
Journal of Theoretical and Applied Information Technology
15th November 2021. Vol.99. No 21

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5201

GENERATION OF COMBINATORIAL LOGIC ORIENTED
TEST CASES FROM UML SEQUENCE DIAGRAM

SUBHASH TATALE1*, Dr. V. CHANDRA PRAKASH2

1 Research Scholar, 2 Professor

Department of CSE, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
*Corresponding author E-mail:subhashtatale@gmail.com

ABSTRACT

In the current practice, the test cases are generated from UML artefacts depending on the experience of
testers in testing. Many researchers used different techniques to generate test cases from UML artefacts.
There is a need to generate combinatorial logic-oriented test cases for those systems where combinatorial
logic is necessary.
Combinatorial testing plays an essential role in generating a minimum number of the test cases to detect
defects caused by interactions among system parameters. To generate combinatorial logic-oriented test
cases, information about parameters, their values, and constraints is essential.
UML Sequence Diagram represents the dynamic behaviour of a software system. Extracting and
identifying information about parameters, values and constraints from UML Sequence Diagram and
detecting interactions among those extracted parameters is challenging task. The authors proposed multi-
stage algorithm to extract and identify information about parameters, values and constraints from Sequence
Diagram. The authors designed and developed a technique that automatically generates combinatorial
logic-oriented test cases from UML Sequence Diagram.
In this paper, a case study of Concession Management SubSytsem of Indian Railways is presented. The
authors generated automated test cases using the proposed Combinatorial Logic Oriented Test Case
Generator for the case study and compared those test cases with manually generated test cases. It is found
that generated automated and manual test cases are matching the same with each other.

Keywords: Covering Array, Combinatorial Test Case Generation, Behavioral UML Diagrams, Sequence

Diagram, Railway Reservation System, Concession Management System

1. INTRODUCTION

Generating test cases at design phase has
several advantages over coding phase of
Software Development Life Cycle (SDLC). The
test cases generated in the design phase remain
valid even when we do a little bit change in the
code [1]. The design models which are designed
in design phase can be used as an input for
generating the test cases. This will help to
identify problems early in the stages of SDLC,
which significantly reduces the time and cost of
testing. However, generating test cases from
Unified Modelling Language (UML) model is
difficult task. UML has now become the de facto
standard for object-oriented modelling and
design. UML models are an essential source of
information for generating test cases [2]. An
automatic generation of test cases from UML
model is a practically essential and receiving
more awareness from researchers. Many
researchers have presented various

methodologies and techniques to generate test
cases automatically using UML Sequence

Diagrams [3]. There are many systems like

Concession Management SubSystem (CMSS) of
Indian Railways, College admission system,
Tuition fee concession subsystem, etc., in which
combinatorial logic is extensively used.
Combinatorial Testing (CT) is gaining high
importance to test such type of systems.

The Combinatorial Test Design Model
(CTDM) is popularly used to generate
combinatorial test cases automatically [4]. There
is a need to generate combinatorial test cases for
those systems where combinatorial logic is
essential. Different UML diagrams are used to
model these systems. The same UML diagrams
are used to generate combinatorial test cases.

The primary challenge of generating
combinatorial logic-oriented test cases from the
UML Sequence Diagram is to identify the input
parameters, associated values, and constraints.

Journal of Theoretical and Applied Information Technology
15th November 2021. Vol.99. No 21

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5202

Many times application fails because of an
interaction among the values of the different
parameters of that application. It is an error-
prone and challenging task to identify the input
parameters, values and constraints manually.
Hence, there is a need to model these parameters
so that it reduces error and increase quality of the
software system. A multi-stage algorithm is
proposed to extract parameters, values and
constraints from the sequence diagrams.

In this paper, the authors presented a case
study of CMSS of Indian Railways to generate
combinatorial logic-oriented test cases. The
requirement specifications of CMSS are firstly
modelled in the UML Sequence Diagram, and
then all parameters, their values and constraints
are extracted from this diagram using proposed
multi-stage algorithm. After extraction of this
information, combinatorial logic rules are
applied and combinatorial test cases are
generated. In the next section, concepts related to
Sequence Diagram and Combinatorial Test Case
Generation is discussed.

1.1 Combinatorial Test Case Generation

Grindal et al. [5] and Nie et al. [6] did a
detailed survey on CT. The authors covered all
aspects of CT including test modelling and CT
applications. If the number of parameters and the
values of these parameters are large, then it is
practically impossible to generate all the
combinatorial test cases. Covering Array (CA)
which is a mathematical approach is used to
reduce the test cases is [7] [8]. CA has four
parameters, namely the number of input
parameters (p), number of values (v), interaction
strength (t) and number of test cases (N) [9].

For example, input has three parameters
(namely X, Y, Z) having two values to two
parameters each and three values to one
parameter. Total 3*2*2 = 12 test cases are
required to test combinations of all these
parameters and values.

Table 1: System inputs having parameters and

values

Values

Parameters
X Y Z

X1 Y1 Z1
X2 Y2 Z2
X3 - -

The optimal test suite has only six tests by
using pairwise testing as shown in Table 2.

Combinatorial testing does not cover all
parameter combinations, but it does show
significant results in terms of detecting maximal
defects in a small test suite. Table 2 shows a
reduction in the size of the test suite from 12 to
6. Although it may not be exciting, we may test
the effectiveness by using a more complex test
input. Consider a test input with 20 parameters
and ten values per parameter. 1020 test cases
were developed by exhaustive testing. We may
minimise the test suite size to 213 test cases by
using combinatorial testing.

Table 2: An optimal test cases using pairwise testing

strategy

Test case number X Y Z
1 X1 Y1 Z1
2 X1 Y2 Z2
3 X2 Y1 Z1
4 X2 Y2 Z2
5 X3 Y1 Z1
6 X3 Y2 Z2
Generating combinatorial logic-oriented test

cases is one of the test case generation
techniques that focus on covering combinations
of parameters, their values and constraints. The
parameters are categorized into input/output
parameters, constraints, and an infeasible
combination between parameters and values.
Deriving the CTDM is a necessary and critical
step in the process of creating combinatorial test
cases. CTDM consists of the elements like
parameters, values of those parameters and
constraints among the parameters and their
values. Extracting these parameters and values is
an innovative process that cannot be completely
automatic.

