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ABSTRACT 

Optimization is the process of finding parameters that return the maximum or minimum value of a function, 
where the function symbolizes the effort needed or the desired benefit. First-order stochastic gradient (SG) 
methods are often used to solve deep learning models that involve a hard non-convex optimization problem. 
Although second-order methods can ensure faster convergence, they have been less explored because 
processing time and costs are high. Optimizing deep learning models is a challenging problem; many deep 
learning companies spend a lot of their resources on training deep models. This paper proposes an 
implementation and evaluation of Newton's second-order optimization method, Hessian Free Optimization 
(HFO), on fully connected feed-forward networks, and enhances the method by the integration with some 
acceleration techniques such as Momentum and Root Mean Square Propagation (RMSProp). The paper also 
proposed a hybrid algorithm capable of combining two-degree orders, first-order, and second-order 
optimization methods. The hybrid algorithm can achieve better convergence (5% better in testing loss) 
compared to first-order methods with approximately the same time consumption. 

Keywords:  Machine Learning, Optimization Method, Deep Neural Network, Newton’s Method, Deep 
Learning Models, Hessian Free Optimization (HFO).

1. INTRODUCTION 

Recently, machine learning and deep learning 
have grown in quick paces. This improves the 
development of different theoretical and applied 
fields. Solving machine learning and deep learning 
models, the artificial neural network models and 
their different forms, such as feed-forward neural 
networks, recurrent neural networks, and 
conventional neural networks, usually require a high 
amount of numerical computation for achieving their 
minimum value when computing the loss function 
and updating the models’ parameters in every step, 
and by going back to apply the same computation 
several times to reach the desired output. This 
iterative process is called the optimization process. 

Optimization process solves mathematical problems 
in iterative steps to update estimates of the solution, 
instead of finding analytically a short form formula 

that provides a symbolic expression of the solution. 
The common operations include optimization which 
is finding the value/conditions of an argument that 
minimizes or maximizes a function and solving 
systems of linear equations [1]. 

The optimization process in the neural 
networks is vital because it is highly correlated with 
the model's performance, where the optimization 
leads to models that perform better. Overall, the 
difference between a neural network model that 
performs well and another that performs poorly is 
due to the quality of the optimization. 

Optimization of artificial neural networks is 
considered the most critical step in the developing 
phase, in which the training process goes through 
two significant steps, first the feed-forward 
propagation wherein this step, the network is fed the 
input features from the training samples and passes 
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the computation results to the output layer through 
some hidden-layers, the computation and activation 
functions, and then comparing the final output with 
the actual one to compute the error for the network, 
second the back-propagation wherein this step the 
network goes back to every layer to adjust the 
weights based on the error, trying to minimize it to 
make the network’s prediction better in every 
iteration. 

Optimizing deep learning models suffers 
from some challenges, such as vanishing gradients. 
In previous publications, Optical Back Propagation 
(OBP) algorithm [2] was introduced to overcome the 
problem of vanishing gradients of non-linear 
activation functions such as Sigmoid and Tanh. In 
numerical analysis, Newton's method  [3], or 
Newton–Raphson method, is a root-finding 
algorithm that computes consecutively better 
approximations to the roots (or zeros) of a real-
valued function. 

Optimization algorithms can be categorized 
in terms of their use of momentum and/or root mean 
squared, which are called acceleration techniques 
and can be integrated with the optimizers to enhance 
the convergence at a faster speed to the goal. 

Gradient-Based optimization is one of the 
most dominant techniques for optimization; it is used 
almost in optimizing most of the deep learning 
models. It can minimize the error very fast due to the 
low cost of computation of the first derivative. 
However, it is not always accurate when compared 
to higher-order derivatives. Gradient-based 
optimization is found very efficient in training neural 
network models, which resulted in breakthroughs in 
applications such as face recognition [4], speech 
recognition [5], and natural language processing [6]. 
It is derived from Newton's method, and it adds a 
constant value to the optimization function, which is 
called the learning rate, and it does not rely on the 
second derivative of the targeted function. 

The usage of machine learning and deep 
learning is increasing in this revolutionary time in all 
fields. Consequently, the importance of having 
accurate models requires powerful optimization 
methods, training data, and of course, having a 

meaningful objective function as well. In machine 
learning and deep learning, exceedingly hard non-
convex optimization problems have appeared, which 
are often solved by first-order stochastic methods 
(SG). 

This paper focuses on the optimization 
function, a second-order Newton’s method that will 
provide faster and accurate convergence because of 
the high and more critical information that can be 
obtained from computing the second-order 
derivative. 

Developing deep learning models is the 
process of finding the parameters that yield the best 
performance. Finding the parameters is known as 
training, and those parameters are found using an 
optimization process. It is well known that the 
performance of deep learning depends on the size of 
the training data; the more extensive set of data is 
fed, the better the model is given. Machine learning 
practitioners are used to say that “a dumb model with 
more data is better than a smart model with less 
amount of it”. 

It is a time-consuming process to train deep 
learning models or networks over several iterations, 
where for every iteration, it may take several hours 
or days. Hence enhancing the efficiency of the 
training is very important for deep learning. 

With the specific requirements and nature 
of deep learning models’ applications, the need to 
develop accurate and efficient deep learning models 
arises. As a representative of first-order optimization 
methods, the gradient descent method has been used 
widely in recent years and is developing at an 
exceedingly high pace. However, the characteristics 
or application scope of these methods have not been 
paid attention to by users. Second-order optimization 
methods, compared with first-order optimization 
methods, converge rapidly in which the search 
direction is made more efficient by the curvature 
information. These methods attract far-flung 
attention, but they face some challenges. The 
obstacles in second-order methods exist in the 
computation time and storing cost to handle the 
Hessian matrix's inverse matrix. Approximations of 
Newton’s method have been developed to solve this 
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problem. The approximation of the Hessian matrix 
via some techniques [7] [8] is considered a solution 
for most of them.  

This paper aims to improve the efficiency 
of training deep learning models by decreasing the 
number of required iterations to achieve the desired 
output of the models. 

The proposed method aims to reduce the 
number of iterations by implementing a second-
order Newton's method to optimize the neural 
network. This work also aims at investigating the 
integration between the acceleration techniques with 
second-order Newton's method. 

The main contribution to this thesis is the 
proposal of several acceleration techniques for deep 
learning optimization algorithms, which surpass 
traditional optimization techniques and result in 
faster convergence time and more intelligent agents. 
The main contributions in this research are given 
below: 

 Integrating Hessian Free Optimization with 

momentum to accelerate the optimization of a 

deep learning algorithm. 

 Integrating Hessian Free Optimization with 

Root Mean Square Propagation (RMSProp) to 

accelerate the optimization of a deep learning 

algorithm. 

 Proposing a novel technique combining first-

order and second-order methods to be named 

Hybrid Hessian Free Optimization (HHFO). 

 Evaluation of the proposed optimization 

techniques and demonstrating the superiority of 

the combination of two order optimization 

methods. 

The rest of the paper is organized as follows: 
Section 2 provides a brief background and related 
works. In Section 3, we present the research 
methodology in detail. Section 4 shows the 
experimental results with the evaluation and 

discussion. Finally, in section 5, we conclude our 
work and identify future work avenues 

2. BACKGROUND AND RELATED WORKS 

The development cycle of machine learning is 
outlined in three critical phases. These phases are 
designed to define the model architecture, identify 
the loss function, and overcome the minimum loss 
function to determine the model's parameters. 
Machine learning modelling architecture is the first 
two phases, while the last phase is to find an answer 
to the coveted model through some optimization 
techniques [9]. In this section a comprehensive 
related work is presented, optimization methods are 
introduced: First-order methods, second order 
methods and Hessian free method. 

2.1. Optimization Methods 

From the gradient-based information point of 
view, optimization methods are classified into first-
order optimization methods, high-order optimization 
methods, which includes second-order methods. 
Such techniques have a long journey and are 
continuously developing, and in various 
applications, they are improving, and they perform 
well. For more details on the equations in this 
section, the reader is referred to [3], [9].  

 First-order methods 

In the machine learning field, gradient descent-
based approaches are the most widely used first-
order optimizations. In this section, some gradient 
descent methods, along with the algorithms’ 
development, are introduced.  

