
Journal of Theoretical and Applied Information Technology
15th November 2021. Vol.99. No 21

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5158

TOWARDS A CONTEXT-DRIVEN TRANSACTIONAL
SERVICE SELECTION MECHANISM IN UBIQUITOUS AND

PERVASIVE ENVIRONMENTS

1ETTAZI WIDAD, 2RIANE DRISS, 3NASSAR MAHMOUD

IMS Team, ADMIR Laboratory, ENSIAS, Mohammed V University of Rabat, Morocco

1widad.ettazi@um5s.net.ma, 2riane.driss@gmail.com, 3nassar@ensias.ma

ABSTRACT

Most prominent techniques and selection algorithms only support QoS settings for application services.
However, the software, hardware, and network infrastructures underlying services and users application
have a significant impact on the validation of transactional services. Additionally, users may have varying
transactional requirements throughout the lifecycle of a service composition. Therefore, selection
algorithms must take into account the context requirements and users transactional needs when selecting
services. This has led us to explore the trail of a service selection mechanism based on a service description
enriched by functional and transactional requirements, and context information. We propose a context-
driven selection of transactional services by introducing a new selection algorithm CT2S based on a
semantic matching mechanism. More precisely, we are interested in studying the response time of our
CT2S algorithm vis-a-vis the rapidity requirements in pervasive environments.

Keywords: Context-Awareness, Transactional Service, Semantic Matching, Selection Mechanism, Service
Discovery.

1. INTRODUCTION

With the advent of mobile computing, the
dynamic nature of application execution context
induces multiple transactional needs during the
lifecycle of a transaction. The transfer of funds
between bank accounts and the booking of airline
seats and hotel rooms are the classic examples of
transactional applications. The spectrum of this
kind of applications has quickly expanded to
include CAO, e-commerce, workflow management,
etc.

The proliferation of these paradigms has led to an
evolving subject area known as pervasive
computing. The latter is an intuitive evolution of
computing paradigms driven by the wide adoption
of mobile devices and wireless networks. Systems
are now expected to adjust to user’s requirements
and customize their services to user’s needs.
Nevertheless, supporting user’s tasks from a
functional point of view is not enough to gain his
satisfaction. In pervasive and ubiquitous
environments, transactions must be able to adjust to
systems that are not necessarily in a perfect
environment, for example, that don’t require a lock
of their resources and do not care if transactions run
for short periods of time or longer periods. These
systems will operate in a flexible, dynamic
environment, but less reliable and that presents

contextual requirements (i.e., requirements and
preferences expressed or implied by the user,
connectivity, bandwidth, etc.) that hinder the
transactions execution [1], [2] and [3].

Service selection is an essential condition for the
composition of services in so-called pervasive
environments. Despite the multitude of research
works on selection algorithms, to our knowledge,
there are no algorithms dealing with the major
issues imposed by pervasive environments on the
selection of transactional services. In addition, the
context-driven selection of services exhibiting
transactional properties raises several challenges.
CATS (Context-Aware Transactional Service)
composition in pervasive environments generally
involves dynamic execution contexts, service
unavailability and varying user requirements [4].
Thus, the selection techniques of such services must
be designed to be proactive. Indeed, context-aware
computing envisages satisfying user tasks on the
fly, therefore, the time available for the selection
and composition of services is limited compared to
the complexity of requests processing. Existing
algorithms developed for service selection need to
be reviewed and possibly revisited. Service
selection according to context requirements is
already discussed in the literature [5]. However,
prospective researches are primordial to fit
pervasive environments particularities (e.g.

Journal of Theoretical and Applied Information Technology
15th November 2021. Vol.99. No 21

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5159

resource limitations, device mobility, wireless
network connectivity), the characteristics of
transaction processing (e.g. timeout, response time)
and the transactional needs of users. Furthermore
most of the existing service selection algorithms are
developed, solely, based on the context information
delivered by service providers. Additionally, at run
time, the current context may fluctuate with respect
to the provided context due to changes that may
occur in the pervasive environment (e.g., user
mobility, service unavailability). To deal with this
issue, selection algorithms must consider the
context captured at run-time. This requires
monitoring the context of all candidate services just
before implementing the services, which is difficult
to achieve considering the large number of services
to be analyzed in order to accomplish the user task.
Withal, the context-aware composition of services
exhibiting transactional properties poses several
challenges. A major challenge is the transactional
behavior of candidate services which is subject to
perpetual changes while the composition is running.
Selection strategies must also take into account the
transactional properties of services by adjusting
them in relation to the execution context. Great
efforts have been concentrated on semantic research
and context adaptation, particularly adaptation to
the location and the used devices. In the recent
years, we see the limitations of these approaches,
especially the user overload due to false-positive.
Indeed, users are offered several implementations
for the same service, without having the necessary
background to understand these implementations,
which is detrimental to the transparency of these
systems, notably for services that manifest
transactional properties. The novelty of our
approach is to offer the service that meets user’s
needs, without being forced to understand details
about the implementation or the constraints of the
used devices.

To deal with the aforementioned issues, a
selection process is proposed in order to hide the
complexity of the implementation services in a
heterogeneous and dynamic environment, and
consequently to achieve the promised transparency
and the desired efficiency of pervasive and
ubiquitous environments. We argue that better
consideration of the user's transactional requirement
can lead to a better understanding of actual service
usage, which in turn can improve the accuracy of
the selected services. In addition, contextual
information plays a central role in this service
selection process because it influences the choice of
the best strategy to meet the transactional needs of
users. The service selection mechanism is based on

a new service description enriched by functional
and transactional requirements, and context
information. The concept of requirement is used to
expose transactional services and to implement a
user-centric view in a given context. We propose a
context-driven selection of transactional services by
introducing a new selection algorithm CT2S based
on a semantic matching mechanism.