1.2 UML Sequence Diagram

UML Sequence Diagrams are used to capture
dynamic behaviour of a system from a different
perspective. Sequence Diagram visualizes time-
dependent interaction among the objects. It
depicts the message sequence, as well as
their names, responses, and probable counter
arguments. In a Sequence Diagram, the vertical
line shows time, whereas the horizontal line
shows interaction among different objects [10].

In UML 2.0, different interaction fragments
are used to describe many traces compactly and
concisely. A fragment is an interaction operator

Journal of Theoretical and Applied Information Technology
15th November 2021. Vol.99. No 21

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5203

which is used to showcase a conditional flow in
the Sequence Diagram. It operates on a group of
operands. Each operand represents a sequence
of messages that occur under a guard condition.
Some of the interaction operators are explained
in Table 3.

Table 3: Interaction operators with its purpose

S.
No.

Operator
Name

Purpose

1 alt
(alternatives)

This operator is used
using multiple operands
to capture alternative
flows

2 opt (optional) This operator has only
one operand that is
interpreted optionally

3 Break This operator is used to
capture an exit pathway
of the systems

4 Loop Thisoperator is used to
model the repetitive
interactions in a diagram.

5 neg
(negative)

Thisoperator describes a
combined fragment of
traces that are defined to
be negative (invalid).

The rest of the paper is structured as follows:
In Section 2, the related work is briefly
discussed. Section 3 explains the proposed work.
Section 4 describes the results ad findings of the
proposed work, while Section 5 contains
concluding remarks.

2. RELATED WORK

The related work of test case generation and
combinatorial test design model from the
Sequence Diagram is discussed in this section.
Also, a case study of Concession Management
SubSystem of Indian Railways is discussed.

2.1 Test Case Generation from Sequence
Diagram

Many researchers published research articles
on the test case generation from Sequence
Diagram using different approaches. Subhash
Tatale et al. [13] published a survey paper on
Test Case Generation using UML Diagrams and
Feasibility Study to Generate Combinatorial
Logic Oriented Test Case. The authors covered
various test case generation techniques from
Sequence Diagram.

 Using the Formal specification approach,
Panthi Vikas et al. [14], Zhang Chen et al. [15],
RhmannWasiur et al. [16], and Nour El Houda
Dehimi et al. [17] developed test cases. For this,
the authors used Model checking, Formal
specification, Object Constraint Language
(OCL), and an Agent-based approach. Message
and Path coverage criteria are met using these
methods and approaches.

Using the Graphical representation approach,
Samuel Philip et al. [18], Swain et al. [19] [20],
and Dhineshkumar, M et al. [21] developed test
cases. The methods of dynamic slicing and
iterative deepening Depth First Search are
employed. This technique meets the path and full
predicate coverage criteria.

Jena Ajay Kumar et al. [22] employed a
heuristic approach to generate test cases from a
Sequence Diagram automatically. For this, a
genetic algorithm is applied, and it meets the
message coverage criteria.

For producing test cases, Beyer et al. [23] and
Costa Leandro et al. [24] employed the Direct
UML specification processing approach. The
Markov Chain Usage Model and Parsing method
are used to achieve a message coverage
condition.

The Concurrent model approach was used by
Khandai Monalisha et al. [25] [26] [27] and
Mani P. et al. [28] to build test cases. Message,
Sequence, and Path coverage criteria are met
using Depth First Search, Breadth First Search,
and Stack array approaches.

2.2 Combinatorial Test Design Model from

Sequence Diagram

The related work on the combinatorial test
design model is discussed in this section. Sasi
Bhanu et al. [29] [30], Mudarakola et al. [31] and
M. Laxmi Prasad et al. [32] [33] published
research articles for testing distributed embedded
systems using combinatorial testing methods. V.
Chandra Prakash et al. [34] [35] performed a
review on automated generation of combinatorial
test cases using particle swarm optimization and
generated test cases for pairwise + testing. For
safety-critical embedded systems, Vudatha et al.
[36] [37] [38] used a genetic algorithm to derive
combinatorial test cases from the output domain.
This method ensures that the largest numbers of
output combinations are thoroughly generated
and tested. In a constraints management context,
Ramgouda Patil et al. [39] [40] [41] proposed a
Neural Network strategy to improve

Journal of Theoretical and Applied Information Technology
15th November 2021. Vol.99. No 21

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5204

combinatorial coverage, as well as multi-
objective crow search and fruit-fly optimization
strategies to optimize combinatorial test cases.

There is a need to generate combinatorial
logic-oriented test cases from UML artefacts.
Satish Preeti et al. [42] presented a rule-based
semi-automated approach for obtaining the
information of combinatorial test design model.
Sajad Esfandyari et al. [43] employed model
checking approaches to extract parameters and
values from state space. Subhash Tatale et al.
[44] proposed an approach of enhancement in
acceptance test-driven development using
combinatorial logic.

2.3 Concession Management SubSystem – A
Case Study

In this section, the authors presented a case
study of CMSS of Indian Railways. Indian
Railways offers concessions on ticket fares to
different categories of concessions like Disabled
Passenger, Patient, Senior Citizen, Child, War
Widow, etc. These concessions are offered based
on various types of journey classes like Sleeper
Class, First Class, etc. There are several types of
concessions in each concession category.

Subhash Tatale et al. [44] published a
research article on applying Combinatorial Logic
to improve the Acceptance Test Driven
Development Model. The authors presented
Software Requirement Specification (SRS) of
CMSS of Indian Railways in the view of
combinatorial logic. While generating
combinatorial test cases for the mentioned
journey classes (7 journey classes), concession
categories (11 concession categories) and their
types (174 concession types) in the research
article [44], the size of test cases may be
enormous because of too many combinations of
parameters and values in the input. If we apply
All Combinations testing technique to those
concession categories and types, then the total
number of generated test cases will be
2x3x15x127x5x5x6x3x3x3x2= 92583000. It is
challenging and unrealistic to generate and to test
such a large number of test cases. It is called a
Combinatorial Explosion problem of test cases.