The Gradient Descent (GD) approach is one of 
the first and most popular methods for optimization. 
The principle of this approach is to change variables 
in the opposite direction of the objective function's 
gradients iteratively. The updated variables are used 
to converge gradually to the optimal value of the 
objective function. For every iteration, the training 
speed defines the step size and consequently affects 
the number of steps to achieve the optimum value. A 
well-known algorithm is the steepest descent 
algorithm. The steepest descent algorithm aims to 
choose an appropriate search path in every iteration 
so that the objective function's value minimizes 
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extremely fast. Steepest descent and gradient descent 
and are different due to the negative gradient 
direction does not always descend as fast as possible. 
An example of the steepest descent is gradient 
descent using the Euclidean norm. First, we give the 
gradient descent method's formal expression. 

For the simplest machine learning model, the 
linear regression function, let 𝑓ఏ(𝑥) be the desired 
model to be trained, 𝐿(𝜃) is the loss function for the 
model, and 𝜃 is the function’s parameter to be 
optimized for minimizing the loss function. 

𝐿(𝜃) =
ଵ

ଶே
∑ (𝑦௜ − 𝑓ఏ(𝑥௜))ଶே

௜ୀଵ   (1) 

𝑓ఏ(𝑥) = ∑ 𝜃௝𝑥௝
஽
௝ୀଵ     (2) 

where 𝑁 is the amount of training samples, 

𝐷 is the input dimension size, 𝑥௜ is an input variable, 

and 𝑦௜  is the output target. The gradient descent 
performs iteratively the two steps below until a 
satisfied convergence occurs. 

First, as shown in equation 
డ௅(ఏ)

డఏೕ
=

−
ଵ

ே
∑ (𝑦௜ − 𝑓ఏ(𝑥௜))𝑥௝

௜ே
௜ୀଵ   (3), deriving 𝐿(𝜃) for 𝜃௝ 

to compute the gradient for every 𝜃௝. Then, as in 

equation 𝜃ሖ௝ = 𝜃௝ + η ⋅
ଵ

ே
∑ (𝑦௜ − 𝑓ఏ(𝑥௜))𝑥௝

௜ே
௜ୀଵ  

 (4), updating every 𝜃௝ in the opposite 

gradient direction for minimizing the error function: 

డ௅(ఏ)

డఏೕ
= −

ଵ

ே
∑ (𝑦௜ − 𝑓ఏ(𝑥௜))𝑥௝

௜ே
௜ୀଵ   (3) 

𝜃ሖ௝ = 𝜃௝ + η ⋅
ଵ

ே
∑ (𝑦௜ − 𝑓ఏ(𝑥௜))𝑥௝

௜ே
௜ୀଵ   (4) 

The gradient descent method is simply to be 
implemented and used since it is derived from 
Newton’s Raphson Method. Also, it immediately 
manipulates the first-order derivative of the loss 
function, which is easy to compute in almost all 
objective functions. If the objective function is 
convex, the solution is considered as global optimal. 
Although it is easy to implement when dealing with 
large-scale data, the cost is high as all training 
samples are used on every iteration step. 

Batch gradient descent is another name of 
the gradient descent. Consequently, the mini-batch 

gradient descent and stochastic gradient descent 
methods arise. In the batch gradient descent, 𝑂(𝑁𝐷) 
is the computational complexity for every iteration. 
This is expensive for every iteration and this method 
does not allow online updates. Consequently, several 
methods of parallelization have been suggested to 
minimize the expense of calculation and stochastic 
gradient descent (SGD) was introduced [10] [3]. 

Stochastic gradient descent (SGD) uses one 
random sample for updating the gradient iteratively 
instead of calculating the gradient value for all 
training samples at once. Consequently, the cost of 
the SGD algorithm is independent of the number of 
samples and can reach a sublinear convergence 
computing time [11]. SGD shortens the time 
required for updating the gradient when dealing with 
large-scale data and eliminates a particular amount 
of redundant computations, which makes the process 
faster significantly. The method can reach an 
optimum convergence speed in the sense of a strong 
convex problem [12], [13], [14], [15]. 

SGD overcomes a batch gradient descent 
since the latter cannot be utilized for online learning. 
SGD loss function is expressed as the following: 

𝐿(𝜃) =
ଵ

ே
∑

ଵ

ଶ
(𝑦௜ − 𝑓ఏ(𝑥௜))ଶே

௜ୀଵ =

ଵ

ே
∑ 𝑐𝑜𝑠𝑡(𝜃, (𝑥௜, 𝑦௜))ே

௜ୀଵ     (5) 

When SGD selects a random sample 𝑖 the 
loss function will be 𝐿∗(𝜃): 

𝐿∗(𝜃) =  𝑐𝑜𝑠𝑡 ቀ𝜃, (𝑥௜ , 𝑦௜)ቁ =
ଵ

ଶ
(𝑦௜ − 𝑓ఏ(𝑥௜))ଶ

     (6) 

The SGD updates the gradient by using a 
random training sample 𝑖 in every iteration, rather 
than all training samples. 

𝜃ሖ = 𝜃 + η(𝑦௜ − 𝑓ఏ(𝑥௜))𝑥௜  (7) 

Because SGD requires just one sample for 
every iteration, the computational complexity is 
𝑂(𝐷) per iteration, where 𝐷 is the number of 
features. When the number of samples 𝑁 is high, the 
update frequency for every iteration of SGD is much 
faster than that of the batch gradient descent. SGD 
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increases overall optimization performance for every 
iteration, but this is negligible compared to the high 
number of iterations caused by many samples. 

In general, only a small number of samples 
can be used to get an optimal solution even if the 
sample size is considerable. As a result, SGD can 
reduce the computational complexity and accelerate 
the speed of convergence compared to batch 
methods. However, one difficulty in SGD is that due 
to the additional noise caused by random selection, 
the gradient path oscillates, and the search method 
becomes blind in the space of the answer. Unlike the 
batch gradient descent that always moves over the 
opposite direction of the gradient towards the 
optimal value, the gradients’ variance that is created 
in SGD is large, and the movement’s direction in 
SGD is biased. The mini-batch gradient descent 
method (MSGD) was introduced as a compromise 
between the two methods (GD and SGD). 

As the test involves parameter changes in 
every iteration, the Mini-Batch Gradient Descent 
(MSGD) uses 𝑐 independent, equally distributed 
samples (𝑐 is usually between 64 and 256 [16]). It 
reduces gradient variance and stabilizes 
convergence, which increases optimization rate. 
Mini-Batch Gradient Descent has a better 
opportunity of exploring an optimal global solution 
in case of complex problems as it allows the target 
function to reach a new minimum. However, MSGD 
is always fluctuating, which can slow down the 
convergence process. 

Other information concerning the use of 
MSGD in the concrete optimization process is yet to 
be noted [16], such as the selection of an appropriate 
learning rate. A too low rate of learning will lead to 
a slower rate of convergence, while an overly high 
rate of learning will impede convergence and reduce 
loss function. To resolve the problem, a predefined 
list of study levels or a certain threshold can be 
identified and the learning rate changed during the 
test process [17], [18]. Such lists or thresholds must 
however be specified in advance based on the data 
set features. It is also unacceptable for all variables 
to use the same learning rate. When there are 
fragmented data and features at different 
frequencies, the resulting parameters are not 

supposed to be modified with the same learning rate. 
With features that are less common, a higher 
learning rate is often expected [19], [20]. In addition 
to the learning rate, a common challenge is how to 
avoid the target function getting stuck in constant 
local minimum numbers. Some experiments have 
found that this problem originates from the "saddle 
point" [21] rather than the local minimum values. 
The slopes around the saddle points are in opposite 
directions, consequently, these points increase the 
opportunity for MSGB of being trapped. Some 
researchers have been conducted to avoid trapping at 
saddle points [22], [23]. 

SGD and MSGB are popular and widely 
used, but they sometimes extend the learning 
process. It is worth investigating how to improve the 
optimizers' parameters, such as the learning rate that 
affects the convergence speed, avoiding being 
trapped at saddle points during the search. A lot of 
work is being done to boost SGD and MSGD. For 
example, it was suggested that the momentum 
concept could be implemented in both methods [24]. 
The definition of momentum is inferred from 
physics mechanics, which describes the objects' 
inertia. The idea of using momentum in SGD is to 
retain, to some degree, the effect of the previous 
update direction on the next iteration. The 
momentum method will speed convergence in the 
case of high curvatures, low but stable gradients, or 
noisy gradients [1]. 