This article is organized as follows. The section
II and section III will be devoted to review some
basic concepts and related work. In section IV, we
introduce the proposed service description by
extending the OLW-S profile with transactional and
contextual information. Section V details the
proposed context-driven selection mechanism for
transactional services. Section VI presents
encouraging experimental results demonstrating our
proposition. Results discussion is carried out in
section VII. Finally, we conclude in the section
VIII.

2. BASIC CONCEPTS

We present in this part some backgrounds related
to context-awareness and transactional concepts.

2.1 Context-Awareness
Context-aware computing appeared since the 90s

driven by the work of [6]. This term refers to
systems capable of perceiving a set of conditions of
use in order to adjust their behavior in terms of
providing information and services. According to
[7], the definitions ascribed to a context-aware
system do not include all types of context-aware
systems. Indeed, under these definitions, a system
that simply collects the context in order to provide
it to an application is not considered a context-
aware system. Thus, the authors believe that “a
system is context-aware if it uses context to provide
relevant information and services to the user, where
relevance depends on the task requested by the
user”.

2.2 Transactional Service
We use the term Transactional Service (TS) to

indicate a sequence of activities performed by a
user in order to carry out a specific task or fulfill a
specific goal by means of a service-oriented
platform. In a context-aware transactional service,
the execution of operations and the context-
awareness are combined. The resulting complexity
of CATS requires them to be designed prior to
being implemented. Disregarding the context-
awareness aspect, during the design process of
transactional services, results in systems with low
accommodation and inappropriate behaviors.

Journal of Theoretical and Applied Information Technology
15th November 2021. Vol.99. No 21

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5160

3. LITERATURE REVIEW

In recent years, great research efforts have been
carried out on the subject of service selection.
Indeed, the relevance of a service selection
mechanism depends on how its matching algorithm
allows going beyond what is already provided by
standard mechanisms such as UPnP, Jini, etc. This
subject was largely treated according to a semantic
vision. Different works such as [8], [9] and [10]
concentrated their efforts on semantic matching
between the service capabilities and the user
request. These works served as a basis for other
works such as the researches in the field of context-
aware service selection [11], [12] and [13]. These
authors take into consideration the service context
and the user's current context when selecting the
most appropriate service. In addition, other works
such as [14] and [15], following a TQoS approach
have proposed service discovery mechanisms
according to transactional requirements that take
into consideration the transactional profile that a
service is able to satisfy during the discovery
process. First researches for semantic service
discovery focused on the matching between inputs
and outputs to select the most relevant service
according to a given request [9], [10]. These
authors propose semantic matching mechanisms
presented in [8] and [10] and hybrid matching
mechanisms in [9] based on the capabilities
signatures provided by services. These mechanisms
include the identification of subsumption relations
between the concepts describing the service’s
inputs and service’s outputs [16]. The relations are
similar to inheritance relations and allow binding
specific concepts to general ones, thus exploring the
hierarchies between concepts in a given ontology.
Context-awareness is the basis for different service
discovery approaches [11], [12] and [17]. These
approaches are mostly based on semantic
descriptions of services. The context-awareness is
one of the essential characteristics of pervasive
systems, therefore, these approaches are particularly
relevant for pervasive and ubiquitous computing,
since they must adapt their service offers to the
environment and the execution context. Reference
[11] proposed a context-oriented approach for web
service selection. The authors consider that the user
and the service have contextual requirements for
them to work properly. A user may have
requirements related to the service context that he’s
looking for (e.g., availability, location, etc.), as well
as the context provided by the execution
environment (e.g., wireless connection, etc.). In
return, a service may request contextual information
about the user (e.g., location, terminal capabilities,

etc.) and the environment (e.g., network, etc.).
Similar to previous approaches, Reference [12]
developed a semantic and service-oriented
middleware, called EASY for the discovery and
composition of services in a pervasive environment.
The contribution includes the EASY-L language
based on OWL, for unambiguous semantic
specification of functional and non-functional
service properties, and EASY-M (EASY-Matching)
which represents a set of compliance relations for
services matching in terms of their functional and
non-functional properties. Reference [17] proposed
a service selection mechanism based on context
matching, which takes into account the uncertainty
of context information when classifying service
variants. This mechanism is based on OWL-S
service description enriched with contextual
properties. Reference [18] introduced a model
describing the geographic space of a system to
differentiate a set of execution contexts. Its main
purpose is to help and guide designers to
characterize possible evolutions in systems mobility
during its future execution. The work presented in
[19] used model transformation to generate a
semantic representation of the context. The services
are described by extending the OWL-S profile with
contextual conditions. None of the previously cited
works combines the notion of context with the
concept of transactional requirements, unlike [14]
and [15] and who have noted the importance of
exploiting the close relation between these two
concepts in the service discovery process.
Reference [14] developed a framework for reliable
replacement of transactional services driven by QoS
parameters. The framework takes into consideration
the QoS parameters of the reselection service, the
transactional risk and the compensation cost during
the replacement process. Reference [15] proposed a
TQoS approach for the selection of services
according to their transactional requirements, QoS
characteristics and user preferences. The selection
is made based on user needs in terms of
transactional requirements and QoS features.