Therefore, the authors of this paper
considered limited journey classes and
concession categories to avoid the combinatorial
explosion problem of test cases. The authors
condensed some of the concession categories and
types in the revised SRS of the CMSS. Only
limited Journey class, concession categories and

types are considered in the revised SRS of the
CMSS. The list of different concession
categories, types as per revised SRS of CMSS is
shown in Table 4. These requirements are
considered to generate combinatorial logic
oriented test cases from the Sequence Diagram.

Table 4: List of different categories of
concessions along with % of concession

Figure 1 depicts Sequence Diagram of CMSS

considering revised SRS as per Table 4. Figure 1
is shown at the end of the paper.

3. THE PROPOSED COMBINATORIAL
LOGIC-ORIENTED TEST CASE
GENERATOR (CLOTCG)

It is a very tedious and challenging task to
identify manually the exact number of
parameters, their values, and constraints from
UML diagrams. It is very difficult to extract the
information in manual way when the values of
the parameters are dynamic. In this section, the
authors presented a technique that helps to
extract the required preliminary information
automatically from the UML Sequence Diagram
in the form of parameters, values and constraints.
The combinatorial logic is applied to that
extracted information to generate combinatorial
logic-oriented test cases.

The authors show how to generate
combinatorial logic-oriented test cases using the
suggested Combinatorial Logic-Oriented Test
Case Generator (CLOTCG) technique from
UML Sequence Diagram. A model is designed
based on Software Under Test (SUT) and then
the elements of CTDM are generated. The multi-
stage algorithm is used to extract the information

Category of
Passenger

Reservation Class
Sleeper First

Percentage of Concession
Disabled Passenger

Handicapped 75 75

Mentally retarded 75 75
Patient

Cancer 100 75
Heart 75 75

Passenger Type
Senior Citizen (>=

60 years)
50 50

Child (<=12 years) 50 50
Widow

War Widow 75 50

Journal of Theoretical and Applied Information Technology
15th November 2021. Vol.99. No 21

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5205

from those CTDM. Combinatorial logic is used
to construct the combinatorial logic-oriented test
cases.

Figure 2 depicts the Data Flow Diagram of
the proposed CLOTCG. The Sequence Diagram
is drawn using the StarUML tool as per the
requirement specifications. A test manager will
give Sequence Diagram as an input to the
proposed system. The information like
parameters, values and constraints are extracted
from Sequence Diagram using multi-stage
algorithm. Sequence diagram is converted into
XML Metadata Interchange (XMI). The XMI
document is extracted using JavaScript Object

Notation (JSON) object. JavaScript is used to
parse JSON object for validation of the extracted

information of the Sequence Diagram. Once it is
validated, then the information required for the
CLOTCG is extracted. The combinations of
parameters and values are generated from
extracted parameters and values. The constraints
are processed on a combinatorial generated list.
After that, combinatorial logic-oriented rules are
applied. Finally, combinatorial logic-oriented
test cases are generated. The proposed technique
for extracting useful information from a
Sequence Diagram is explained in detail in the
following section.

Figure 2. Data Flow Diagram of the proposed CLOTCG

3.1 Extraction of information from Sequence

Diagram

The information like parameters and values is
essential to generate combinatorial logic-oriented
test cases. In this section, the authors presented a
technique that extracts the information which is
essential to generate combinatorial logic-oriented
test cases. The UML sequence diagram is drawn
using the StarUML tool.

3.1.1 Generate XML Metadata Interchange
(XMI) from UML Sequence Diagram

XMI is a perceptive way of converting UML
models into XML documents. It is used to
exchange metadata information using Extensible
Mark-up Language (XML). The main rationale
for extracting XMI is to allow for a smooth
interchange of metadata in distributed
heterogeneous contexts between modelling tools
and metadata repositories. In XMI format, the
message, start and end of a fragment are first
found out. The XMI Code is shown in Figure 3.

 Figure 3. Code snippet of XMI

<uml:Model xmi:id="AAAAAAF5johXshGwltM=" xmi:type="uml:Model" name="RootModel">
<packagedElement xmi:id="AAAAAAFF+qBWK6M3Z8Y=" name="Model" visibility="public" xmi:type="uml:Model">
<packagedElement xmi:id="AAAAAAFzTuURyI4VdAI=" name="Collaboration1" visibility="public" isAbstract="false"
isFinalSpecialization="false" isLeaf="false" xmi:type="uml:Collaboration">
<ownedMember xmi:id="AAAAAAFzTuURyI4WSOI=" name="Interaction1" visibility="public" isReentrant="true"
xmi:type="uml:Interaction">
<lifeline xmi:id="AAAAAAFzTuXvBY4lDzQ=" name="Passenger" visibility="public"
xmi:type="uml:Lifeline"represents="AAAAAAFzTuXvBY4k9h4="/>
<lifeline xmi:id="AAAAAAFzTuYYgo5F4Bo=" name="Railway%20Authority" visibility="public" xmi:type="uml:Lifeline"
represents="AAAAAAFzTuYYgY5EVsQ="/>
<message xmi:id="AAAAAAF4WWSr/e8zOl4=" name="Select%20Journey%20Class" visibility="public" xmi:type="uml:Message"
messageSort="synchCall" messageKind="complete" receiveEvent="AAAAAAF5johXtRGy+t8="
sendEvent="AAAAAAF5johXtRGxCgQ="/>

Journal of Theoretical and Applied Information Technology
15th November 2021. Vol.99. No 21

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5206

3.1.2 Generating JSON code from XMI
JSON is a lightweight data-transfer format for

sending data between client and server that is
simple to understand and generate. JSON, like
XML, is a text-based format that is simple for
humans and machines to write and interpret.

A JavaScript library called xml2json converts
the given XML code to JSON code to generate a
mapping of parameters and values.