The variable 𝑣 is provided by the 
momentum algorithm as the speed, describing the 
direction and rate of motion of the parameter in 
space. The speed is determined as the exponential 
moving average (EMA), which is a method that 
applies weighting factors that reduce the average's 
dependence on the previous points exponentially 
[25], of the negative gradient. The speed update in 
gradient descent method is defined as, 𝑣 = η ⋅

ቀ−
డ௅(ఏ)

డఏ
ቁ every iteration. The usage of the 

momentum algorithm takes into consideration the 
friction factor as it takes the previous update 𝑣௢௟ௗ  
multiplied 𝑚𝑡𝑚 factor, its range between [0, 1] in 
addition to the speed 𝑣 which is calculated by 
gradient descent. The new formulation for the speed 
is expressed as: 
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𝑣 = η ⋅ ቀ−
డ௅(ఏ)

డఏ
ቁ + 𝑣௢௟ௗ ⋅ 𝑚𝑡𝑚  (8) 

Where the momentum factor is 𝑚𝑡𝑚. If 
new gradient has the same direction for prior speed 
𝑣௢௟ௗ , the prior speed will accelerate the search 
mission. The proper momentum is used to speed up 
the convergence if a small learning rate is used. If 
new gradient comes close to 0, the method will 
continue to update 𝑣 to achieve balance and be faded 
away by friction. In the training process it is 
desirable to break from the local minimum so that 
search processes are converged faster [24], [26]. If 
the new gradient direction is contrary to the prior 
𝑣௢௟ௗ  direction, the 𝑣௢௟ௗ  value will decelerate this 
search. 

Another important issue is how the learning 
rate can be determined. The oscillation is more 
probable if the solution is close to the optimal point. 
Consequently, the learning rate must be changed. 
Some research has introduced the learning rate decay 
method which reduces the learning rate over the 
iteration period [27]. The learning rate decay 
formula is defined as: 

η௧ =
஗బ

ଵାௗ⋅௧
    (9) 

Where η௧ is the 𝑡th iteration learning rate, 
η଴ is the initial learning rate, and 𝑑 is the decay 
factor, its range between [0, 1]. As the equation 
indicates, the larger the 𝑑 is, the higher the decay will 
be. if 𝑑 = 0, the learning rate maintains the same 
value, likewise, if 𝑑 = 1 the learning rate fades away 
more quickly. 

Manually controlling the learning rate has a 
major impact on the efficiency of the SGD method. 
Choosing a proper value of the learning rate is a 
tricky problem [19], [20], [28]. Several adaptive 
methods have been introduced to automatically tune 
the learning rate. Such approaches are variable-free 
modification, easy to converge, and generally do not 
produce bad results. They are used extensively in 
deep neural networks to solve the problem 
optimizations. AdaGrad [19] is the most obvious 
enhancement for SGD. In some previous iterations, 
AdaGrad dynamically tunes the learning rate using 
information from the previous gradients. The 
equations for the update are the following: 

⎩
⎪
⎨

⎪
⎧ 𝑔௧ =

డ௅(ఏ೟)

డఏ

𝑉௧ = ඥ∑ (𝑔௜)ଶ௧
௜ୀଵ + 𝜖

𝜃௧ାଵ = η
௚೟

௏೟

  (10) 

Where 𝑔௧ is the parameter 𝜃 gradient in 𝑡 
iteration, 𝑉௧ is the cumulative previous gradient of 
the parameter 𝜃 in 𝑡 iteration, and 𝜃௧ is the value of 
parameter 𝜃 in 𝑡 iteration. AdaGrad differs from the 
SGD in the learning rate that is no longer 
predetermined in a parameter update process but 
computed on all the previous gradients accumulated 
to current iteration. AdaGrad removes the 
requirement to manually change the learning rate. 
The default value of most implementations is 0.01 
for η in the equation (10). 

Although AdaGrad adapts the learning rate, 
there are still two problems. 1) The global/initial 
learning rate still has to be set manually for the 
algorithm. 2) As the time of training increases, the 
cumulative gradient becomes very large, making the 
learning rate tends to zero, resulting in an inefficient 
adjustment of the parameters. AdaGrad has been 
further enhanced to AdaDelta [29] and RMSProp 
[30] in order to solve the issue for the learning rate 
of recaching a value of zero. The aim is not to 
accumulate all previous gradients, but to focus only 
on some gradients inside a window over a period of 
time and to use the EMA to measure the accumulated 
momentum of the second order: 

𝑉௧ = ඥ𝛽𝑉௧ିଵ + (1 − 𝛽)(𝑔௧)ଶ  (11) 

where 𝛽 is the parameter of exponential 
decay. AdaDelta and RMSProp were developed at 
the same time independently to overcome AdaGrad's 
dramatically decreasing learning rates which tends 
to reach a value of zero. 

Another innovative SGD tool, Adaptive 
Moment Estimation (Adam) [20], implements 
adaptive learning rates on every parameter. It merges 
momentum methods and the adaptive learning rate 
together. Besides saving an exponentially decaying 
average of previous square gradients 𝑉௧, similar to 
RMSProp and AdaDelta, Adam maintains an 
exponentially decaying average of previous 
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gradients 𝑚௧ as well, identical to the momentum 
method: 

𝑚௧ = 𝛽ଵ𝑚௧ିଵ + (1 − 𝛽ଵ)𝑔௧  (12) 

𝑉௧ = ඥ𝛽ଶ𝑉௧ିଵ + (1 − 𝛽ଶ)(𝑔௧)ଶ  (13) 

where 𝛽ଵ and 𝛽ଶ are the exponential rate of 
decay. The final parameter 𝜃 update formula is: 

𝜃௧ାଵ = 𝑚௧ − η
ඥଵିఉమ

ଵିఉభ

௠೟

௏೟ାఢ
  (14) 

It is suggested that the default values of 𝛽ଵ, 
𝛽ଶ and 𝜖 are set to 0.9, 0.999, and 10ି଼, 
respectively. In practice, Adam performs better 
compared to other adaptive learning-rate algorithms. 

 

 

Table 2 at the end of this section outlines First-

Order Optimization Methods, their features, pros, 
and cons. 

 Second-order methods 

Second-order optimization methods are 
derived directly from Newton's method, which the 
latter is considered a principal optimization method 
in the numerical analysis field [3]. These 
optimization methods have been less explored due to 
the high amount of memory needed to store the 
hessian information and the cost needed for these 
computations [31]. Various alternative methods of 
second-order derivatives are consequently proposed 
over the years to address these challenges. The 
additional hessian information makes these methods 
able to provide a better route towards the curvature 
of the error surface. 

 

 

Table 2 at the end of this section outlines 

Second-Order Optimization Methods, their features, 
pros, and cons. 

Hessian matrices are used to ease the 
hyperparameter's tuning by adjusting the step size 
according to the different phases of learning. In the 
section, some second-order optimization methods 
are introduced. 

Newton's method computes the parameters’ 
updates iteratively by integrating inverse Hessian 

matrices, ቀ
డమ௅(ఏ)

డఏమ ቁ
ିଵ

= 𝐻ିଵ. The new formulation 

for Newton's method is expressed as: 

𝜃௧ାଵ = 𝜃௧ − η ቀ
డమ௅(ఏ)

డఏమ ቁ
ିଵ

డ௅(ఏ)

డఏ
  (15) 

Newton's method is extremely powerful. 
One iteration is only required to reach minimum 
value [32]. However, the computational cost for 
every iteration is 𝑂(𝑁ଷ) and requires an enormous 
amount of memory to save 𝑁𝑥𝑁 matrices. 
Consequently, this method is unacceptable to be 
explicitly applied to deep neural network models that 
have billions of parameters in critical cases. 
Consequently, some approximate of inverse Hessian 
matrices have been proposed to overcome this issue 
and to be used for actual usage. 

Another powerful optimization technique is 
the CG (Conjugate Gradient) approach, which solves 
a system of large-scale linear equations, and for non-
linear optimization problems [3]. The methods of the 
first order, as we know, converge slowly despite 
their simplicity. In general, optimization methods of 
a higher-order, such as second-order, require high 
and expensive computations. The CG algorithm 
comes in the middle between the lower order and the 
higher-order optimization approaches as it balances 
between the simplicity from one hand and the fast 
convergence from the other hand. CG approach has 
been suggested early in the 1960s to solve a linear 
equation and replace the standard Gaussian 
elimination technique [33]. Then, the CG technique 
was developed further in 1946 to include non-linear 
functions and generalized optimization techniques 
such as Polak&Ribiere and Fletcher&Reeves [3]. 

