
Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5452

INNOVATIVE INTELLIGENT DATA MODEL FOR AN
INTERNATIONAL LANGUAGE MORPHOLOGY SYSTEM

A. LECHHAB, Y. FAKHRI, S. ELHAKMI, N. RAFALIA, S. BENCHEHLA, M. ES-SOULI

RSD, Scientific Research and Doctoral Studies Vienne France

E-mail: s.bourekkadi@gmail.com

ABSTRACT

We offer a unique framework foclassr representing Persian-Arabic morphology in this paper. Because this
was too complicated to model exhaustively using traditional methods, it was required to develop a suitable
representation formalism. As a result, we created MorphoScript, a declarative object-oriented language that
allowed us to best describe the entire morphological knowledge that we could identify. The goal of the
research presented here is to develop a data model for natural language morphological components and
composition rules. As a result, we shall provide the fundamental elements as well as the theoretical and
technical underpinnings of a language capable of replicating and helping morphologies.

Keywords: Innovation, Natural Language processing, Morphological Knowledge Base, Intelligent Data,
Learning, Education System

1. INTRODUCTION

In the automatic processing of morphology, a
major topic is the modelization of morphological
knowledge. It is a matter of articulating all
morphological knowledge in a formalism that is
reasonably well adapted for future utilization of this
very specific type of knowledge.

The notion of relational databases has been
adopted as the basic data model for storing
morphological information in the majority of the
work on morphology that we have consulted during
years of research in this topic. However, the ensuing
research methodologies, which are dependent on the
capabilities of the DBMS in use, are insufficiently
adapted to this specific challenge.[1][2] It would be
condensed into SQL queries to obtain any data that
was required. SQL queries don't take into account the
type of data they're dealing with, and as a result,
they're too broad to produce useful results.[3]

An extra popular option is to employ Artificial
Intelligence models to represent morphological
components and regulations. Indeed, a
morphological analyzer may be thought of as an
intelligent expert system that is built on a
morphological knowledge base and includes an
inference engine with intelligent capabilities for
determining the morphological character of the text
being analyzed. However, the choice of AI

languages for their generality and sequential search
for information does not persuade us. Because of the
compiler (or interpreter) as well as the language
capabilities that are not well suited to this type of
data, the Lisp language (Ezzeldin Khaled & al. 2018)
or Prolog language (Kadhem S. and Abd Almeer A.,
2017) as a medium for representing morphological
knowledge is probably not the best choice. For its
part, the notion of semantic networks is more
significant, but mastering the representation of
morphological data requires a complicated and
challenging modeling reflection.[4][7]

As a result, we decided on a specific form for the
description of the morphological components and
rules. The construction of an intelligent data model
whose internal structure is natively based on a
grammar that allows reasoning in morphology and
morphological rules is undoubtedly the solution to
this challenge. The compiler, on the other hand, will
have to build an appropriate and optimal structure
from the morphological data model, allowing direct
research and determinism. We are confident that
deterministic finite state automata are the best
universal structure that meets all of these
requirements (M. Gridach and N. Chenfour.
2011b).[11]

We have several approaches to dealing with Persian-
Persian-Arabic morphology, each with its own set of

Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5453

approaches and linguistic depths (Al-Sughaiyer and
Al-Kharashi, 2004). The bulk of these systems,
however, are based on relational databases that
contain all of the Persian-Arabic morphs in tables
(Dima Taji et al. 2018). Prefixes, suffixes, stems, and
three compatibility tables: prefix-suffix, prefix-stem,
and stem-suffix are the foundations of Dima Taji's
method. The final three tables specify and ensure the
compatibility of the different morphological
components.[6][8]