This library acts as an XML to JSON
converter. In JavaScript, JSON.parse() method is

used to parse JSON object. This method is
primarily used to return a JavaScript object from
the string that is parsed. The string that will
parsed with JSON.parse() is in a JSON format.
The mapping of the parameter and values are
stored in .csv file that is extracted through the
JSON code. Figure 4 depicts the JSON code
snippet.

Figure 4. Code snippet of JSON

3.1.3 Extraction of parameters, values and
constraints

1. Sequence Diagram with synchronous
messages

The SUT input variables are considered as
test input parameters. There are two object
lifelines, namely Passenger called Object 1 and
Railway Authority called Object 2. These two
objects communicate using synchronous
messaging. A solid arrowhead pointing from left
to right denotes synchronous messaging. Every
message that is sent

receives a response message. This reply

message is shown by a dotted arrowhead
pointing from right to left. Object 1 will not be
able to continue processing until it receives a
response. As a result, this classification aids in
the immediate identification of parameters and
their values. The parameters and values shown in
Figure 5 (a) are the primary information. This
information is treated as an input of the system.

Figure 5. (a) Sequence Diagram with Synchronous Messages

The loop fragment is used to consider

combinations of values for those parameters.
The information shown in Figure 5 (b) and (c)

are optional information. NS (Not Selected)
indicates that the passenger has not selected any
concession. ‘and’ keyword indicates that the

{"uml:Model":{"$":{"xmi:id":"AAAAAAF5johXshGwltM=","xmi:type":"uml:Model","name":"RootModel"},
"packagedElement":{"$":{"xmi:id":"AAAAAAFF+qBWK6M3Z8Y=","name":"Model","visibility":"public","xmi:type":"uml:Model"},
"packagedElement":{"$":{"xmi:id":"AAAAAAFzTuURyI4VdAI=","name":"Collaboration1","visibility":"public","isAbstract":"false","isFina
lSpecialization":"false","isLeaf":"false","xmi:type":"uml:Collaboration"},
"ownedMember":{"$":{"xmi:id":"AAAAAAFzTuURyI4WSOI=","name":"Interaction1","visibility":"public","isReentrant":"true","xmi:type":
"uml:Interaction"},
"lifeline":[{"$":{"xmi:id":"AAAAAAFzTuXvBY4lDzQ=","name":"Passenger","visibility":"public","xmi:type":"uml:Lifeline","represents":"
AAAAAAFzTuXvBY4k9h4="}},
{"$":{"xmi:id":"AAAAAAFzTuYYgo5F4Bo=","name":"Railway%20Authority","visibility":"public","xmi:type":"uml:Lifeline","represents":
"AAAAAAFzTuYYgY5EVsQ="}}],
"message":[{"$":{"xmi:id":"AAAAAAF4WWSr/e8zOl4=","name":"Select%20Journey%20Class","visibility":"public","xmi:type":"uml:Mess
age","messageSort":"synchCall","messageKind":"complete","receiveEvent":"AAAAAAF5johXtRGy+t8=","sendEvent":"AAAAAAF5johXt
RGxCgQ="}},
{"$":{"xmi:id":"AAAAAAF4WWVFeO9KLkM=","name":"First%20or%20Sleeper","visibility":"public","xmi:type":"uml:Message","messag
eSort":"reply", "messageKind":"complete","receiveEvent":"AAAAAAF5johXthG0Ajk=","sendEvent":"AAAAAAF5johXthGz9WQ="}}

Journal of Theoretical and Applied Information Technology
15th November 2021. Vol.99. No 21

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5207

passenger is considering multiple combinations of parameter values.

Figure 5. (b) Sequence Diagram with loop operator

Figure 5. (c) Sequence Diagram with opt operator

a) Steps for parameter extraction

The outgoing messages from the lifelines of
Object 1 to the Object 2 are called as parameters.
The below steps are used to extract parameters
from Sequence Diagram.

1: Read the JSON code
2: Get the object name of the Object 1 from

the code
3: Find a message passed from the lifeline of

Object 1 to the lifeline of Object 2.
4: Display the name of the message as a

parameter.
b) Steps for value extraction
The incoming messages towards the lifelines

of Object 1from the Object 2 is values. The
below steps are used to extract values from
Sequence Diagram.

1: Read the JSON code
2: Get the object name of the Object 1 from

the code.
3: Find a message passed to the lifeline of

Object 1 from the lifeline of object 2.
4: Display the name of the message as a

value.
c) Steps for identifying constraints
The neg operator describes a combined

fragment of traces that are defined to be negative
or invalid.

The outgoing messages from the Object 1 to
the Object 2 are combinations of parameters and
values, and its reply message from the Object 2
back to the Object 1 is the infeasible
combinations.

Figure 6. Sequence Diagram with neg operator

The below algorithm is used to identify the
constraints from Sequence Diagram.

open the JSON code in read mode
if (combined fragment= neg)
{
 get the object name of the Object 1 from

the code

 find a message passed from the Object 1
lifeline to the Object 2 lifeline

 if message is found
 {
 search next sibling message node of

this message which is passed back to the Object
1 lifeline

Journal of Theoretical and Applied Information Technology
15th November 2021. Vol.99. No 21

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5208

 if message is Infeasible Input
 {
 display the message name
 map the infeasible combinations of

parameters and their values respectively
 }
 }

Table 5 shows the extraction of constraints or

invalid combinations of parameters and values
after applying above mentioned steps on
components of Sequence Diagram shown in
figure 6.

Table 5:- Extracted constraints from Figure 6
This information indicates that Male and

Child passenger cannot be Widow and cannot
avail Widow Concessions.

2. Identifying combinatorial logic oriented

rules
In a sequence diagram, an alt operator is used

to express a "if-then" condition. The outgoing
messages from Object 1 to Object 2 are the
combinatorial logic oriented concession rules,
and the reply message from Object 2 to Object 1
is the percentage of concession offered to various
parameter combinations.

Figure 7. Sequence Diagram with alt operator

The below algorithm is used to identify the
combinatorial logic rules from the JSON code.