We believe that these approaches are in fact
complementary, and that such an evolution can only
truly be achieved by a combination of these
approaches. To our notice, only a service selection
mechanism based on both context and the
requirement of the user is able to answer questions
such as “why a service is useful in a given
context?” or “under what circumstances emerges
the need of a service?”. We are convinced that the
context cannot be reduced to simple input or output
parameters. Not only does it influence the execution
of the service, but it characterizes the service itself

Journal of Theoretical and Applied Information Technology
15th November 2021. Vol.99. No 21

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5161

and the transactional properties displayed by the
service. According to our analysis, none of the cited
works offers a mechanism for selecting services
that actually combine and harness context and
transactional profile. This selection mechanism is
essential in user-centric pervasive and ubiquitous
environments, which must be characterized by their
adaptability to the context and their understanding
of users’ needs.

4. CATS OWL-SRC: ENRICHED
SEMANTIC SERVICE DESCRIPTION FOR
TRANSACTIONAL SERVICE DISCOVERY

In this section, we introduce the proposed service
description from transactional and contextual
perspectives.

4.1 Transactional Service Description
We consider that transactional services are

running in a given context, but also that this type of
service is supposed to satisfy transactional
requirements of users. However, the service
description used commonly does not necessarily
represent both aspects. Thus, we propose to enrich
the service description by introducing a semantic
description of transactional services that merges
both user’s functional and transactional
requirements which the services are supposed to
satisfy, and the context in which these requirements
are expressed and that can influence the execution
of this type of service. In order to provide a
semantic description, a rich service description
language is necessary.

OWL-S [20] describes services in three
interdependent sub-ontologies. The service profile
exposes the service interface for service discovery.
The process model describes the composition of the
service, while the service grounding indicates how
to invoke a service. The proposed extension
essentially concerns the service profile. A service is
no longer just a set of operations. A service must
also correspond to a requirement (i.e., functional
and transactional) that emerges in a given context
(refer to figure 1).

From a requirement perspective, a user expresses
a particular requirement when invoking a service.
The service is offered to meet this requirement.
Therefore, a requirement becomes central when
defining the service. We propose to enrich the
service description with the associated
requirements. We extend the service profile in
OWL-S description by the requirement that a
transactional service can meet.

This extension is achieved by integrating a new
“Requirement” parameter that characterizes the
service profile elements. It is formulated according
to a specific model, in which a “Requirement” is
represented by a function, a resource and a
transaction behavior. Figure 2 illustrates this
extension. A service is associated with the “book
ski session” requirement, which is described
according to the “Function-Resource-Transaction
behavior” model, using the extended OWL-S
elements.

4.2 Context Description
Contextual information helps to fully understand

user requirements. We consider that user
requirements emerge in a particular context that
gives them meaning. Conversely, context
description provides valuable insight when it is
associated with a requirement. Thus, we propose to
enrich the OWL-S description with contextual
information that characterizes the transactional
service

On the one hand, we describe the context with
reference to the conditions under which it is most
appropriate to invoke the service. This description
represents the context in which the requirement is
expressed, and the service is intended to be entirely
useful to the user. On the other hand, we describe
the context in which a service can be executed. It
refers to the conditions under which a service is
running by the service provider. These two context
descriptions represent the environment descriptor
associated with a transactional service.

.

Figure 1: Service Requirement Description in OWL-S

Journal of Theoretical and Applied Information Technology
15th November 2021. Vol.99. No 21

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5162

Figure 2: Transactional Service Description by Extending the Service Profile in OWL-S

Figure 3 describes the service requirement
metamodel in a given context.

Figure 3: Service Requirement Metamodel in a

Particular Context

As shown in figure 4, the environment descriptor
is stored in an external file.

Based on the study proposed by [21], we enrich
the service profile with the contextdescriptor
attribute, which represents a URL pointing to the
context description file. Such separation is
necessary since the context information is dynamic
and cannot be stored statically in OWL-S
description. Thus, the service provider indicates
that the service is suitable for adult users (line 12-
19) with skill levels 4 to 6 (line 20-24), who are
developing their skiing or snowboarding skills and
exploring the mountains in a location near Ifrane,
Morocco (line 30-39). Figure 4 exhibits the context
description file, referenced by the extended service
profile OWL-SRC shown in figure 2 (line 10). By
referring to this context description in service
profile, the service provider shows that the “book
ski session” requirement associated with this
service is expressed in the context described by the
file displayed in figure 4, considered as a
prerequisite for the execution of this service.

Journal of Theoretical and Applied Information Technology
15th November 2021. Vol.99. No 21

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5163

Figure 4: Context Description File Referenced by Service Profile OWL-SRC

5. CONTEXT-DRIVEN TRANSACTIONAL
SERVICES SELECTION MECHANISM

In this section, we introduce a new service
selection mechanism based on a service description
enriched by functional and transactional
requirements and context information. The concept
of requirement is used to expose transactional

services and to implement a vision focused on user
requirements in a given context.

5.1 CT2S Overview
We propose a context-driven transactional

services selection based on a semantic matching
algorithm. This matching is performed in a two-step
process illustrated in figure 5.