The linear conjugate gradient method is 
described for solving the following model. Consider 
a linear system: 
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𝐴𝜃 = 𝑏      (16) 

where 𝐴 is an 𝑛 ×  𝑛 positive, symmetric-
definite matrix. The goal is to find a proper solution 
of the 𝜃 value given that the matrix 𝐴 and vector 𝑏 
are predefined and known in advanced. The model 
𝐴𝜃=𝑏      (16) can be 
declared equivalently as the following minimization 
problem, both 𝐴𝜃=𝑏    
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𝐹(𝜃) =
ଵ

ଶ
𝜃ఁ𝐴𝜃 − 𝑏𝜃 + 𝑐  (17) 

The conjugate gradient method can be 
viewed as either an algorithm for solving linear 
systems or as a technique for minimizing convex 
quadratic functions. The gradient of 𝐹(𝜃) and can be 
obtained simply, and it equals the residual of the 
linear system [3], that is: 

𝑟(𝜃) = 𝛻𝐹(𝜃) = 𝐴𝜃 − 𝑏   (18) 

A set of non-zero vectors 
{𝑑ଵ, 𝑑ଶ, 𝑑ଷ, … , 𝑑௡} is said to be conjugate with 
respect to 𝐴 if any two unequal vectors, 𝑑௜ , 𝑑௝ are 

conjugate with respect to 𝐴 [3], that is: 

𝑑௜
ఁ𝐴𝑑௝ = 0    (19) 

Consequently, the starting point 𝜃଴can be 
updated by generating the update sequence 
{𝜃ଵ, 𝜃ଶ, 𝜃ଷ, … , 𝜃௡} given a set of conjugate directions 
{𝑑ଵ, 𝑑ଶ, 𝑑ଷ, … , 𝑑௡ିଵ} 

𝜃௧ାଵ = 𝜃௧ + 𝜂௧𝑑௧   (20) 

where η௧ is the unknown step size and it can 
be found by any search method. One simple search 
technique is the linear search where η௧ is updated 
a
c
c
o
r
d
i
n
g
 
t
o
 
t

η௧ =
௥೟

ಃ௥೟

ௗ೟
ಃ஺ௗ೟

    (21) 

The search direction 𝑑௧ is calculated by 
linearly combining the previous search direction 
𝑑௧ିଵ with the negative residual, that is: 

𝑑௧ = −𝑟௧ + 𝛽௧𝑑௧ିଵ    (22) 

Where 𝑟௧ can be updated by: 

𝑟௧ = 𝑟௧ିଵ + η௧ିଵ𝐴𝑑௧ିଵ   (23) 

and after several derivations of 𝛽௧ [3], the simplified 
version of 𝛽௧ can be obtained by: 

𝛽௧ =
௥೟

ಃ௥೟

௥೟షభ
ಃ ௥೟షభ

   (24) 

The linear conjugate gradient algorithm is 
shown in Algorithm Error! No text of specified 
style in document..1. 

Algorithm Error! No text of specified style in 
document..1 Linear Conjugate Gradient Method 
(CG) [34] 

Input: 𝐴, 𝑏, 𝜃଴ 

Output: The solution 𝜃∗ 

set 𝑟଴ ← 𝐴𝜃଴ − 𝑏, 𝑑଴ ← −𝑟଴, 𝑡 ← 0; 

while “Unsatisfied convergence condition” do 

η௧ ←
𝑟௧

஋𝑟௧

𝑑௧
஋𝐴𝑑௧

 

𝜃௧ାଵ ← 𝜃௧ + η௧𝑑௧ 

𝑟௧ାଵ ← 𝑟௧ + η௧𝐴𝑑௧ 

𝛽௧ାଵ ←
𝑟௧ାଵ

஋ 𝑟௧ାଵ

𝑟௧
஋𝑟௧

 

𝑑௧ାଵ ← −𝑟௧ାଵ + 𝛽௧ାଵ𝑑௧ 

𝑡 ← 𝑡 + 1 

end (while) 

It was found that the CG method can be 
viewed as a minimization algorithm for the convex 
q
u
a
d
r
a
t
i
c
 
f
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Fletcher-Reeves (FR), and Polak-Ribiere 
(PR) methods have been introduced, as an extension 
of the conjugate gradient method, that are capable to 
optimize general convex and other non-linear 
functions [3]. Two simple changes have been made 
in Algorithm Error! No text of specified style in 
document..1. First, the step size η௧ should perform a 
line search that identifies an approximate minimum 
of the non-linear function 𝑓 along 𝑑௧. Second, the 
residual 𝑟, gradient of 𝐹(𝜃), must be replaced by the 
gradient of the non-linear objective function 𝑓. 
These modifications lead to the following non-linear 
optimizations Algorithm Error! No text of 
specified style in document..2 Fletcher-Reeves 
Method (FR) and Algorithm Error! No text of 
specified style in document..3 Polak-Ribiere Method 
(PR). 

Algorithm Error! No text of specified style in 
document..2 Fletcher-Reeves Method (FR) [3] 

Input: 𝐴, 𝑏, 𝜃଴ 

Output: The solution 𝜃∗ 

set 𝑓(𝜃଴) = ‖𝐴𝜃଴ − 𝑏‖ଶ 

set 𝑟଴ ← ∇𝑓(𝜃଴), 𝑑଴ ← −𝑟଴, 𝑡 ← 0; 

while “Unsatisfied convergence condition” do 

𝑢𝑝𝑑𝑎𝑡𝑒 {η௧ , 𝜃௧ାଵ, 𝑟௧ାଵ, 𝛽௧ାଵ, 𝑑௧ାଵ} 

𝑡 ← 𝑡 + 1 

end (while) 

 

Algorithm Error! No text of specified style in 
document..3 Polak-Ribiere Method (PR) [3] 

Input: 𝐴, 𝑏, 𝜃଴ 

Output: The solution 𝜃∗ 

set 𝑓(𝜃଴) = ‖𝐴𝜃଴ − 𝑏‖ଶ 

set 𝑟଴ ← ∇𝑓(𝜃଴), 𝑑଴ ← −𝑟଴, 𝑡 ← 0; 

while “Unsatisfied convergence condition” do 

𝛽௧ାଵ
௉ோ ←

𝑟௧ାଵ
஋ (𝑟௧ାଵ − 𝑟௧)

𝑟௧
஋𝑟௧

,

𝛽௧ାଵ ← 𝛽௧ାଵ
௉ோ  

𝑢𝑝𝑑𝑎𝑡𝑒 {η௧ , 𝜃௧ାଵ, 𝑟௧ାଵ, 𝛽௧ାଵ, 𝑑௧ାଵ} 

𝑡 ← 𝑡 + 1 

end (while) 

The CG algorithm is graceful, that is, 
generating a new vector 𝑑௧ depends only on the 
previous vector 𝑑௧ିଵ, which does not require the 
knowledge or store all the prior vectors 
𝑑଴, 𝑑ଵ, 𝑑ଶ, … , 𝑑௧ିଶ. CG reduces the demands of high 
computational power as it is an 𝑂(𝑁) method. 

Newton's method is designed to use both 
orders of derivatives, the gradient, which is also 
called the Jacobian matrix (first-order), and the 
Hessian matrix (second-order), to minimize the loss 
function with the quadratic function and to find the 
minimum value of the function. This process is 
iterated while a satisfying convergence occurs. 
Recall the main equation Error! Reference source 
not found. for Newton's method and generalize the 
formula for high dimension variable, that is: 

𝜃௧ାଵ = 𝜃௧ − ∇ଶ𝑓(𝜃௧)ିଵ∇𝑓(𝜃௧)  (25) 

where ∇ଶ𝑓, ∇𝑓 are Hessian matrix and 
gradient of 𝑓 respectively. The formula 𝜃𝑡+1= 𝜃௧ −

η ቀ
డమ௅(ఏ)

డఏమ ቁ
ିଵ

డ௅(ఏ)

డఏ
  (15) is derived from 

Taylor series expansion on  𝜃௧ = 𝜃௧ାଵ, that is: 

𝑓(𝜃௧) ≈ 𝑓(𝜃௧ାଵ) + ∇𝑓(𝜃௧ାଵ)஋(𝜃௧ − 𝜃௧ାଵ) 

+
ଵ

ଶ
(𝜃௧ − 𝜃௧ାଵ)஋∇ଶ𝑓(𝜃௧ାଵ)(𝜃௧ − 𝜃௧ାଵ)  (26) 

More exactly if step size is existed, the 
Newton's method formula can be written as shown: 

൜
𝑑௧ = −𝛻ଶ𝑓(𝜃௧)ିଵ𝛻𝑓(𝜃௧),

𝜃௧ାଵ = 𝜃௧ + 𝜂௧𝑑௧
  (27) 

where 𝑑௧ is the movement direction and η௧ 
is the learning rate. Since the original Newton’s 
method has computation and storage challenges, a 
Quasi-Newton method has been proposed. Quasi-
Newton [35] uses Hessian's inverse estimate, 𝐻௧ =