1. open the JSON code in read mode
2. if (combined fragment= alt)
3. {
4. find a message passed from the

Object 1 lifeline to the Object 2
lifeline

5. if message is found
6. {
7. search next sibling message

node of this message which is passed
back to the Object 1 lifeline

8. if message is found
9. {
10. display the value of the

attributes of the messages
11. return percentage of

concession
12. }
13. }

Table 6 shows the combinatorial logic oriented
concession rules from Figure 7.

Sr.
No.

Concession
Categories

Concession
types

Infeasible
concession
categories

1 Gender Male Widow
2 Passenger

type
Child Widow

Journal of Theoretical and Applied Information Technology
15th November 2021. Vol.99. No 21

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5209

Table 6:- Combinatorial logic oriented concession rules from Figure 7
Sr.
No.

Concession rules
as parameter

 Total concession (in %) as value

1
If no. of selected
concession types = 1

% of total concession is applicable as per Table 2.

2
If no. of selected
concession types = 2

% of highest concession type + 5% of remaining concession
type as per Table 2.

3
If no. of selected
concession types = 3

 % of highest concession type + 7% of remaining higher
concession type as per Table 2.

4
If no. of selected
concession types > 3

 % of highest concession type + 10% of highest of the
remaining concession type as per Table 2.

5
Maximum allowed
concession

100%

3.2 Combination of parameters and values

In the previous section, the parameters and
values are extracted from the Sequence Diagram
using various steps. Combinations of parameters
and values are necessary to generate
combinatorial logic oriented test cases. In this
section, the algorithm for

combination of extracted parameters and

values is discussed. For the combination,
mapping of appropriate parameters and values
are necessary. The below algorithm is used for
making combination of extracted parameters and
values.

Algorithm:
read JSON code
for all parameter name from JSON code
{
 match message name with parameter

 check sendEvent of that message
 match combined fragment with xmi:id
 check coverage of that fragment
 if coverage is found then
 {
 select xmi:id of the respective

coverage
 match this xmi:id to the message of

receiveEvent
 extract the value of corresponding

parameter
 }
}
Table 7 shows the extracted parameters and

associated values after applying above
mentioned steps on components of Sequence
Diagram shown in figure 5 (a) (b) (c).

Table 7:- Extracted parameters and values from Figure 5

3.3 Apply combinatorial logic

The parameters, their associated values,
constraints (if any) and combinatorial logic-
oriented rules play an important role for
generation of combinatorial logic-oriented test
cases. We have covered the multi-stage
algorithm techniques to extract this information
in the previous section. The All Combinations
(AC) testing technique generates every possible
combination of parameters and values.

In the CMSS, we extracted parameters and
values. We extracted six parameters like Journey
Class, Gender, Passenger type, Disabled
passenger, Patient, Widow and its associated
values as per Table 4.

As per the Sequence Diagram shown in
Figure 5 (b), the Disabled passenger and Patient
category have multiple selection options. The
multiple selection options are shown using AND
conditional operator in figure 5 (b). It indicates
that for Disabled Passenger and Patient category,
multiple value combinations are selected.

Parameters Journey
class

Gender Passenger type Disabled
Passenger

Patient Widow

Values 1. Sleeper
2. First

1. Male
2.Female

1.Child
2.Adult
3.Senior Citizen

1. NS
2.Mentally retarded
3.Handicapped

1.NS
2. Cancer
3.Heart

1. NS
2. War

Journal of Theoretical and Applied Information Technology
15th November 2021. Vol.99. No 21

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5210

Therefore, All Combinations test suite satisfies
N-wise coverage.

All combination values= ∑ vi value
combinations, where N is the coverage number
(1-way, 2-way,...N-way) and vi is the number of
values of parameter .

Hence, we can calculate all combination
values for Disabled passenger and Patient
parameter as follows:

All combination value (Disabled Passenger) =
{Handicapped, Mentally retarded, Handicapped
and Mentally retarded}

All Combinations value (Patient) = {Cancer,
Heart, Cancer and Heart}

Therefore, values of Disables Passenger and
Patient concession category are increased due to
All Combinations testing techniques. All the
remaining values of concession categories viz.
Journey class, Gender, Passenger type and
Widow are mutually exclusive. Table 8 shows
number of values for each parameter after
applying All Combinations testing technique.

Table 8:- Number of values for parameters using All Combinations testing technique

Hence, total number of test case combinations
are generated = 2x2x3x4x4x2=384 ---------(1)

There are some Infeasible Combinations are
derived as shown in Table 5.

1. Male – Widow infeasible combinations
2. Child- Widow infeasible combinations
These combinations are considered as Not

Applicable (NA). The NA value is assigned to
respective parameter because of infeasible
combinations between parameters and values.
For such kind of test cases, NA and NS value
conflicts to each other. These test cases are
considered as duplicate test cases. The test cases
containing NS value are removed as per below
calculations.

1. Male – Widow infeasible combinations
Total number of duplicate test combinations

because of Male- Widow infeasible
combinations

= 2 (Journey Class) x 1(Gender) x 2
(Passenger type except Child) x 4 (Disabled
passenger) x 4 (Patient) x 1(Widow) = 64
--------- (2)

2. Child- Widow infeasible combinations
Total number of duplicate test combinations

because of Child- Widow infeasible
combinations

= 2 (Journey Class) x 2 (Gender) x 1
(Passenger type - Child) x 4 (Disabled
passenger) x 4 (Patient) x 1(Widow) = 64
------------------(3)

Total number of duplicate test combinations
generated because of Infeasible Combinations

= 64+64 (From Eq.2 and 3) = 128 -----------
(4)

Total number of distinct test cases generated
= 384-128 (from Eq. 1 and 4) = 256

Hence, total 256 test cases are generated from
Sequence Diagram using CLOTCG technique
automatically.

The percentage of concession is applied based
on combinatorial logic oriented rules mentioned
in Table 4 and 7. The test cases generated using
the proposed CLOTCG is shown in Table 9.

Table 9:- Test cases generated using CLOTCG

Parameters Journey
class

Gender Passenger
type

Disabled
Passenger

Patient Widow

No. of Values 2 2 3 4 4 2

TC
No.