Journal of Theoretical and Applied Information Technology
15th November 2021. Vol.99. No 21

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5164

Figure 5: Context-Driven Transactional Service Selection Mechanism

First, the selection process proceeds to establish a
correspondence between the user's requirement and
the requirement that the transactional service allows
to satisfy (step 1.1). Second, it matches the service
environment descriptor with the current context of
the user (step 1.2). Finally, it calculates the
similarity degree between the user's request and the
provided service, and adds the service and its
calculated score in a list (step 1.3). Then, from the
list of transactional services, the algorithm select
the service with the highest similarity degree (step
2). The transactional service score represents the
similarity degree of a provided service according to
user's requirement and his current context.

Figure 6 shows the proposed selection algorithm.
For each transactional service, the algorithm
calculates the matching score TSscore between the
user's request and the service (line 6-13). First, it
calculates the requirement matching score Reqscore
between user requirement ReqU and service
requirement ReqS (line 9). As we mentioned above,
the requirement expresses the user's requirements
that are to be satisfied by the system through his
task. It consists of three main elements: Function
(Fc), Resource (Rs) and Transaction behavior (Tb).
The Function element exposes the action allowing
the task to be fulfilled.

The Resource element represents either the
object existing before the accomplishment of the
task, or the result created by the action allowing the
realization of the Function element. Thus, to define
the similarity degree between the user's requirement
ReqU and the service requirement ReqS, the
algorithm calculates: (i) the similarity degree

 Figure 6: Context-Driven Transactional Service
Selection Algorithm CT2S
between the user’s Resource elements and those of
the service (respectively RSU and RSS), (ii) the
similarity degree between the user’s Function
elements and those of the service (respectively FcU
and FcS), (iii) the similarity degree between the
user’s Transaction behavior elements and those of
the service (respectively TbU and TbS), (iv) the

Journal of Theoretical and Applied Information Technology
15th November 2021. Vol.99. No 21

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5165

Requirement Matching Score representing the sum
of the respective matching scores of Function,
Resource and Transaction behavior elements. Once
the requirement has been matched, the algorithm
proceeds to context matching, in which Cscore is
calculated based on the matching between the user's
current context and the context descriptors
established by service description (line 11). The
two scores (i.e., Reqscore and Cscore) are then used to
calculate the final service score TSscore (line 13).
These two correspondences are detailed in the
following sections.

5.2 Requirement Matching
Requirement Matching is based on the use of

ontologies, semantic matching and similarity
degree. With regard to the formulation of the

requirement, the Requirement Matching is specially
based on the correspondence of Function, Resource
and Transaction behavior elements. Thereby, a
Function element ontology, a Transaction behavior
element ontology and a domain-specific ontology
representing the possible Resource elements in a
specific domain are utilized. The similarity degree
is the distance calculated on the basis of the
semantic link between two concepts in a given
ontology. Hence, the Requirement Matching is
calculated based on three relations, ResourceMatch,
FunctionMatch, and TransactionbehaviorMatch,
used to define the RequirementMatch relation
between user’s requirement ReqU = <FcU, RsU,
TbU> and service’s requirement ReqS = <FcS, RsS,
TbS> as shown in the equation (1):

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑀𝑎𝑡𝑐ℎ(𝑅𝑒𝑞 , 𝑅𝑒𝑞ௌ) =

⎩
⎪
⎨

⎪
⎧

∀ 𝐹𝑐 , ∃ 𝐹𝑐ௌ 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑐ℎ(𝐹𝑐 , 𝐹𝑐ௌ)
𝐴𝑛𝑑

∀ 𝑅𝑠 , ∃ 𝑅𝑠ௌ 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑡𝑐ℎ(𝑅𝑠 , 𝑅𝑠ௌ)

 𝐴𝑛𝑑
∀ 𝑇𝑏 , ∃ 𝑇𝑏ௌ 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑀𝑎𝑡𝑐ℎ(𝑇𝑏 , 𝑇𝑏ௌ)

(1)

5.2.1 Resource matchning
The ResourceMatch relation compares the

concepts defined in a domain-specific ontology,
depending on the resource required by the user RsU
and the resource provided by the service RsS. The
evaluation of the correspondence between a
required resource and a provided resource is
generally based on a hierarchy of subsumption used
to determine which of the provided concepts
corresponds to a required concept. In order to
achieve such a correspondence, our algorithm is
based on the semantic matching algorithm proposed
by [8] using the following four levels:
 Exact: the required concept is equivalent to the

provided concept.
 Plug-In: the required concept is included in the

provided concept.
 Subsume: the required concept includes the

provided concept.
 Fail: there is no subsumption between the two

concepts.
Thus, the Resource Matching score is calculated

on the basis of the ResourceMatching function
which takes as input the domain-specific ontology,
the user's Resource element and the service's
Resource element. The result of this function
represents the similarity degree between these two
elements, calculated according to the distance
between them in the domain-specific ontology. The
Resource Matching score is calculated as shown in
Table 1.

Table 1: Resource Matching Score Calculation Grid.

Matching Relation Distance Score
Exact 0 1
Fail -1 0

Plug-In/Subsume d 1/(d+1)
5.2.2 Function matchning

The The FunctionMatch relation is based on the
Function element ontology, which contains a set of
domain-specific functions, their different meanings
and relations. Each relation associates a function
with more general functions or with more specific
functions or with functions which have a common
meaning:
 Exact: the required function is equivalent to the

provided function.
 Synonym: the required function has a common

meaning with the provided function.
 Hyponym: there is a relation of subordination

between the required function and the provided
function with a more general meaning.

 Hypernym: there is a relation of subordination
between the required function and the provided
function with a more specific meaning.

 Fail: there is no relation between the two
functions.