𝐵௧
ିଵ, to calculate every iteration update by using 

some available estimations. Broyden-Fletcher-
Golfarb-Shanno (BFGS) [3] is the most popular 
estimate algorithm. The inverse estimate of Hessian, 

𝐻௧
(஻ிீௌ) is calculated at every iteration as the 

following equations: 
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൞
𝐵௧ାଵ

(஻ிீௌ)
= 𝐵௧ −

஻೟௦೟௦೟
೹஻೟

௦೟
೹஻೟௦೟

+
௨೟௨೟

೹

௨೟
೹௦೟

𝐻௧ାଵ
(஻ிீௌ)

= ቀ𝐼 −
௦೟௨೟

೹

௦೟
೹௨೟

ቁ 𝐻௧ ቀ𝐼 −
௨೟௦೟

೹

௦೟
೹௨೟

ቁ +
௨೟௦೟

೹

௦೟
೹௨೟

 (28)

   

where, 𝐼 is the identity matrix, 𝑠௧ = 𝜃௧ାଵ −

𝜃௧ and 𝑢௧ = ∇𝑓(𝜃௧ାଵ) − ∇𝑓(𝜃௧) = 𝐵௧ାଵ𝑠௧ . The 
search direction of quasi-Newton method is: 

𝑑௧ = −𝐻௧𝑔௧    (29) 

where 𝑔௧ = ∇𝑓(𝜃௧) is the gradient of 𝑓, and 
the update formula is: 

𝜃௧ାଵ = 𝜃௧ + 𝜂௧𝑑௧   (30) 

The BFGS Algorithm Error! No text of 
specified style in document..4 is shown below. 

A novel method named Stochastic Variance 
Reduced Nesterov Accelerated Quasi-Newton 
method (SVR-NAQ) was introduced to solve the 
problem of high stochastic variance noise incurred 
when combining Nesterov and Quasi-Newton 
together [36], the high stochastic variance noise 
leads to slowing down the convergence. 

Algorithm Error! No text of specified style in 
document..4 Broyden-Fletcher-Golfarb-Shanno 
(BFGS) 

Input: 𝜃଴ ∈ 𝑅௡ , 𝜖 > 0 

Output: The solution 𝜃∗ 

set 𝑔଴ ← ∇𝑓଴, 𝑢଴ ← 1, 𝑠଴ ← 1, 𝐻଴ ←
௦೟

ಃ௨೟

‖௨೟‖మ 𝐼, 𝑡 ←

0; 

while ‖𝑔௧‖ > 𝜖 do 

𝑑௧ ← −𝐻௧𝑔௧ 

𝜃௧ାଵ ← 𝜃௧ + η௧𝑑௧ 

where η௧ is computed by using 
line searches min

஗೟

𝑓(𝜃௧ + η௧𝑑௧) 

𝑠௧ ← 𝜃௧ାଵ − 𝜃௧ 

𝑢௧ ← 𝑔௧ାଵ − 𝑔௧ 

update 𝐻௧ାଵ
(஻ிீௌ) from Error! 

Reference source not found. 

𝑡 ← 𝑡 + 1 

end (while) 

Quasi-Newton has a computation cost of 
𝑂(𝑁ଶ) instead of 𝑂(𝑁ଷ) compared to original 
Newton's method. However, the storage needs of 
𝑁𝑥𝑁 matrices remains. A limited memory version of 
the quasi-Newton method called L-BFGS [37] [38] 
is designed to reduce the memory space required for 
every iteration. 

 Hessian-free method 

Hessian-free [8] method, or truncated-Newton 
method, runs first by approximating a scaled-down 
copy of Hessian to locate the local curvature. 
Hessian-free uses conjugate gradient for 
optimization. While the original Hessian is too 
expensive to be computed in every iteration, the 
Hessian-free method employs a scaled-down copy of 
Hessian matrix, 𝐻𝑣 with finite differences at the cost 
of a single extra gradient evaluation by identity: 

𝐻𝑣 = lim
ఌ→ା଴

∇௙(ఏାఌ௩)ି∇௙(ఏ)

ఌ
   (31) 

The approximate Hessian implemented by 
the Hessian-free algorithm is innovative since the 
matrix-vector products are needed only to optimize 
the quadratic objective functions. However, the 
method only works with conjugate gradient 
assistance. Conjugate gradient normally makes 
tremendous progress in optimizing for training 
iterations. 

Algorithm Error! No text of specified style in 
document..5 Hessian Free Optimization Method 
[8] 

Input: 𝜃଴, ∇𝑓(𝜃଴), 𝜆 

Output: The solution 𝜃∗ 

set 𝑡 ← 0; 

while “Unsatisfied convergence condition” do 

𝑔௧ ← ∇𝑓(𝜃௧) 

𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝜆 𝑏𝑦 𝑠𝑜𝑚𝑒 𝑚𝑒𝑡ℎ𝑜𝑑𝑠 

𝐵௧(𝑣) ≡ 𝐻(𝜃௧)𝑣 + 𝜆𝑣 

𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 η௧  

𝑑௧ ← 𝐶𝐺(𝐵௧ , −𝑔௧) 
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𝜃௧ାଵ ← 𝜃௧ + η௧𝑑௧ 

𝑡 ← 𝑡 + 1 

end (while) 

The Hessian Free Optimization Algorithm 
Error! No text of specified style in document..5 is 
shown above, where 𝑑௧ is the search direction. HF 
method applies the CG method to compute an 
approximate solution 𝑑௧ for the linear system. 

𝐵௧𝑑௧ = −∇𝑓(𝜃௧)   (32) 

𝐵௧  is the Hessian matrix and is often defined as: 

𝐵௧ = 𝐻(𝜃௧) + 𝜆𝐼, 𝜆 ≥ 0   (33) 

Hessian Free Optimization reduces the 
computation cost to 𝑂(𝑁ଶ) instead of 𝑂(𝑁ଷ) 
compared to original Newton's method. However, 
the storage needs of 𝑁𝑥𝑁 matrices remain. 

The following tables: Table 1 and Table 2, 
outline the First Order and second-Order 
optimizations methods consequently. Summarizing 
their features, pros, and cons. 

Table 1 First-Order Optimization Methods Outline 

Method Features Pros Cons 
GD Solves the optimal value and 

converges at a linear rate. The 
method takes all training samples 
and compute the gradient at once. 

When the objective function is 
convex, the solution is globally 
optimal. 

The calculation cost is high as the 
gradients of total samples must be 
calculated in order to update every 
parameter. 

SGD Uses a random sample to update 
the model parameters in every 
iteration. 

Faster than GD since it takes random 
samples for every iteration instead of 
the total number of samples. 

Choosing a proper learning rate is 
difficult. 
The method can be trapped into 
saddle points in some cases. 

NAG Momentum method is used to 
accelerate the convergence 
speed. 

The method is robust when dealing 
with unstable gradients which change 
the gradients’ direction suddenly. 

Choosing a proper learning rate is 
difficult. 

AdaGrad The learning rate is tuned based 
on all previous gradients over the 
time. 

Gives better results in early iterations. 
Tunes the learning rate over the time. 

As training iterations increases, the 
learning rate reaches a value zero. 
Choosing manual learning rates are 
mandatory.  

AdaDelta / 
RMSProp 

Updates the model parameter 
based on the accumulation of 
exponential moving average 
gradients. 

Enhancement for AdaGrad at later 
stages. 
The method is suitable for optimizing 
non-convex and non-stationary 
problems. 

The method can be trapped into 
saddle points in some cases during 
the late training phase. 

Adam Merges the adaptive methods 
with the momentum method. 

The method is relatively stable for 
most optimization problems with 
large-scale data. 

In some cases, the method does not 
converge. 

 

 

Table 2 Second-Order Optimization Methods Outline 

Method Features Pros Cons 
Newton’s 
Method 

The method retrieves more 
information from the inverse 
matrix of the Hessian matrix. 

Provide a faster convergence speed 
compared to first-order methods 
since 

The method requires heavy 
computation, and it makes the 
iteration step slow 

Conjugate 
Gradient 

It is a method of optimization 
between methods of the first and 
second order gradients. 

The method needs to calculate the 
first order gradient only. The 

The method is suitable for batch 
learning only. conjugate gradient 
computation is more complex 
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method converges faster than the 
gradient descent method. 

compared with the first-order 
gradient method. 

Quasi-Newton 
Method 

This method employs some 
estimation algorithms to get 
approximation of the Hessian 
matrix or its inverse matrix. 

This method does not require heavy 
calculations compared to Newton’s 
method.  