Journey
class

Gender Passenger
type

Disabled passenger Patient Widow Expected
concession (%)

1 First Male Child - - NA 50
2 First Male Child - Cancer NA 77.5

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
256 Sleeper Female Senior

Citizen
Handicapped and
Mentally retarded

Cancer
and

Heart

War 100

Journal of Theoretical and Applied Information Technology
15th November 2021. Vol.99. No 21

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5211

These test cases also cover constraints of
parameter-value combinations as per Table 6.
The ‘NA' value in the test case indicates all
infeasible options. All combinations testing
technique is good for the smaller size of
parameter and values. If the number of
parameters and values is large, it is a very
tedious task to generate and test those exhaustive
test cases.

4. RESULTS AND DISCUSSIONS

The authors presented All Combinations
testing technique to generate combinatorial
logic-oriented test cases from UML Sequence
Diagram. These test cases will aid in improving
the testing efficacy. All Combinations testing
technique gives a better result for UML
Sequence Diagram. It is found that generated
automated and manual test cases are matching

the same with each other. The Input Size of
Table 8 indicates the number of parameters and
values extracted from the UML Sequence
Diagram.

CA (212131414121) input size indicates 6
concession categories (parameters) having some
number of concession types (values). Out of 6
parameters, 3 parameters are having 2 values
each, 1 parameter is having 3 values and 2
parameters are having 4 values each. CA
(223242151) input size indicates 7 concession
categories (parameters) having some number of
concession types (values). Out of 7 parameters, 2
parameters are having 2 values each, 2
parameters are having 3 values, 2 parameters are
having 4 values and 1 parameter is having 15
values.

The result of the proposed technique is shown
in Table 10.

Table 10:- Results of proposed techniques

Figure 8. Result comparison of Manual method
and proposed CLOTCG method

Figure 8 shows the result comparison of number
of test cases generated by Manual method and
proposed CLOTCG method. It shows that
proposed method gives the 100% accuracy.

4.1 Findings

Generating a large number of test cases is a
very laborious, time-consuming and costly task

by using manual method. In addition, during

manual test case generation, some erroneous test

cases may be generated. The test cases are

currently designed by the test designers from
UML artefacts based on their experience with the
manual testing approach.

The authors of this paper found a research gap
for generating combinatorial test cases
automatically from UML artefacts. An automatic
test case generation is essential to avoid
erroneous test cases generated using the manual
testing approaches. Moreover, automatic
generation of test cases can reduce testing cost
by eliminating costly manual test case
generation. Thus, it reduces the time and cost of
testing significantly.

The automatic test case generation from UML
diagrams will help to identify problems in the
early stages of SDLC. The test cases generated
from the UML Sequence Diagram using the
proposed CLOTCG are 100% accurate. The
accuracy percentage shows a comparison
between manually generated test cases and
automated generated test cases using the
CLOTCG. The authors claimed that the
proposed testing technique gives reliability and
efficiency ultimately.

Sr.
No.

Input Size
No. of Test cases

generated manually
No. of Test cases

generated by CLOTCG
Accuracy

(%)
1 CA(212131414121) 256 256 100
2 CA(223242151) 2208 2208 100

Journal of Theoretical and Applied Information Technology
15th November 2021. Vol.99. No 21

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5212

4.2. Extension to Existing Techniques

Many researchers proposed different
approaches like Formal specification-based
approach, Graphical representation approach,
Heuristic approach, Direct UML specification
processing approach, Hybrid behaviour model
approach and Concurrent model approach to
generate test cases from UML Sequence
Diagram. These approaches are used to generate
the test cases for functional testing of the
software systems.

There is a need to provide combinatorial
logic-oriented test cases for the systems that use
combinatorial logic, such as reservation systems,
college entrance systems, concession
management systems, and so on. The authors of
this paper suggested a novel method for
generating combinatorial logic-oriented test
cases from UML Sequence Diagrams.

The proposed technique generates
combinatorial test cases based on parameters,
values, and constraints extracted from Sequence
Diagram, whereas the existing techniques
generate test cases based on paths, messages,
sequences, etc.

4.3 Limitations of the Proposed Technique

UML represents software requirements
specification in a graphical or diagrammatic way.
Sometimes, it is challenging to represent all
these requirements using UML diagrams. Some
diagram shows behavioural, creational, structural
views of the requirements. Any single diagram
cannot capture all the requirements of software
systems. Hence, it is a limitation of the
generation of test cases from one of the UML
diagrams. It is infeasible and challenging to
generate combinatorial test cases for complex
Sequence Diagrams.

Only Sequence Diagram cannot capture all
the requirements of the software system.
Therefore, some requirements might get missed
out and subsequently, those test cases will not
get generated. As a result, combinatorial test
cases must be built from other UML diagrams
such as Activity Diagram, Use Case Diagram,
and State Machine Diagram in order to capture
all requirements and generate test cases.

5. CONCLUSION

Using the manual testing technique for
generating a large number of test cases is an
extremely time-consuming, labor-intensive, and

expensive task. Furthermore, certain incorrect
test cases may be generated during manual test
case generation. The test cases are currently
being created by the test designers using UML
artefacts and their manual testing experience.
The authors found that there is need to generate
combinatorial test cases automatically from
UML artefacts to avoid erroneous test cases
which are generated using the manual testing
approaches.

In this paper, the authors proposed CLOTCG
technique to generate combinatorial logic-
oriented test cases from Sequence Diagram
automatically. The authors presented a multi-
stage algorithm to extract parameters, values and
constraints from UML Sequence Diagram. The
guard conditions of various combination
fragments and the messages in synchronous
message calls of the Sequence Diagram are used
to identify these parameters, values, and
constraints. The appropriate rules are applied for
various semantic constructs, guard condition,
synchronous message calls, and constraints of
Sequence Diagram.

CMSS of Railway Reservation System of
Indian Railways is presented as a case study to
demonstrate the proposed technique. The authors
generated automated test cases using the
proposed Combinatorial Logic Oriented Test
Case Generator for the case study and compared
those test cases with manually generated test
cases. It is found that generated automated and
manual test cases are matching the same with
each other.The authors claimed that the proposed
testing technique gives reliability and efficiency
completely.