At last, we must point out that behind this
outstanding work, there are two big flaws with the
selected organization. The first problem is that there
are a lot of units that need to be specified one by one
in multiple tables. Due to the relational structure of
the data and the size of the tables, the second issue,
which should be a result of the first, is the time it
takes for SQL queries to run.
wordnet is considered as a true reference to Persian-
Arabic morphology as it is built in Persian-Arabic
or simply "AWN", basically on complete relational
structures The Open Multilingual Wordnet project
(), based on the Princeton WordNet or "PWN"
development method, includes AWN (Fellbaum
Christiane, 2005, Princeton University, 2010). It
uses the Suggested Upper Merged Ontology as an
Interlingua to connect Persian-Arabic WordNet to
previously created wordnets. A top-down strategy
was used to build AWN (Mohamed Ali Batita and
Mounir Zrigui, 2018). It entails translating the
Princeton WordNet score (FellbaumChristiane,
2010) and boosting it with more particular Semitic
concepts. The development process, which improves
wordnet compatibility, is based on semitic
cryptography of exact concepts. The core version V1
of beard comprises 21 813 words organized into 9
698 synsets, with six types of synset-to-synset
relationships resembling 143 715 connections. The
second version, released in 2008, has eleven 269
synsets, which correspond to twenty-three 481
words, and 161 705 linkages, which belong to
twenty-two kinds; five of them are meant for PWN -
beard interactions (Batita and Zrigui, 2018). As a
result, we will only notice the large size of the online
database as well as the non- Persian-Arabic style
(root, models or schemes, etc.).[5][10][15][16]
The Linguistic Data Consortium supports and
distributes the Buckwalter Persian-Arabic
Morphological Analyzer (Buckwalter T., 2004),
which is regarded one of the most referred solutions
in the literature (Khaled Shaalan, 2011). (LDC). This
is an open pool of universities, libraries, businesses,
and government research institutes that was
established in 1992 to address the shortage of

linguistic resources. The Buckwalter morphological
instrument is written in Perl, and the data is divided
into three Persian-Arabic English lexicon files:
prefixes, suffixes, and stems, totaling approximately
83 000 items. There are three morphological
compatibility tables, each with around three 531
entries, that are utilized to handle the many possible
combinations. yet again, we'll see how the
morphological instrument must cope with a
tremendous amount of information, owing to the
storage type utilized, which only permitted simple
files and a tight relative combination
method.[12][13][17][18]

1.1 MorphoScript language

MorphoScript is a programming language based on
the Java language syntax, but with a lexico-syntactic
extension that allows it to simulate various
morphological notions. It allows you to structure a
script into classes and morphological rules that may
be applied to the various morphological classes
(hence the idea of choosing the Java language syntax
as a base). An enumeration of what we called
morphological components organizes the material of
a morphological class. A collection of
morphological and/or syntactic characteristics
characterizes each component or object. The classes
are linked via inheritance and reference links, which
are used to link radicals to their original verbs, for
example (A. Mahdaouy & al., 2019).[9][14][19][20]

As a result, a morphological script will be divided
into three sections: morphological classes,
morphological characteristics, and morphological
rules. In the sections that follow, these aspects will
be examined.

1.2 Morphological Components

 When The class is the most fundamental
component of a morphological script. Using the
class idea, we may organize morphological
components (denoted MCM) with the same
fundamental features into a single building unit
called morphological class (denoted MCL). Verbs,
nouns, and particles must be grouped together into
classes with similar morphological features and
semantic activities.[21][22]
For instance, a category of all prefixes that may be
added to a specific type of verb. As a result,
combining verbs and nouns in the same class, or
verbs with different morphological structures, makes
no sense. Another clever aspect of MorphoScript is
that it is not required to specify all potential physical

Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5454

components inside a morphological class, simply the
various schemes. The class of healthy verbs, for
example, will allow all conceivable schemes of
healthy verbs to be defined, rather than healthy verbs
themselves. This results in a significant decrease in
the number of morphological entries.[23][24][25]
MorphoScript is a scripting and object-oriented
language in one. The attributes of a MorphoScript
class, unlike those of other object languages, are
themselves objects of the class (such as
enumerations in Java). As a result, instantiation is
unnecessary, and the class serves a dual purpose: it
defines the class and declares and characterizes the
class's objects. We think of the class as a collection
of things rather than a factory of objects. [26][27]