It has to be run on a large storage 
space; consequently, it is not 
suitable for large-scale problems. 

Hessian Free 
Method 

The HF uses the CG to 
approximate the inverse of the 
Hessian matrix 

The HFO employs the second-order 
gradient information from the 
estimates. It is consequently useful 
for high dimensional data. 

The method is not designed to 
handle large-scale problems. 
 

3. METHODOLOGY 

In this thesis, the proposed method aims to 
reduce the number of iterations by implementing a 
second-order Newton's method to optimize the 
neural network, Hessian Free Optimization from 
Martens [8] and Martens and Sutskever [39]. This 
work also aims at investigating the integration 
between acceleration techniques with Hessian Free 
Optimization.  

3.1. Hessian Free Optimization 

As mentioned in Chapter2, the Hessian-free 
method works first by approximating a scaled-down 
copy of Hessian to define the local curvature and 
uses conjugate gradient (CG) for optimization. The 
strength of the CG process is another attractive 
feature of the HF approach. Unlike the non-linear 
CG approach (NCG) commonly used in machine 
learning, linear CG makes good use of the quadratic 
complexity of the optimization problem it solves in 
order to iteratively generate a set of "conjugate 
paths" and optimize them independently and 
precisely. In particular, the movement along every 
direction is precisely what Newton's method prefers; 
the reduction divided by the curvature that follows 
from the conjugation property. On the other hand, 
when applying the non-linear CG method, the 
directions it generates do not stay conjugated for a 
very long time, only approximately, and the line 
search is typically performed incorrectly and at a 
fairly high expense. 

Hessian Free Optimization has been 
implemented as in [8], and [39], the same steps have 
been followed to make HFO work properly with for 
optimization of the neural network Algorithm 

Error! No text of specified style in document..5. 
HFO is also integrated with acceleration techniques 
such as Momentum (Nesterov Accelerated Gradient 
Descent) and Root Mean Square Propagation 
(RMSProp). Both techniques take the gradient 
(delta) from the conjugate gradient algorithm to 
accelerate the convergence based on previous steps. 

HFO with momentum 

The proposed method applies the 
momentum technique to Hessian free optimization 
on the Gradient (delta) derived from the conjugate 
gradient algorithm. Consequently, recalling the 
equations from Chapter Error! Reference source 

not found., 𝑣=η ⋅ ቀ−
డ௅(ఏ)

డఏ
ቁ + 𝑣௢௟ௗ ⋅ 𝑚𝑡𝑚  (8) and 

𝜃𝑡+1= 𝜃௧ + 𝜂௧𝑑௧   (20), the update 
on the CG algorithm by substitution both equations 
is: 

ቐ

∆௧ାଵ= ∆௧ + η௧𝑑௧

𝑣 = ∆௧ାଵ + 𝑣௢௟ௗ ⋅ 𝑚𝑡𝑚
𝜃௧ାଵ = 𝜃௧ + 𝛼𝑣

   (34) 

where ∆ is the CG update, 𝑣 is the 
accumulated gradient and 𝑚𝑡𝑚 is the momentum 
ranging between [0, 1]. 

Substituting Error! Reference source not 
found. on Algorithm Error! No text of specified 
style in document..1 Linear Conjugate Gradient 
Method (CG)  produces the Algorithm Error! No 
text of specified style in document..6. 

Algorithm Error! No text of specified style in 
document..6 Linear Conjugate Gradient Method 
with Momentum 

Input: 𝐴, 𝑏, 𝜃଴ 
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Output: The solution 𝜃∗ 

set 𝑟଴ ← 𝐴𝜃଴ − 𝑏, 𝑑଴ ← −𝑟଴, 𝑡 ← 0; 

while “Unsatisfied convergence condition” do 

η௧ ←
𝑟௧

஋𝑟௧

𝑑௧
஋𝐴𝑑௧

 

ቐ

∆௧ାଵ= ∆௧ + η௧𝑑௧

𝑣 = ∆௧ାଵ + 𝑣௢௟ௗ ⋅ 𝑚𝑡𝑚
𝜃௧ାଵ = 𝜃௧ + 𝛼𝑣

 

𝑟௧ାଵ ← 𝑟௧ + η௧𝐴𝑑௧ 

𝛽௧ାଵ ←
𝑟௧ାଵ

஋ 𝑟௧ାଵ

𝑟௧
஋𝑟௧

 

𝑑௧ାଵ ← −𝑟௧ାଵ + 𝛽௧ାଵ𝑑௧ 

𝑡 ← 𝑡 + 1 

end (while) 

HFO with RMSProp 

Recall the equations from chapter2 𝑉௧ =

ඥ𝛽𝑉௧ିଵ + (1 − 𝛽)(𝑔௧)ଶ  (11) and 𝜃௧ାଵ = 𝜃௧ +

𝜂௧𝑑௧   (20)the update on the CG 
algorithm by substitution both equations is: 

൞

∆௧ାଵ= ∆௧ + η௧𝑑௧

𝑉௧ = ඥ𝛽𝑉௧ିଵ + (1 − 𝛽)(∆௧)ଶ

𝜃௧ାଵ =
ఈ∆೟

௏೟ାఢ

  (35) 

where 𝛽 is the parameter of exponential 

decay. Substituting ൞

∆௧ାଵ= ∆௧ + η௧𝑑௧

𝑉௧ = ඥ𝛽𝑉௧ିଵ + (1 − 𝛽)(∆௧)ଶ

𝜃௧ାଵ =
ఈ∆೟

௏೟ାఢ

 

 (35) on Algorithm Error! No text of 
specified style in document..1 Linear Conjugate 
Gradient Method (CG)  produces the Algorithm 
Error! No text of specified style in document..7.  

Algorithm Error! No text of specified style in 
document..7 Linear Conjugate Gradient Method 
with RMSProp 

Input: 𝐴, 𝑏, 𝜃଴ 

Output: The solution 𝜃∗ 

set 𝑟଴ ← 𝐴𝜃଴ − 𝑏, 𝑑଴ ← −𝑟଴, 𝑡 ← 0; 

while “Unsatisfied convergence condition” do 

η௧ ←
𝑟௧

஋𝑟௧

𝑑௧
஋𝐴𝑑௧

 

⎩
⎪
⎨

⎪
⎧ ∆௧ାଵ= ∆௧ + η௧𝑑௧

𝑉௧ = ඥ𝛽𝑉௧ିଵ + (1 − 𝛽)(∆௧)ଶ

𝜃௧ାଵ =
𝛼∆௧

𝑉௧ + 𝜖

 

𝑟௧ାଵ ← 𝑟௧ + η௧𝐴𝑑௧ 

𝛽௧ାଵ ←
𝑟௧ାଵ

஋ 𝑟௧ାଵ

𝑟௧
஋𝑟௧

 

𝑑௧ାଵ ← −𝑟௧ାଵ + 𝛽௧ାଵ𝑑௧ 

𝑡 ← 𝑡 + 1 

end (while) 

3.2. Hybrid Hessian Free Optimization 

This section explains the hybrid algorithm for 
combining two-degree orders, first-order, and 
second-order optimization. The hybrid algorithm 
uses the first-order method for a set number of steps 
followed by the second-order method, which 
decreases the calculation time relative to the second-
order method alone, making the convergence much 
faster than the first-order method alone. This is an 
in-between method. 

A set number of parameters have been tested to 
evaluate this method, but it was found that for every 
dataset, there was an optimal number; consequently, 
an automatic algorithm has been proposed to switch 
automatically between the first-order and second-
order methods. 

Algorithm Error! No text of specified style in 
document..8 Hybrid Optimization Algorithm 
(HOA) 

Input: 𝜃 

Output: The solution 𝜃∗ 

set 𝐿𝑟 ← 0.1, 𝑆଴ ← 0, 𝑆ଵ ← 15; 

while “Unsatisfied convergence condition” do 

𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑙𝑜𝑠𝑠, 𝐿௧ାଵ 

𝑟 ←
𝐿௧ାଵ

𝐿௧

 

If 𝑟 <  1 +  𝐿𝑟 or 𝑟 >  1 −  𝐿𝑟 then 



Journal of Theoretical and Applied Information Technology 
30th November 2021. Vol.99. No 22 

© 2021 Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
5540 

 

𝑆ଵ =
𝑆ଵ

𝑟
 

end (if) 

If 𝑆଴ ≥ 𝑆ଵ then 

𝑆଴ = 0 

run_second() 

else 

run_first() 

end (if) 

𝑆଴ = 𝑆଴ + 1 

end (while) 

The Algorithm Error! No text of specified 
style in document..8 shows the step for the hybrid 
method, where 𝐿𝑟 is the loss residual range, 𝑟 is the 
loss residual, 𝑆଴ is the current step number and 𝑆ଵ is 
the step number ceiling to execute the second-order 
method. 