These levels are based on the relation Property
(P, C1, C2), where C1 is a required concept, C2 is a
provided concept, and P is the relation property
between C1 and C2. This relation is defined in the
equation (2):

Journal of Theoretical and Applied Information Technology
15th November 2021. Vol.99. No 21

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5166

𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 (𝑃, 𝐶1, 𝐶2) = ∀ 𝐶1, 𝐶2, ∃ 𝑃: 𝐶1. 𝑃 = 𝐶2
 (2)

Thus, the Function Matching score is calculated
on the basis of the FunctionMatching function
which takes as input the Function element ontology,
the user’s Function element and the service’s
Function element. The result of this function
represents the Function Matching score. This score
is calculated based on the relation between the
user's Function element and the service's Function
element. First, this function determines the property
relation between these two elements. Then, the
Function Matching score is calculated as shown in
Table 2.

Table 2: Function Matching Score Calculation Grid.

Matching Relation Score
Exact 1

Synonym 0.9
Hyponym 0.7
Hypernym 0.5

Fail 0

5.2.3 Transactional behavior matching
In this part, we define the semantics specifying

the transactional properties exposed by the services
that form the ontology of the Transaction behavior
element. Our semantic model is based on the
description of the transactional service defined in
[22]. In this description, a model specifying the
transactional properties of a service is presented.
This model is based on the classification of
computational tasks presented in [23], which
consider three types of transactional properties. An
operation or by extension a service executing a task
can be:
 Compensable: The results produced by the task

can be canceled.
 Re-executable: the task ends successfully after

a finite number of attempts.
 Pivot: The task is neither compensable nor re-

executable.
These transactional properties allow four types of

transactional services to be defined: re-executable,
compensable, re-executable and compensable and
pivot. The TransactionbehaviorMatch relation is
based on the Transactionbehavior element
ontology, which contains a predefined set of
transactional behaviors, their different meanings
and relations. Each relation associates a
transactional behavior with more general
transactional behaviors, more specific transactional
behaviors, and transactional behaviors that have a
common meaning. Thus, we propose to classify the
transactional behavior correspondences according
to the five levels defined in the previous section (cf.
2) Function Matching).

Thus, the Transactionbehavior Matching score is
calculated on the basis of the
TransactionbehaviorMatching function which takes
as input the Transactionbehavior element ontology,
the user’s Transactionbehavior element and the
service’s Transactionbehavior element. The result
of this function represents the Transactionbehavior
Matching score. This score is calculated based on
the relation between the user's Transactionbehavior
element and the service's Transactionbehavior
element. First, this function determines the property
relation between these two elements. Then the
Transactionbehavior Matching score is calculated
as shown in Table 2.

5.3 Context matching
The environment descriptor for a user CU or a

service CS represents a set of context descriptors
which are associated each with a group of a given
context. Each context descriptor aggregates a set of
observable parameters. Each context parameter is
described by a context dimension that characterizes
the property we are observing, and a set of observed
values. In order to define the
ContextDescriptorMatch relation, we consider the
ContextParameterMatch relation which allows
matching individually the different context
parameters representing the user’s context
descriptors (CU = {cj} j> 0) and the service’s
context descriptors (CS = {ci} i> 0). This relation is
presented in the equation (3):

𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑀𝑎𝑡𝑐ℎ (𝐶𝑆, 𝐶𝑈) = ∀ 𝑐𝑖 ∈ 𝐶𝑆
𝑃, ∃ 𝑐𝑗 ∈ 𝐶𝑈

∶ 𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑀𝑎𝑡𝑐ℎ (𝑐𝑖, 𝑐𝑗)

(3)

Context parameters matching proceeds as
follows: for each ci and cj, (i) the context matching
mechanism initiates a matching process between
the service context group ci.context and the user
context group cj.context; if the matching score
between the two context groups is greater than a
setting threshold, then (ii) the context matching
process matches the service context dimension
ci.contextdimension with the user context dimension
cj.contextdimension; if the matching score between
the two context dimensions is greater than a setting
threshold, then (iii) it matches the service context
parameter ci.context with the user context parameter
cj.context, and if the matching score between the
two context parameters is greater than a setting
threshold, it matches the different observed values
one by one. A previous work has developed in
detail the context model ontology used for this
purpose [4]. Context observable parameters can be
classified into several types. Hence, the context
could be represented as a multidimensional space.

Journal of Theoretical and Applied Information Technology
15th November 2021. Vol.99. No 21

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5167

Context observed values are distinguished between
numeric and non-numeric types. In order to
accommodate this diversity and the
multidimensional space representing the context,
the ContextParameterMatch relation identifies the
type of the context parameter value and triggers the
appropriate comparison function accordingly. This
relation evaluates whether the user's context
parameter is similar to the context parameter of the
service based on a specific operator (e.g., equal,
not-equal, between, higher-than, lower-than). Let’s
assume that the context descriptor of a service
displayed that the device bandwidth should be
greater than 12500. Based on the user's current
context, if the captured value of user's device is
actually greater than 12500, we get an exact match.
Thus, the ContextMatching score Cscore (refer to
figure 7 line 11) is calculated as the sum of the
scores of each context parameter, represented as in
the equation (4).

𝐶௦ = 𝑤

,ୀଵ

𝑓(𝑡𝑦𝑝𝑒, 𝑐 , 𝑐)

(4)

6. IMPLEMENTATION AND EVALUATION

The following section analyzes the results of the
experiments that were carried out in order to assess
the semantic matching process guided by
transactional requirement and context.