2. ALL CLASS OF SYSTEM

2.1 Morphological Properties

To morphologically express the exclusive
morphological components, we wish to provide a list
of morphological homes (which may also be
syntactic characteristics), then assign them to the
specific participants of the distinct classes. MCMs of
diverse classes are commonly described using
common features.[28][29]

A property type is described the usage
of the equal syntax as a morphological type to
which the «@property» annotation will be
applied, as in the following example:
 @property
class Number {
 SINGLE
DUAL
PLURAL

The morphological descriptor, like a
morphological component, can include
morphological parameters, most notably its
graphemic value, as demonstrated in the example
below:
@property
class Number {
 SINGLE("the translation of the word
into the language studied")
DUAL("the translation of the word into the
language studied")
PLURAL("the translation of the word into the
language studied")

2.2 Properties

A list of morphological descriptors can be
used to specify the components of a morphological

class (the different schemes inside). In general, each
MCM may have its own set of morphological
descriptors. If we look at the "Gender" attribute, for
example, we can see that some of the class's
components are male and others are female.
Component properties >> is how we refer to this type
of property. We'll use the @uses >> annotation to
enable a morphological class the ability to use the
morphological descriptors of a property class to
specify its components.

@uses(Number)
class ClassName {
 M1("name1", SINGLE)
 M2("name2", PLURAL)
 M3("name3", PLURAL)
 ...
}

The many morphological descriptors
introduced by the @uses >> annotation become
extremely accessible and can be utilized by all of the
class's morphological components :
@property
class P1 {
 V1
V2
V3
@property
class P2 {
 V4
V5
}
@uses(P1, P2)
class C1 {
 M1("value1", V1)
 M2("value2", V2, V5)
 M3("value3", V3, V4)
}

When we utilize the morphological descriptors with
their fully qualified names, the annotation @uses >>
becomes unnecessary. Without the annotation
@uses (P1, P2) >>, the class C1 >> in the previous
example may be created as follows:
class C1 {
 M1("value", P1.V1)
 M2("value", P1.V2, P2.V5)
 M3("value", P1.V3, P2.V4)
}

there is another use case for properties is that some
morphological classes must be globally defined by a
collection of morphological descriptors that will be
applied to all morphological components.For

Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5455

instance, a morphological class's components are all
single names. This sort of property is known as
<<class properties>>, and we use the annotation
<<@is >> to describe it:
@is(PropertyName)
class ClassName {

}
For Example :
@is(P1.V1, P2)
class C2 {
 M1
 M2
}
the morphological components M1 and M2 of the
class C2 are both defined by the morphological
descriptor V1 of the property P1 and all of the
morphological descriptors of the property P2. This
last feature requires that P2's morphological
descriptors are additive rather than contradictory
(like male and female).

It's worth noting that the same class can use both
class and component properties at the same time. As
a result, the general syntax is:

@is(P1, P2, ...)

@uses(Q1, Q2, ...)

class ClassName {
}

The Pi are morphological descriptors or property
classes, but the Qi are always property classes.

Reference properties

Semantic linkages can exist between MCMs
belonging to two different instructions. As a result,
some morphological features stated in a
classification are conjugate kinds of several genuine
MCMs reported in distinct classes, Because the latter
is described in a category and the other three
characteristics in a distinct class, it is necessary to
factor in this hyperlink reference between the
components. In this example, we utilize the <<@ref
>> annotation, which defines the reference class:

@ref(OriginClass)

class DerivedClass {...}

Any morphological component << Mi >> of the
derived class, on the other hand, must be referenced
to the base component << Rj >> using the reference
property << Mi >>, which corresponds to the
identification of the origin (or base) component Rj.

class Base {

 ...

 Rj ("value", ...)

}

@ref(Base)

class Derived {

 Mi("value", Rj, ...)

}

This signifies that the morphological component Mi
has a base reference declared in the « Base » class
with the identifier « Rj ».