Since the hybrid algorithm uses Hessian Free 
Optimization and Gradient Descent Optimization, 
the computation cost for the method is 𝑂(𝑁ଶ) and 
the storage needs of 𝑁𝑥𝑁 matrices is needed as well. 

4. EXPERIMENTS 

In this section, all experiments, including 
datasets description, model architecture, training 
process, and results, are covered.  

4.1. Numerical Example 

In this section, a numerical example has been 
applied for most of the optimization methods to 
minimize the value of a two-independent variable 
function. The example uses Newton’s method, 
gradient descent method, conjugate gradient descent, 
quasi-Newton method, and Hessian free 
optimization method this example explain and 
justify the results analysis criteria by means of which 
a conclusion was reached. 

Let the function 𝑓(𝑥ଵ, 𝑥ଶ) = 𝑥ଵ
ଶ − 2 ⋅ 𝑥ଵ𝑥ଶ +

4 ⋅ 𝑥ଶ
ଶ consequently the Hessian matrix of𝑓(𝑥ଵ, 𝑥ଶ), 

𝐻 = ቂ
2 −2

−2 8
ቃ, figure 1 illestrate the contour lines 

for the given example and figure 2 give the surface 
visilization for the same function.     The initial 

values of the parameters (𝑥ଵ, 𝑥ଶ) = (−3,2) and the 
global minimum occurs when the parameter have the 
value of (0,0). The optimizers have been applied 
until they reached satisfied convergence table 3 
gives the updated parameters for all the iterations. 

4.2. Datasets Used 

For experiments, 6 different data sets have 
been considered, as shown in Table 4. Where  𝑁଴ is 
the number of features, 𝑙 is the number of training 
instances, 𝑙௧ is the number of testing instances and 
𝐾 is the number of classes.  All datasets, come with 
training sets and testing sets expect for Sensorless 
is split. 

Table 3 The Updated Parameters (x1,x2) for every 
iteration 

It
er

at
io

n (𝒙𝟏, 𝒙𝟐) Values 

Newton’s 
Method 

GD CG QN HFO 

1 
(-3.00, 
2.00) 

(-3.00, 
2.00) 

(-3.00, 
2.00) 

(-3.00, 
2.00) 

(-
3.00, 
2.00) 

2 
(0.00, 
0.00) 

(-1.50, -
1.30) 

(-1.50, 
-1.30) 

(-2.00, 
-0.20) 

(-
1.01, 
-0.46) 

3 - 
(-1.44, -

0.19) 
(-1.30, 
-0.50) 

(-1.46, 
-0.13) 

(-
0.19, 
0.12) 

4 - 
(-1.06, -

0.39) 
(-1.04, 
-0.22) 

(-1.00, 
-0.19) 

(0.02, 
0.01) 

5 - 
(-0.86, -

0.24) 
(-0.64, 
-0.10) 

(-0.73, 
-0.26) 

(0.02, 
0.00) 

6 - 
(-0.68, -

0.21) 
(-0.27, 
-0.11) 

(-0.44, 
-0.20) 

(0.00, 
0.00) 

7 - 
(-0.54, -

0.16) 
(-0.17, 
-0.06) 

(-0.12, 
-0.06) 

- 

8 - 
(-0.42, -

0.13) 
(-0.10, 
-0.02) 

(-0.03, 
0.01) 

- 

9 - 
(-0.34, -

0.10) 
(-0.05, 
-0.01) 

(0.01, -
0.00) 

- 

4.3. Networks Architecture 

For all experiments, the following neural 
network architecture that has been implemented is 
explained below for all datasets. The four 
measurements (training loss, training accuracy, 
testing loss, and testing accuracy) have been 
compared between the first-order technique, 
gradient descent, and second-order optimization, the 
Hessian Free Optimization. 
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The neural network architecture consists of the input 
shape, and it depends on the dataset used, followed 
by two hidden layers with 200 and 100 hidden nodes 
respectively, transformed to a non-linear form using 
sigmoid activation function, and finally, a SoftMax 
layer and the layer’s output shape depends also on 

the dataset that would be classified as shown in 
Figure 3. For the sake of simplicity, all experiments 
were done on the same network architecture, but 
with different learning, rates to figure out what is the 
best learning rate used for every optimization 
algorithm and for every dataset.

 

Figure 1 Contour Lines for x1
2 - 2.x1x2 + 4.x2

2 and optimizations 
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Figure 2 Surface of x1
2 – 2. x1 x2 + 4. x2

2 and optimizations 

 
 

Table 4 Datasets Summary. 

Dataset Dataset Description 𝑵𝟎 
Scaled 
Values 

𝒍 𝒍𝒕 𝑲 

Letter 
This collection is from the Statlog collection [40] and values have 
been scaled to [−1, 1] for every of the features. 

16 (-1.0, 1.0) 15,000 5,000 26 

MNIST 

This handwritten digit recognition data set [41] is commonly 
used for benchmarking classification algorithms. A scaled 
edition has been considered, in which 255 divides every value of 
the features. 

784 (0.0, 1.0) 60,000 10,000 10 

Pendigits This set of data originated in Alimoglu and Alpaydin [42]. 16 (0, 100) 7,494 3,498 10 

Satimage 
This set is from the Statlog collection [40] and values have been 
scaled in 
[−1, 1] for every of the features. 

36 (-1.0, 1.0) 4,435 2,000 6 

SensIT 
Duarte and Hu [43] data collection contains signals from acoustic 
and seismic sensors to identify the different vehicles. The original 
edition has been used, unscaled edition. 

100 (-0.811, 1.0) 78,823 19,705 3 

Sensorless 

The Paschke et al. [44] data collection. Values have been scaled 
for every function to be in [0, 1], and then conducted stratified 
random sampling to pick 10,000 instances to be the test set and 
the rest of the data to be the training set. 

48 (0.0, 1.0) 48,509 10,000 11 
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Figure 3 Neural Network Architecture 

Below, Table 5, illustrates the done 
experiments in detail for every dataset. The number 
of done experiments is 486, 81 for every dataset. In 
the next section 4.4 below, we compared the results 
among the optimizers. 

Table 5 Experiments Summary 

Dataset Optimization Type 
Acceleration and 
Learning Rates 

Letter 

GD 
HFO 

Hybrid_auto 
(1epoch, 20step, 
30step, 1,2,3,4) 

Normal: [0.25, 0.30, 
0.35] 

Momentum: [0.005, 
0.006, 0.007] 

RMSProp: [0.0005, 
0.0006, 0.0007] 

MNIST 

Pendigits 

Satimage 

SensIT 

Sensorless 
 

4.4. Experimental Part 

In this section, a comparison of different 
optimizers on different datasets is shown. All 
experiments were done on Google Cloud Virtual 
Machine (VM), using TensorFlow v1.5 running on a 
single CPU core.  

The datasets were selected because they were 
available online, and most of the studies were based 
on these datasets [45], [46]. A single unified neural 
network architecture has been implemented for all 
datasets because the cloud VM used for this thesis is 
not big enough to manage extremely complex 
computation. The parameters of the neural network 
architecture have been optimized using the first-

order methods, second-order methods, and hybrid 
methods. 

The number of conducted experiments was 486 
(6 datasets x 9 optimization methods x 3 acceleration 
techniques x 3 different learning rates). Details are 
shown in Table 5. For the sake of simplicity, only the 
best model of every distinguished optimization 
technique has been selected. The distinguished 
techniques are shown in Table 6. 

Every model was trained on the same 
neural network architecture for the same batch size 
(100), and the training was terminated after reaching 
3000 steps. Consequently, optimization techniques 
were the only variable in all experiments for every 
dataset. Figure 5 shows the best testing loss, for each 
optimization order, for every dataset. 