The service discovery process, which we present
in this article, has been implemented in Java
language. This implementation is organized around
a number of Java interfaces. The
IPersistenceManager interface acts as a facade
between the TransactionalServiceSelector
component and the repository of services and
ontologies allowing access and loading of services
descriptions and ontologies. It maintains service
descriptions and ontologies by offering methods of
writing, reading, adding, deleting, loading, etc. The
selection algorithm is implemented through the
ITSMatcherFaçade interface of C/FRT
Matchmaker component which is responsible for
the matchmaking according to the C/FRT model
(Context/Function-Resource-Transaction behavior).
This component communicates with the context
management component through its
IContextManager façade to initiate the
matchmaking between the user's current context
and context descriptors of the required service.
Then, it selects the most appropriate service which
meets the immediate user’s requirement in his
current context. The TransactionalServiceSelector
component loads through the IPersistenceManager
persistence facade all the semantic descriptions of

available services that are listed in the services
repository [4].

Figure 7: Context Descriptor Procedure

In our experiments, we propose two
matchmaking implementations, corresponding to
two distinct service discovery processes:
 The I/O Matchmaker uses references to input

and output information provided by the user to
proceed with the services selection.

 The C/FRT Matchmaker implements our
service discovery process with support for the
context and the requirement. For this, the
C/FRT Matchmaker uses the OWL-SRC API,
the Jena framework [24] and the Pellet
reasoning engine [25]. For each available
service in the service repository, the C/FRT
Matchmaker calculates a matching score
according to the user’s requirement and context
based on the extended service description. This
class requires two other classes, namely
ContextMatching and RequirementMatching.
The separation between these two elements
enables the evaluation of each component and
analysis of their impact on the selection
mechanism.

Journal of Theoretical and Applied Information Technology
15th November 2021. Vol.99. No 21

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5168

The evaluation of the different service discovery
methods was carried out on a semantic repository
containing an extended set of service descriptions,
taken from the OWL-S service retrieval test
collection OWLS-TC4  which contains the
descriptions of 1083 Web services from 9 domains.
Among the available areas, we have chosen the
services in the field of travel. This domain contains
around 600 descriptions of services, which have
been enriched with contextual information and the
elements representing a requirement. As part of our
experiments, we deployed our service selection
algorithm on a 2.7 GHz Intel Core i7 processor
machine with 8 GB memory.

We have described situations where the user
requirement elements are not described in the
requirement ontologies while there is in the service
repository a set of services capable of satisfying this
requirement in user’s current context (refer to
Table 3). For example, in R4, the Function,
Resource and Transaction behavior elements of the
“Book-up Lodge” requirement may not be described
in the Function, Resource and Transaction
behavior ontologies. However, there is a set of
services capable of meeting this requirement,
including those that meet the “Reserve
Accommodation _with Compensation op”
requirement which is similar to the R4 requirement
(i.e., cancel.hasSynonym = compensate). In R3, the
“fourStarHotel” resource represents a plug-in of the
resource “Accommodation”. Similarly, for R6, the
function “Locate” represents a hyponym of the
function “Acquire”. Thus, transactional services
that meet the “Acquire destination_with
Cancellation op” and “Acquire
Surfingdestination_with Cancellation op”, for
example may not be selected.

The request processing time was measured by
varying the number of services in the services
repository between 10 and 600 services, which is
indicated in figure 8 by the abscissas axis “Service
repository size”. The results show that the response
time of the selection algorithm follows a
polynomial trend. This allows us to assert that the
service selection process is implemented at a
satisfactory scaling-up level. In more detail, figure
8 presents the comparison between the three service
selection algorithms used in this experiment: (i) a
service selection mechanism based only on the
service’s inputs and outputs implemented by the
I/OMatchFacade class), thus representing a purely
functional view; (ii) a contextual service selection
mechanism, based only on the validity context of
the user implemented by the
FuntionResourceMatchFacade and

ContextMatchFacade classes, in which the
transaction behavior driven selection is disabled;
and (iii) the service selection mechanism driven by
the requirement and the context implemented by the
C/FRTMatchFacade class.

Figure 8: Performance Comparison of Service

Matchmaking Mechanisms

7. DISCUSSION

In the experiments that we have carried out, we
analyzed the scalability of service selection
mechanisms through the average processing time,
when we vary the number of services available in
the service repository.

In figure 8, we observe that the selection
mechanism guided by requirement and context (i.e.,
C/FRT Matchmaker) has a higher average response
time than other algorithms. This difference
especially when compared to the I/O algorithm, is
not worrying and remains reasonable. We can
notice that although we have increased the number
of services more than sixty times, the response time
increased only six times. However, the performance
of the C/FRT service selection mechanism depends
on the processing time of the user's transaction
behavior requirements and its current context. For
example, the evaluation of the user situation
described by R5 shown in Table 3, does not take
much response time compared to other requests.
Indeed, in the case of R5 evaluation, the C/FRT
service selection mechanism only processes the
Function and Resource elements and does not
proceed to the Transaction behavior matching, since
the service does not expose transactional properties.
Whereas, in the case of evaluating other requests,
the C/FRT service selection mechanism deals with
requirement and contextual matching, since the
requirement can be satisfied by a set of services.
For instance, the evaluation of R4, R6, R7 and R8
will take significantly longer to execute than other

Journal of Theoretical and Applied Information Technology
15th November 2021. Vol.99. No 21

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5169

requests. This is due to the richness of the
requirement elements in the correspondence
ontologies on the one hand (i.e., several transaction
behaviors which are more specific and/or more
generic than the requirement transaction behavior),
and on the other hand, to the complexity of the
contextual description.