2.3 Extension

inheritance is a critical concept that allows for code
optimization and reuses in the object-oriented
programming domain, as well as the construction of
a coherent set of classes arranged into a large tree
structure known as an inheritance hierarchy.
Because Persian-Arabic morphology may be
represented as an extraordinarily complicated
inheritance graph, the MorphoScript language needs
to accommodate this concept. [30][31][32]

The inheritance connection, like the other
aforementioned concepts, can be defined by an
annotation for the sake of syntactic uniformity. As a
result, we can use the following comparable syntax:

@extends(SuperClass)

class DerivedClass {

 ...

}

2.4 Properties

With the annotation << @is >>, we've previously
introduced the concept of class properties and how
they're implemented. This notion introduces a new
sort of inheritance that allows a morphological class
to be linked to a set of properties. In reality,
numerous classes can share a single morphological

Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5456

trait, allowing them to be described collectively
using that property. [33][34]

If we consider a set of morphological classes
"MCL1, MCL2,... MCLk," all of which have the
attribute MPC, the classes MCLi are defined as
follows:
@is(MPC)

class MCLi { i = 1 à k

 ...

}

2.5 Exception

The @exception annotation its possible to be used
directly to morphological components or partitions
of a morphological class .[35][36]

As seen in the example below, the morphological
component MCM2 as well as all of the
morphological components of the partition PID1 are
exceptions to the morphological rules applied to the
class MCL.

class E1 {
 Alias1(CME1, CME2, ...)
 Alias2(CME1, CME2, ...)

...
}

So you can see a specific classes that include subsets
of irregular components of a morphological class
MCL that do not follow the class's concatenation
criteria. These irregular components will be given an
alias so that they may be modified globally in any
rule.

class MCL {
 MCM1(...)
 @exception MCM2(...)
 MCM3(...)
 ...
 @exception
class PID1 {
 ...
 MCMi(...)
 ...
}
class PID2 {
 ...
MCMj(...)
 ...
}

...
}

By using the @filter annotation, you may define a
new filter class that gathers the only morphological
components of a class MCL that accept the
application of morphological rules.
@filter(MCL)
class F1 {
 Alias1(CME1, CME2, ...)
 Alias2(CME1, CME2, ...)
...
}
The @filter annotation can be used at the
morphological component level or at the partition
level, just like the exceptions.
1) 7.5 Object class

3. MODULES

A module will be implicitly derived based on the
location of the morphological class, which
corresponds to a directory like packages in python
language. However, the @module annotation can be
used to explicitly indicate a module name:

 @module(technical.name.of.the.module,
"Logical Name ")

The following annotation can be used to call
modules:

 @import(moduleA, moduleB, ...)

Above classes, modularity adds a greater level of
grouping. Actually, the morphological database will
be arranged into high-level objects called modules
for the sake of structure. Each module comprises a
collection of morphologically consistent classes. We
might divide our database into six independent
modules using this last MorphoScript technique, as
indicated in the diagram below:[38][39]

It is crucial to have a strong understanding of
morphological classes when creating a database
using the MorphoScript language, which can be
thought of as a conceptual notation of morphology.
The language will thereafter be able to represent the
morphological conceptual model symbolically. The
following essential restrictions must be considered
in such a model:
- When adhering to the first and second constraints
is challenging, a class can be broken down into a set
of subclasses using the aggregation idea. On the one
hand, all of the class's components have some

Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5457

common morphological features, and on the other
hand, each subclass collects elements with specific
concatenation properties.
- Another key limitation is that any inheritance link
must be reported in order for the concatenation rules
to take it into consideration.

- Morphological classes must be built in such a way
that components of the same class accept all of the
same prefixes and suffixes, or they are suffixes or
prefixes of the same classes. The building rules
would otherwise be defined for each morphological
component rather than for the entire class.
- A special example of the previous requirement is
that components belonging to the same
morphological class must either accept or reject
concatenation.[40][41][42]