In the future, combinatorial logic-oriented test
cases can be generated to capture all the
requirement specifications from other UML
diagrams like Activity Diagram, State Chart
Diagram, etc.

REFERENCES

[1] Hartmann, J., Vieira, M., Foster, H. and
Ruder, A., 2005. A UML-based approach to
system testing. Innovations in Systems and
Software Engineering, 1(1), pp.12-24.

[2] Briand, L. and Labiche, Y., 2002. A UML-
based approach to system testing. Software
and Systems Modeling, 1(1), pp.10-42.

[3] Nebut, C., Fleurey, F., Le Traon, Y. and
Jezequel, J.M., 2006. Automatic test
generation: A use case driven

Journal of Theoretical and Applied Information Technology
15th November 2021. Vol.99. No 21

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5213

approach. IEEE Transactions on Software
Engineering, 32(3), pp.140-155.

[4] Lott, C., Ashish Jain, and S. Dalal. "Modeling
requirements for combinatorial software
testing." In ACM SIGSOFT Software
Engineering Notes, vol. 30, no. 4 (2005), pp.
1-7.

[5] Grindal, Mats, Jeff Offutt, and Sten F. Andler.
"Combination testing strategies: a survey."
Software Testing, Verification and
Reliability 15, no. 3 (2005): 167-199.

[6] Nie, Changhai, and Hareton Leung. "A survey
of combinatorial testing." ACM Computing
Surveys (CSUR) 43, no. 2 (2011): 1-29.

[7] Kuhn, D. Richard, Renee Bryce, Feng Duan,
Laleh Sh Ghandehari, Yu Lei, and Raghu N.
Kacker. "Combinatorial testing: Theory and
practice." In Advances in Computers, vol. 99,
pp. 1-66. Elsevier, 2015.

[8] R. Kuhn, Yu Lei and Raghu Kacker,
“Practical Combinatorial Testing: beyond
Pair wise”, IEEE Computer Society - IT
Professional, Vol. 10, No. 3 (2008).

[9] D. Richard Kuhn, Raghu N. Kacker and Yu
Lei, “Practical combinatorial testing”, NIST
Special Publication, (2010).

[10] Shirole, M. and Kumar, R., 2013. UML
behavioral model based test case generation:
a survey. ACM SIGSOFT Software
Engineering Notes, 38(4), pp.1-13.

[11] F. Basanieri, A. Bertolino, and E. Marchetti,
“The Cow Suite Approach to Planning and
Deriving Test Suites in UML Projects," in
Proceedings of the 5th International
Conference on The Unified Modeling
Language, UML '02, pp. 383-397, Springer-
Verlag, 2002.

[12] S. Ali, L. Briand, H. Hemmati, and R.
Panesar-Walawege, “A systematic review of
the application and empirical investigation of
search-based test case generation," IEEE
Transactions on Software Engineering, vol.
36, no. 6, pp. 742 -762, 2010.

[13] Subhash Tatale, Dr. V. Chandraprakash. " A
Survey on Test Case Generation using
Sequence & Activity diagrams and a
Feasibility Study to generate Combinatorial
Logic Oriented Test Cases", International
Journal of Next-Generation Computing -
Special Issue, Vol. 12, No. 2, April 2021.
pp.254-269

[14] Panthi Vikas and Durga Prasad Mohapatra.
"Automatic test case generation using

sequence diagram." In Proceedings of
International Conference on Advances in
Computing, pp. 277-284. Springer, New
Delhi, 2013.

[15] Zhang Chen, Zhenhua Duan, Bin Yu, Cong
Tian, and Ming Ding. "A test case generation
approach based on sequence diagram and
automata models." Chinese Journal of
Electronics 25, no. 2 (2016): 234-240.

[16] Rhmann Wasiur, and Vipin Saxena. "Test
Case Generation from UML Sequence
Diagram for Aadhaar Card Number based
ATM System." system 11, no. 4 (2016).

[17] Dehimi Nour El Houda, and Farid Mokhati.
"A Novel Test Case Generation Approach
based on AUML sequence diagram." In 2019
International Conference on Networking and
Advanced Systems (ICNAS), pp. 1-4. IEEE,
2019.

[18] Samuel Philip and Rajib Mall. "A Novel Test
Case Design Technique Using Dynamic
Slicing of UML Sequence Diagrams." e-
Informatica 2, no. 1 (2008): 71-92.

[19] Swain, Santosh Kumar, and Durga Prasad
Mohapatra. "Test case generation from
Behavioral UML Models." International
Journal of computer applications 6, no. 8
(2010): 5-11.

[20] Swain Ranjita Kumari, Vikas Panthi,
Prafulla Kumar Behera, and Durga Prasad
Mohapatra. "Slicing-based test case
generation using UML 2.0 sequence
diagram." International Journal of
Computational Intelligence Studies 2 3, no.
2-3 (2014): 221-250.

[21] Dhineshkumar, M. "An approach to generate
test cases from sequence diagram." In 2014
International Conference on Intelligent
Computing Applications, pp. 345-349. IEEE,
2014.

[22] Jena Ajay Kumar, Santosh Kumar Swain,
and Durga Prasad Mohapatra. "Test case
creation from UML sequence diagram: a soft
computing approach." In Intelligent
Computing, Communication and Devices,
pp. 117-126. Springer, New Delhi, 2015.

[23] Beyer, Dulz and Fenhua Zhen, "Automated
TTCN-3 test case generation by means of
UML sequence diagrams and Markov
chains," 2003 Test Symposium, Xi'an, China,
2003, pp. 102-105.

[24] Costa, L.T., Zorzo, A.F., Rodrigues, E.M.,
Silveira, M.B. and Oliveira, F.M.,
“Structural Test Case Generation Based on

Journal of Theoretical and Applied Information Technology
15th November 2021. Vol.99. No 21

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5214

System Models”. In Proceedings of the 9th
International Conference on Software
Engineering Advances pp. 276-281, 2014.