In short, we summarize the characteristics of user
requests in Table 4. Performance metric is
determined in relation to the average execution time
of the service selection algorithm to select the most
appropriate service ranging from ++ (i.e. lower
execution time) to -- (i.e. higher execution time).

The C/FRT algorithm succeeds in selecting all or
almost all of the services that match the user's

requirement and context, and this with a low false-
positive rate. However, this is only valid in the case
of a complete and rich ontologies description and a
proper setting of the matching thresholds in the
service selection algorithm. Hence, the results
analysis demonstrates the reliability of the proposed
service discovery process. We believe that the
proposed mechanism allows selecting the best
service that meets the user's needs, thanks to its
hybrid approach of functional and transactional
behavior, which is more transparent for the user,
and to the use of context that filters the services
which are valid (i.e., the validity context of the
service vis-à-vis the user).

Table 3: Succinct Illustration of Complex Situations of Requirements in a Given Context.

User

Request

Requirement
Current Context

Function Resource Transaction behavior

R1

Book Flight

Acquisition op

Disconnected mode
Medium bandwidth

Location country: Morocco
Time: Morning

R2

Reserve Airline ticket
Acquisition op

Compensation op

Connected mode
Communication cost : 25% of

communication price
Location country: Morocco

R3

Reserve
four

StarHotel

Acquisition op
Replay op

Connected mode
Available memory

Delay between attempts :1day
Number of attempts : 3

R4

Book-up Lodge
Reservation op
Acquisition op
Cancellation op

Disconnected mode
Full memory

Timeout: 12 hours
Time: Evening

Location city: Marrakech

R5

Find Guide --
Communication cost : 15% of

communication price
Service rate: 8.8

R6

Locate
Surfing

destination

Reservation op
Acquisition op
Cancellation op

Disconnected mode
Service rate: 6.5

Timeout: 12 hours
Location city: Dakhla

R7

Reserve Train ticket
Reservation op
Acquisition op
Cancellation op

Connected mode
Low bandwidth

Timeout: 12 hours
Price: cheap

R8

Book Ski session
Reservation op

Acquisition
opCancellation op

Connected mode
Low bandwidth

Timeout: 12 hours
Age: adult users

Skill levels: 4 to 6
Location city: Ifrane

Journal of Theoretical and Applied Information Technology
15th November 2021. Vol.99. No 21

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5170

Table 4. Performance Metric according to Context and
Requirement Concept Complexity

User
Request

Missing
Concept

in the
ontology

Requirement
Complexity

Context
Complexity

Performance
Metric

R1 ✓ (Function) ++

R2 ✓ (Function) ✓ +
R3 ✓ (Resource) ✓ ++

R4
✓
(Transaction
behavior)

✓ -

R5 ✓
✓ (Function
& Resource)

 --

R6 ✓ (Resource) ✓ ++

R7
✓
(Transaction
behavior)

 +

R8
✓
(Transaction
behavior)

✓ -

8. CONCLUSION

In this paper, we presented a context-driven
transactional services selection by introducing a
new selection mechanism “CT2S” based on a
semantic matching algorithm. The aim is to classify
the services according to their contextual and
transactional information, and to select the best
service that suits user’s request. The analysis of
different selection algorithms joint comparison
demonstrates the interest of the service selection
mechanism proposed in this article. We believe that
the proposed mechanism allows to select the
service that best corresponds to the user's needs due
to its transactional approach, which is more
transparent for the user, and to the use of context
which limits services to valid ones. However, it is
important to note that we can only obtain this good
quality results if the system designer establishes
from the start a rich description of the services
available and the different ontologies used. In
addition, this implementation represents a first
version used to validate our service selection
process, which we plan to optimize in the short
term by using services parallel processing.

In our future research, many issues still need to
be resolved to fully automate the functional
comparison of transactional services. The
Requirement and Context attributes type described
in our OWL-SRC semantic model aim to expose
the two aspects of a service, in particular for
discovery purposes. Thanks to the OWL-SRC
extension that we offer, a transactional service can
be discovered either by the requirement that it can
satisfy, or by the context associated with that

requirement. In addition to these aspects, a third
aspect should be explored which is the service
composition described in OWL-SRC.

REFERENCES:

[1] Karlsen R. “An adaptive transactional system -
framework and service synchronization”,
International Symposium on Distributed Objects
and Applications (DOA), Catania, Sicily,
LNCS, vol. 2888/2003, pp:1208-1225, 2003.

[2] Santos N., Veiga L., and Ferreira P.
“Transaction policies for mobile networks”, 5th
IEEE International Workshop on Policies for
Dist. Systems and Networks, 2004.

[3] Rouvoy R., Serrano-Alvarado P., and Merle P.
“Towards Context-Aware Transaction
Services”, Proceedings of the 6th International
Conference on Distributed Applications and
Interoperable Systems (DAIS'06), Bologna,
Italy, Lecture Notes in Computer Science,
Springer-Verlag, vol. 4025, pp. 272-288, 2006.

[4] Ettazi W., Hafiddi H., and Nassar M. “CATS-
CAE Reflective Middleware Framework for
Adapting Context-Aware Transactional
Services: Using a Hybrid Policy-Based
Approach”, International Journal of Web
Services Research (IJWSR), Volume 17, Issue
2, 2020.