4. RESULTS

We were able to describe the entire morphological
knowledge base in a legible and incredibly efficient
data format using the MorphoScript language. This
result is shown in Table through the evaluation of
the numerous components and morphological
principles.
There is a significant improvement in
modeling when comparing MorphoScript
data model to our old (
<?xml version="1.0" encoding="UTF-8"?>
<package name="morpho.verbs.origin" >
<morphological_class name="OriginScheme">
 <properties>
 <modifier>final</modifier>
 <is> ---- </is>
 <is> ---- </is>
 <is> ---- </is>
 <is> ---- </is>
 </properties>
 <component name="XXX0" id="Y1" />
 <component name="XXX1" id="Y2" />
 <component name="XXX2" id="Y3" />
 <component name="XXX3" id="Y4" />
 <component name="XXX4" id="Y5" />
 <component name="XXX5" id="Y6" />
 <component name="XXX6" id="Y7" />
 <component name="XXX7" id="Y8" />
 ...
</morphological_class>
</package>, this is just an example (for more
information on the system structure, we instruct the
researchers to contact the authors for a detail on the
deafferents system class, and the rest of the code)

)XML solution XMODEL .

We are confident that we have defined a very
acceptable language for modeling Persian-Arabic
morphology utilizing a set of key features: script-
oriented or declarative syntax, object-oriented
modeling, pattern-based morphology, and
extendable semantics using the annotations idea as a
result of this study. This enabled us to master
morphological complexity, model it completely
concisely, and decouple it from the morphological
controller. With a huge reduction in complexity, the
latter becomes quite optimal.
Finally, the morphological treatment becomes
straightforward and deterministic thanks to the
morphological automata generated automatically
from the MorphoScript database.

5. CONCLUSION AND FUTURE WORK

in the future work, we will try to integrate this
system at the level of learning and education, at the
base of a data warehouse dedicated to the guidance
of the pupils to understand these international
languages, our system is based on a set of innovative
research in this field, we cannot confirm that these
are the first, but it is a continuation of other research
work.
using Big data in the future work, can give good
results, while our future research work will be based
on data sciences.

REFERENCES:

[1] Arabic Finite-State Morphological Analysis and

Generation. Proceedings Retrieved from
http://www.ikprress.org/index.php/JOBARI/arti
cle/view/3306

[2] Darwish K., 2002. Building a Shallow
Morphological Analyzer in One Day.
Proceedings of the workshop on Computational
Approaches to Semitic Languages in the 40th
Annual Meeting of the Association for
Computational Linguistics (ACL-02).
Philadelphia, PA, USA.

[3] Dima Taji, Salam Khalifa, Ossama Obeid, Fadhl
Eryani, and Nizar Habash, 2018. An Arabic
Morphological Analyzer and Generator with

Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5458

Copious Features. Proceedings of the 15th
SIGMORPHON Workshop on Computational
Research in Phonetics, Phonology, and
Morphology, pages 140–150 Brussels, Belgium,
October 31, 2018.
https://doi.org/10.18653/v1/P17

[4] Ezzeldin Khaled, Siddiqui Sanjeera and Shaalan
Khaled, 2018. Evaluating Arabic Parser and
Recommending Improvements. pp. 417-428.
Proceedings of the International Conference on
Advanced Intelligent Systems and Informatics.
DOI : 10.1007/978-3-319-64861-3_39.

[5] Fellbaum Christiane, 2005. WordNet and
wordnets. In: Brown, Keith et al. (eds.),
Encyclopedia of Language and Linguistics,
Second Edition, Oxford: Elsevier, 665-670.

[6] Fellbaum Christiane, 2010. WordNet. In Theory
and applications of ontology: computer
applications, pages 231–243. Springer.

[7] Kadhem Suhad and Abd Almeer A., 2017.
Arabic Texts Classification Based on Keywords
Extraction Technique. Engineering and
Technology Journal (مجلة الهندسة والتكنولوجيا).
ISSN: 16816900 24120758. Volume: 35 Issue: 2
Part (B) Scientific Pages: 96-104. Publisher:
University of Technology (الجامعة التكنولوجية).

[8] Khaled Shaalan, Younes Samih, Mohammed
Attia, Pavel Pecina, and Josef van Genabith,
2011. Improved spelling error detection and
correction for arabic. Council for Science
Engineering and Technology, page 7.