[25] Khandai Monalisha, Arup Abhinna Acharya
and Durga Prasad Mohapatra. "A novel
approach of test case generation for
concurrent systems using UML Sequence
Diagram." In 2011 3rd International
Conference on Electronics Computer
Technology, vol. 1, pp. 157-161. IEEE, 2011.

[26] Monalisa Sarma Debasish Kundu Rajib Mall.
"Automatic test case generation from UML
sequence diagrams." In 15th International
Conference on Advanced Computing and
Communications, pp. 60-65. 2007.

[27] Sarma Monalisa, and Rajib Mall. "Automatic
test case generation from UML models."
In 10th International Conference on
Information Technology (ICIT 2007), pp.
196-201. IEEE, 2007.

[28] Mani P., and M. Prasanna. "Test case
generation for embedded system software
using UML interaction diagram." Journal of
Engineering Science and Technology 12, no.
4 (2017): 860-874.

[29] Dr.Sasi BhanuJ, Dr.Baswaraj D, Sunitha
Devi Bigul, Dr. JKR Sastry, Generating Test
cases for Testing Embedded Systems using
Combinatorial Techniques and Neural
Networks based Learning Model,
International Journal of Emerging Trends in
Engineering Research, Volume 7, No. 11
November 2019, pp 417-429.

[30] J. Sasi Bhanu, M. Lakshmi Prasad, Dr. JKR
Sastry, A Combinatorial Particle Swarm
Optimization (PSO) Technique for Testing
an Embedded System, Jour of Adv Research
in Dynamical & Control Systems, Vol. 10,
07-Special Issue, 2018, pp. (321-336).

[31] Mudarakola, Lakshmi Prasad, J. K. R.
Sastry, and V. Chandra Prakash."Testing
embedded systems using test cases generated
through combinatorial techniques."
International Journal of Engineering &
Technology 7, no. 2.7 (2018): 146-158.

[32] M. Lakshmi Prasad, Dr. J Sasi Bhanu, , Dr. J.
K. R. Sastry, Combinatorial Neural Network
Based a Testing of an Embedded System,
Jour of Adv Research in Dynamical &
Control Systems, Vol. 10, 07-Special Issue,
2018.

[33] M. Lakshmi Prasad, A. Raja Sekhar Reddy,
J.K.R. Sastry, GAPSO:Optimal Test Set
Generator for Pairwise Testing, International

Journal of Engineering and Advanced
Technology (IJEAT) ISSN: 2249 – 8958,
Volume-8 Issue-6, August 2019.

[34] Dr.V.Chandra Prakash, Subhash Tatale,
Vrushali Kondhalkar, Laxmi Bewoor. "A
critical review on automated test case
generation for conducting combinatorial
testing using particle swarm optimization."
International Journal of Engineering &
Technology (UAE), Vol.7, No.3.8, (2018),
pp. 22-28.

[35] V.Chandra Prakash and Kadiyala Priyanka,
2016. “Test Case Generation for Pairwise +
Testing.” Asian Journal of Information
Technology. Vol.15 No.23 (2016), pp.4800-
4805.

[36] Vudatha Chandra Prakash, Sastry K R
Jammalamadaka, and Bala Krishna Kamesh
Duvvuri. "Automated generation of Test
cases for testing critical regions of embedded
systems through Adjacent Pair-wise Testing."
International Journal of Mathematics and
Computational Methods in Science &
Technology Vol.2, No.2, (2012), pp. 10-15.

[37] Vudatha, Chandra Prakash, Sateesh
Nalliboena, Sastry Kr Jammalamadaka, Bala
Krishna Kamesh Duvvuri, and L. S. S.
Reddy. "Automated generation of test cases
from output domain of an embedded system
using Genetic algorithms." 3rd International
In Electronics Computer Technology
(ICECT), IEEE (2011), vol. 5, pp. 216-220.

[38] Vudatha, Chandra Prakash, Sateesh
Nalliboena, Sastry KR Jammalamadaka, Bala
Krishna Kamesh Duvvuri, and L. S. S.
Reddy. "Automated generation of test cases
from output domain and critical regions of
embedded systems using genetic algorithms."
2nd National Conference on Emerging
Trends and Applications in Computer
Science, pp. 1-6. IEEE, 2011.

[39] Ramgouda Patil, V Chandra Prakash,
“Neural Network Based Approach for
Improving Combinatorial Coverage in
Combinatorial Testing Approach”, Journal of
Theoretical and Applied Information
Technology, Vol.96. No 20 (2018),pp. 6677-
6687

[40] Gouda, Ram, and V. Chandraprakash.
"Optimization Driven Constraints Handling
in Combinatorial Interaction Testing."
International Journal of Open Source
Software and Processes (IJOSSP) 10, no. 3
(2019): 19-37.

Journal of Theoretical and Applied Information Technology
15th November 2021. Vol.99. No 21

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5215

[41] Ramgouda, P., and V. Chandraprakash.
"Constraints handling in combinatorial
interaction testing using multi-objective crow
search and fruitfly optimization." Soft
Computing 23, no. 8 (2019): 2713-2726.

[42] Satish Preeti, Arinjita Paul, and Krishnan
Rangarajan. "Extracting the combinatorial
test parameters and values from UML
sequence diagrams." In 2014 IEEE Seventh
International Conference on Software
Testing, Verification and Validation
Workshops, pp. 88-97. IEEE, 2014.

[43] Esfandyari, Sajad, and Vahid Rafe.
"Extracting Combinatorial Test parameters
and their values using model checking and
evolutionary algorithms." Applied Soft
Computing 91 (2020): 106219.

[44] Subhash Tatale, Dr. V. Chandraprakash,
"Enhancing Acceptance Test Driven
Development Model with Combinatorial
Logic", International Journal of Advanced
Computer Science and Applications
(IJACSA), Vol. 11, No. 10, 2020. Pp.268-
278

Journal of Theoretical and Applied Information Technology
15th November 2021. Vol.99. No 21

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5216

Figure 1. Sequence Diagram of the revised CMSS