[5] Yu T., Zhang Y., and Lin K.J. “Efficient
Algorithms for Web Services Selection with
End-to-End QoS Constraints”. ACM Trans. Web
pp.1, 6. 14, 26, 35, 60, 64, 77, 2007.

[6] Schilit B., Adams N., and Want R., “Context-
aware computing applications”, Proceedings of
IEEE Workshop on Mobile Computing Systems
and Applications, Santa Cruz, California, pp.
85-90, IEEE Computer Society Press, 1994.

[7] Dey A. K., and Abowd G. D., “A Conceptual
Framework and a Toolkit for Supporting the
Rapid Prototyping of Context-Aware
Applications”, Human-Computer Interaction
(HCI) Journal, Vol 16, pp 2-4, 2001.

[8] Paolucci M.., Kawamura T., Payne Terry R.,
and Sycara K. “Semantic Matching of Web
Services Capabilities”, Proceedings of the 1st
International Semantic Web Conference.
Springer LNCS, volume 2342, Sardinia, Italy,
2002.

[9] Klusch M., Kapahnke P., and Zinnikus I.
“Hybrid Adaptive Web Service Selection with
SAWSDL-MX and WSDL-Analyzer”,
Proceedings of the 6th European Semantic Web
Conference on The Semantic Web: Research

Journal of Theoretical and Applied Information Technology
15th November 2021. Vol.99. No 21

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5171

and Applications, (Berlin, Heidelberg: Springer-
Verlag), pp. 550–564, 2009.

[10] Martin D., Burstein M., Mcdermott D.,
Mcilraith S., Paolucci M., Sycara K.,
Mcguinness D.L., Sirin E., and Srinivasan N.
“Bringing Semantics to Web Services with
OWL-S”. Journal World Wide Web 10(3), pp.
243–277, 2007.

[11] Suraci V., Mignanti S., and Aiuto A. “Context-
aware Semantic Service Discovery”. In Mobile
and Wireless Communications Summit, 16th
IST, pp. 1–5, 2007.

[12] Ben Mokhtar, S., Preuveneers D., Georgantas
N., Issarny V., and Berbers Y. “EASY: Efficient
semAntic Service discovery”, pervasive
computing environments with QoS and context
support. Journal of System and Software, 81(5),
pp. 785–808, 2008.

[13] Toninelli A., Corradi A., and Montanari R.
“Semantic-based discovery to support mobile
context-aware service access”. Computing
Communications, 31(5), pp. 935–949, 2008.

[14] Ying Y., Zhang B., Zhang X., and Zhao Y. “A
Self-healing composite Web service model”,
Services Computing Conference, APSCC. IEEE
Asia-Pacific, pp. 307–312, December, 2009.

[15] El Haddad J., Manouvrier M., Ramirez G., and
Rukoz M. “QoS-driven selection of web
services for transactional composition”. IEEE
International Conference on Web Services
ICWS'08, pp. 653-660, 2010.

[16] Zaremski A.M. and Wing J.M. “Signature
matching: a tool for using software libraries”.
ACM Transactions on Software Engineering
and Methodology (TOSEM), 4(2), pp. 146–170,
1995.

[17] Vanrompay Y., Kirsch-Pinheiro M., and
Berbers Y. “Service Selection with Uncertain
Context Information”, Service-Oriented Systems
and Non-Functional Properties: Future
Directions, S. ReiffMarganiec, and M. Tilly,
eds. (IGI Global), pp. 192–215, 2011.

[18] Petit M., Ray C., and Claramunt, C. “A
contextual approach for the development of
GIS: Application to maritime navigation”, 6th
International Symposium of Web and Wireless
Geographical Information Systems (W2GIS). J.
Carswell and T. Tezuka (eds.). Springer-Verlag
LNCS 4295, Hong Kong, December 4-5, pp
158-169, 2006.

[19] Fissaa T., Guermah H., El Hamlaoui M.,
Hafiddi H., and Nassar M. “A Synergy of
Semantic and Context Awareness for Service
Composition in Ubiquitous Environment”.

Computer and Information Science 11(2):
pp.88-98, 2018.

[20] W3C, “OWL-S: Semantic Markup for Web
Services”, W3C Member Submission 22
November 2004.

[21] Kirsch-Pinheiro M., Vanrompay Y., and
Berbers Y. “Context aware service selection
using graph matching”, 2nd Non Functional
Properties and Service Level Agreements in
Service Oriented Computing Workshop
(NFPSLA-SOC'08), ECOWS 2008. CEUR
Workshop proceedings, Vol. 411, 2008.

[22] Bhiri S., Perrin O., and Godart C. “Ensuring
required failure atomicity of composite web
services”, Proceedings of the 14th international
conference on World Wide Web, WWW’05, New
York, NY, USA, pp. 138–147, 2005.

[23] Schuldt H., Alonso G., and Schek H.
“Concurrency control and recovery in
transactional process management”,
Proceedings of the Conference on Principles of
Database Systems, pp. 316-326, Philadelphia,
Pennsylvania, 1999.

[24] Carroll J.J., Dickinson I., Dollin C., Reynolds
D., Seaborne A., and Wilkinson K. “Jena:
implementing the semantic Web
recommendations”, Proceedings of the 13th
International World Wide Web Conference on
Alternate Track Papers & Posters, (New York,
USA: ACM), pp. 74–83, 2004

[25] Parsia B., and Sirin E. “Pellet: An owl dl
reasoner”, Proceedings of the International
Workshop on Description Logics, 2004.