[9] Mahdaouy Abdelkader, Ouatik El Alaoui Said
and Gaussier Eric, 2019. Word-embedding-
based pseudo-relevance feedback for Arabic
information retrieval. Journal of Information
Science (JIS). Vol. 45. pp. 429–442. DOI :
https://doi.org/10.1177/0165551518792210.

[10] Mohamed Ali Batita and Mounir Zrigui, 2018.
Derivational Relations in Arabic WordNet.
Proceedings of the 9th Global WordNet
Conference (GWC 2018). January 8 - 12, pp
137–145, 2018 Singapore. ISBN 978-981-11-
7087-4

[11] Mourad Gridach and Noureddine Chenfour.
(2011c). A Computational Feature-Based
Morphological Analysis and Generation of
Modern Standard Arabic. International Journal
of Computational Linguistics Research (IJCLR),
ISSN 0976-4178, Volume (2), Issue (1), pp. 24 –
36, March 2011.

 [12] M. Ehrig and S. Staab, "QOM - Quick Ontology
Mapping", In Proceedings of International
Semantic Web Conference, 2004, pp.683-697.

[13] J. Euzenat and P. Shvaiko, "Ontology
Matching", Springer-Verlag, Heidelberg (DE),
2007.

[14] J. Euzenat and P. Valtchev, “Similarity-Based
Ontology Alignment in OWL-Lite", In
Proceedings of ECAI, 2004, pp.333-337.

[15] D. Fensel, F.V. Harmelen, I. Horrocks, D.L.
McGuinness, and P.F. Patel-Schneider, "OIL:
An Ontology Infrastructure for the Semantic
Web", Presented at IEEE Intelligent Systems,
2001, pp.38- 45.

[16] D. Fensel, "Ontologies: Silver Bullet for
Knowledge Management and Electronic
Commerce", Springer, 2001.

[17] V. Haarslev and R. Moller, "RACER System
Description", In Proceedings of IJCAR, 2001,
pp.701-706.

[18] F. van Harmelen, P.F. Patel-Schneider, and I.
Horrocks (Editors), "Reference Description of
the DAML+OIL Ontology Markup Language",
http://www.daml.org/2000/12/reference.html,
2000.

[19] F. Giunchiglia, P. Shvaiko, and M. Yatskevich,
"Semantic Schema Matching", In Proceedings of
OTM Conferences (1), 2005, pp.347-365.

[20] C. Ghidini and F. Giunchiglia, "A Semantics for
Abstraction", In Proceedings of ECAI, 2004,
pp.343-347.

[21] O. Gotoh, "An Improved Algorithm for
Matching Biological Sequences", Presented at
Journal of Molecular Biology, 162:705-708,
1982.

[22] Y. Kalfoglou and W.M. Schorlemmer, "IF-Map:
An Ontology-Mapping Method Based on
Information-Flow Theory", Presented at Journal
Data Semantics, 2003, pp.98-127.

[23] M.C.A. Klein and D. Fensel, "Ontology
Versioning on the Semantic Web", In
Proceedings of SWWS, 2001, pp.75-91.

[24] P. Lambrix and H. Tan, "A Tool for Evaluating
Ontology Alignment Strategies", Presented at
Journal Data Semantics, 2007, pp.182-202.

[25] M. Li, M. Baker, "The Grid: Core
Technologies", John Willey & Sons England
(2005).

[26] G.A. Miller, “WordNet: A Lexical Database for
English", presented at Commun. ACM, 1995,
pp.39-41.

[27] H. Mihoubi, A. Simonet, and M. Simonet, "An
Ontology Driven Approach to Ontology
Translation",

[28] A. Borgida, R. Brachman, D. McGuinness, and
L. Resnick.

Journal of Theoretical and Applied Information Technology
30th November 2021. Vol.99. No 22

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5459

[29] CLASSIC: Astructural data model for objects. In
Proceedings SIGMOD-89, 59-67. ACM, 1989.

[30] P. Courtot. A New Personal and Enterprise
Application: SEARCH ’97 White Paper, In
Verity web site http : //www. verity, com /eorp
/whi~epapers /".

[31] Fensel: Ontologies: Silver Bullet for Knowledge
Management and Electronic Commerce.
SpringerVerlag, Berlin, D, to appear (2000).