The outcomes of the techniques are 
summarized in Table 8. The second-order 
optimization method with RMSprop acceleration 
surpassed all other techniques in four datasets out of 
six in terms of achieving the lowest training loss. For 
the other two datasets, the hybrid technique with 
RMSprop achieved the lowest training loss. In 
general, RMSprop was better than the momentum 
acceleration technique and better than the 
optimization method without an acceleration in 
terms of accuracy. 
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Table 6 Distinguished Optimization Techniques 

Order-Degree Optimization  

First-Order 

Gradient Descent 

Gradient Descent with Momentum 

Gradient Descent with RMSProp 

Second-Order 

Hessian Free Optimization 

Hessian Free Optimization with Momentum 

Hessian Free Optimization with RMSProp 

Hybrid 

Hybrid: Gradient Descent and Hessian Free 
Optimization 

Hybrid with Momentum 

Hybrid with RMSProp 

For the Letter dataset and Sensorless 
dataset, second-order optimization outperformed 
both the first-order and the hybrid techniques 
significantly. Second, with RMSprop achieved a 
training loss of 0.73 while the next method was 
limited to 0.95 on the Letter dataset. Same for the 
sensorless dataset with 0.32 for the second-order, 
followed by 0.89 for achieved by the first order. The 
second-order and the hybrid achieved similar results 
on MNIST and Satimage datasets with a slight 
advantage for the second order. The difference 
between the training loss was around 0.2 as the 
results were 0.11 for the second order and 0.13 for 
the hybrid on MNIST, while the training loss on 
Satimage was 0.31 for the 2nd order and 0.33 for the 
hybrid. However, the hybrid surpassed the second-
order significantly on PenDigits with 0.1 training 
loss for the hybrid against 0.4 for the second order.  

The reason why the hybrid technique has 
achieved better results in two datasets (PenDigits 
and SensIT) is due to the nature of the datasets, 
especially in the PenDigits dataset, explained in 

Figure 5. PenDigits has achieved a very smaller 
testing loss compared to the second-order methods. 

Although the hybrid technique with 
RMSprop did not surpass the second-order 
technique with RMSprop in most datasets in terms 
of testing loss, the hybrid technique was better than 
the first order in five datasets out of six. 

PenDigits has a relatively small input 
dimension with a broader range in the input values 
(0-100), which cannot be scaled due to the nature of 
the dataset. This contributes to the presence of high 
stochastic variance noise problems, which make the 
convergence more slowly and often unstable [36]. 
Figure 4 shows the instability of the PenDigits 
testing loss. 

The hybrid method was selected properly 
among four hybrid parameters to figure out the best 
parameters for this method. Table 9 shows that the 
hybrid method with AUTO_3 parameters integrated 
with RMSProp has the best testing loss in four 
datasets out of six. For the remaining two datasets, 
the difference was minimal (less than 3.5%). Table 
7 shows the parameters used in every hybrid method. 

Table 7 Hybrid Optimization Method Params 

Methods/Params 𝑳𝒓 𝑺𝟎 𝑺𝟏 

AUTO_1 0.1 0 20 

AUTO_2 0.1 0 17 

AUTO_3 0.1 0 10 

AUTO_4 0.1 0 15 
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Table 8 Results Comparison (Testing Loss) 

Optimization/ 
Dataset 

Letter MNIST PenDigits Satimage SensIT Sensorless 

1st order 

GD 0.9614 0.1976 0.1497 0.3504 0.5399 1.0498 

Momentum 2.1800 0.3762 0.1726 0.4295 0.6097 1.6149 

RMSProp 1.0028 0.1339 0.1240 0.3324 0.5171 0.8897 

2nd order 

HFO 0.7668 0.1734 0.9915 0.3338 0.5277 0.5943 

Momentum 1.5682 0.2948 0.8061 0.3910 0.5450 1.1129 

RMSProp 0.7342 0.1084 0.4077 0.3108 0.5469 0.3155 

Hybrid 

Hybrid 0.9351 0.1951 0.3094 0.3493 0.5384 1.3768 

Momentum 2.0081 0.3814 0.1775 0.4259 0.6053 1.5429 

RMSProp 0.9728 0.1269 0.1045 0.3341 0.5162 0.8534 

Table 9  Results Comparison between Hybrid Methods (Testing Loss) 

Optimization/ 
Dataset 

Letter MNIST PenDigits Satimage SensIT Sensorless 

AUTO_1 0.9491 0.1929 0.1430 0.3490 0.5433 0.9726 

AUTO_1 + Momentum 2.0603 0.3728 0.1676 0.4294 0.6092 1.5982 

Figure 4 Testing Loss Plots for every Dataset (Best Optimizers) 
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AUTO_1 + RMSProp 0.9928 0.1323 0.1121 0.3325 0.5167 0.8239 

AUTO_2 0.9411 0.1932 0.1756 0.3503 0.5393 1.0452 

AUTO_2 + Momentum 2.0597 0.3756 0.1701 0.4215 0.6096 1.5975 

AUTO_2 + RMSProp 0.9675 0.1344 0.1248 0.3330 0.5167 0.8572 

AUTO_3 0.9351 0.1951 0.3094 0.3493 0.5384 1.3768 

AUTO_3 + Momentum 2.0081 0.3814 0.1775 0.4259 0.6053 1.5429 

AUTO_3 + RMSProp 0.9728 0.1269 0.1045 0.3341 0.5162 0.8534 

AUTO_4 0.9424 0.1947 0.3737 0.3525 0.5453 0.9232 

AUTO_4 + Momentum 2.0423 0.3780 0.1798 0.4266 0.6054 1.5625 

AUTO_4 + RMSProp 0.9721 0.1332 0.1268 0.3330 0.5174 0.8749 

 

Figure 5 Testing Loss Plots for PenDigits Dataset 

The hybrid technique was introduced to 
balance the model’s performance and training time. 
Experiments have shown that the running time of the 
hybrid is almost equivalent to the first order. 
However, it is extremely better than the second 
order. Quantitatively, the running time of the 

second-order methods is 5-6 times slower than the 
hybrid, as shown in Figure 6. 

Moreover, the number of steps and training 
time comparison for reaching set values of testing 
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loss was expressed, as shown in Table 10 and Table 
11, respectively.  

As a result, the hybrid method with the 
RMSProp acceleration technique is recommended 
for optimizing deep learning models when high 
performance is required in a short duration. 

In Figure 6, Table 10, and Table 11, each 
experiment has been repeated 50 times to eliminate 
the possibility of the randomness in the reported 
results, and the average value has been reported. 
Moreover, the significance of the results was tested. 
Scientific Python library (Scipy) was used to 
conduct the hypothesis test by comparing the 
distribution of the results obtained from different 
models (i.e., the hybrid algorithm and the first-order 
algorithm). The p-values for all the tests were less 
than 0.001, which means that the reported results are 
scientifically significant. 

 

Figure 6 Time Comparison for Optimization Methods 

Table 10 Number of Steps vs Testing Loss Reached 

Optimization GD HFO Hybrid 
Testing 
Loss ≤ 

Steps 
Reached 

285 37 196 1.00 

429 124 357 0.50 

1647 972 1538 0.20 

2604 1704 2417 0.15 
 

Table 11 Training Time (Seconds) vs Testing Loss 
Reached 

Optimization GD HFO Hybrid 
Testing 
Loss ≤ 

Training 
Time (s) 

27 20 19 1.00 

41 68 35 0.50 

156 535 151 0.20 

247 938 238 0.15 

5. CONCLUSION 

This paper investigated the second-order 
methods of optimization and showed that utilizing 
the second derivative results in faster convergence 
by implementing and evaluating Newton's second-
order optimization method and Hessian Free 
Optimization (HFO) on fully connected feed-
forward networks. This thesis has proposed 
enhancing second-order methods by the integration 
with some acceleration techniques such as 
Momentum and Root Mean Square Propagation 
(RMSProp). The experimental results demonstrated 
the superiority of second-order methods in terms of 
performance, up to 28% enhancement on testing loss 
in four datasets out of six, despite the additional 
overhead (time and computation). 

This paper proposed a novel hybrid algorithm 
capable of combining first-order and second-order 
optimization methods to balance the pros and cons 
of increasing the order of optimization methods. 
Four possible approaches to hybrid algorithms were 
developed and evaluated. The experimental results 
showed the superiority of the hybrid method. The 
experimental results showed that the proposed 
hybrid algorithm had balanced the trade-of between 
training time from one side and the performance of 
optimized models from the other side. The hybrid 
algorithms yielded better-optimized models than 
first-order methods, up to 5% enhancement on 
testing loss in five datasets out of six, while 
consuming almost the same training time. Moreover, 
the training time of the hybrid model was 5-6 times 
faster than second-order methods. 

This research improved the efficiency of 
training deep learning models by decreasing the 
number of required iterations to achieve the desired 
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output of the models. This work provides the 
integration between the acceleration techniques with 
second-order Newton's method and reduced the 
number of iterations by implementing a second-
order Newton's method to optimize the neural 
network. 

For future work a hybrid model of three degrees 
of order will be investigated   in addition to 
extending the evaluation to include deeper and more 
complex neural networks architectures.  
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