alpaydin, "Methods of
Combining Multiple Classifiers Based on
Different Representations for Pen-based
Handwritten Digit Recognition," in
Proceedings of the Fifth Turkish Artificial
Intelligence and Artificial Neural Networks,
1996.

[43] M. F. Duarte and Y. H. Hu, "Vehicle
classification in distributed sensor networks,"
Journal of Parallel and Distributed
Computing, vol. 64, no. 7, pp. 826-838, 2004.

[44] F. Paschke, C. Bayer, M. Bator, U. Mönks, A.
Dicks, O. Enge-Rosenblatt and V. Lohweg,

Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5550

"Sensorlose Zustandsüberwachung an
Synchronmotoren," in Workshop
Computational Intelligence (VDI/VDE-
Gesellschaft Mess- und
Automatisierungstechnik (GMA)), Pullman
Hotel, Dortmund, Germany, 2013.

[45] C.-C. Wang, K. L. Tan, C.-T. Chen, Y.-H. Lin,
S. S. Keerthi, D. Mahajan, S. Sundararajan and
C.-J. Lin, "Distributed Newton Methods for
Deep Neural Networks," arXiv e-prints, p.
arXiv:1802.00130, 2018.

[46] C.-C. Wang, K. L. Tan and C.-J. Lin, "Newton
Methods for Convolutional Neural Networks,"
arXiv e-prints, p. arXiv:1811.06100, 2018.

[47] M. A. Otair and W. A. Salameh, "Solving the
Exclusive-OR Problem Using an Optical
Backpropagation Algorithm," 2nd Jordanian
International Conference on Computer
Science and Engineering (JICCSE2006), pp.
298-301, 2006.

[48] M. A. Otair and W. A. Salameh, "Online
Handwritten Character Recognition Using an
Optical Backpropagation Neural Networks,"
In Proceedings of The 2004 International
Research Conference on Innovations in
Information Technology, pp. 334-341.

[49] O. M. Surakhi and W. A. Salameh,
"Enhancing the Performance of the
BackPropagation for Deep Neural Network,"
INTERNATIONAL JOURNAL OF
COMPUTERS & TECHNOLOGY, vol. 13, no.
12, pp. 5274-5285, 2014.