[32] P. Borst, J.M. Akkermans, and J.L. Top:
Engineering Ontologies, International Journal of
HumanComputer Studies 46 (1997) 365-406.

[33] A.Th. Schreiber, J.M. Akkermans, A.
Anjewierden, R. de Hoog, N. Shadbolt, W. Van
De Velde, and B. Wielinga: Knowledge
Engineering and Management. The MIT Press,
Cambridge, MA, 2000.

[34] U. Reimer (Ed.): Proc. 2nd Int. Conf. on
Practical Aspects of Knowledge Management
(PAKM'98), Basel, Switzerland, October 1998.
URL: http://sunsite.informatik.rwth-
aachen.de/Publications/CEUR-WS/Vol-13/.

[35] D. Fensel, S. Decker, M. Erdmann, H.-P.
Schnurr, R. Studer, and A. Witt: Lessons learnt
from Applying AI to the Web. Journal of
Cooperative Information Systems, to appear
(2000).

[36] F. van Harmelen and J. van der Meer:
WebMaster: Knowledge-based Verification of
Web-pages. In Proceedings 2nd Int. Conf. on
The Practical Applications of Knowledge
Management (PAKeM99, London, UK, April
1999), pp. 147-166. The Practical Applications
Company, Blackpool, UK, 1999.

[37] J. Davies, S. Stewart, and R. Weeks: Knowledge
Sharing over the World Wide Web, WebNet '98,
Florida,USA, November 1998. (also at
http://www.bt.com/innovation/exhibition/knowl
edge_management/).

[38] J. Davies: Supporting Virtual Communities of
Practice, in R. Roy (Ed.): Industrial Knowledge
Management, Springer-Verlag, London,
forthcoming (2000).

[39] B. Bremdal, F. Johansen, C. Spaggiari, R.
Engels, R. Jones: Creating a Learning
Organisation Through Content-Based Document
Management, OECD HRP Meeting, Loen, NO.
CognIT Report, Oslo, May 1999.

[40] A. Maedche, H.-P.Schnurr, S. Staab, and R.
Studer: Representation Language-Neutral
Modeling of Ontologies. In: Frank (Ed.),
Proceedings German Workshop Modellierung
2000. Koblenz, D, April 2000.

[41] I. Horrocks, D. Fensel, J. Broekstra, S. Decker,
M. Erdmann, C. Goble, F. van Harmelen, M.
Klein, S.Staab, and R. Studer: The Ontology
Inference Layer OIL, On-To-Knowledge EU-
IST-10132 Project Deliverable No. OTK-D1,
Free University Amsterdam, Division of
Mathematics and Informatics, Amsterdam, NL,
2000. Available from
http://www.ontoknowledge.org/oil.

[42] F. Ygge and J.M. Akkermans: Decentralized
Markets versus Central Control - A Comparative
Study, Journal of Artificial Intelligence Research
11 (1999) 301-333. (Also available from
http://www.jair.org/).

[43] J. Angele, D. Fensel, and R. Studer: Developing
Knowledge-Based Systems with MIKE, Journal
of Automated Software Engineering 5 (1998)
389-418.

[44] Y. Ding, G. Chowdhury, and S. Foo:
Bibliometric Information Retrieval System
(BIRS): A Web search interface utilizing
bibliometric research results. Journal Am. Soc.
for Information Science, to appear (2000).

[45] Bourekkadi, S., Khoulji, S., Mabrouk, A., Larbi,
K. M., Laaziri, M., & Omari, O. (2016).
Psychologie Informatique et son impact sur le
comportement humain [Computers psychology
and its impact on human behavior]. International
Journal of Innovation and Applied
Studies, 14(2), 543.

[46] El Imrani, O., Layti, M. B. M., Bourekkadi, S.,
Boulaksili, A., & Kabbassi, I. (2021).
Optimization of the International Trade
Activities in the Period of COVID-19 by
Proposing an Algorithm. In Artificial
Intelligence for COVID-19 (pp. 187-193).
Springer, Cham.

