© 2021 Little Lion Scientific

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

COMPETITIVE CANDIDATE DETERMINATION SYSTEM FOR STUDENTS WITH COMPARATIVE ANALYSIS OF WEIGHTED PRODUCT (WP) ALGORITHM AND TECHNIQUE FOR ORDER BY SIMILARITY (TOPSIS)

¹HANDRIZAL, ²ELVIWANI, ³M ARIF KURNIAWAN

^{1,2,3}Department of Computer Science, Faculty of Computer Science and Information Technology, Universitas Sumatera Utara, Jl. University No. 9-A, Medan 20155, Indonesia

E-mail: handrizal@usu.ac.id

ABSTRACT

The competition will be one of the indicators that make a university at its best. The more students who take part in competitions will certainly have a positive impact on the university itself. The achievements and victories achieved by students are interpreted as a form of university success in educating students both in terms of theory and practical skills. The track record of student achievement will always make the accreditation of a university even better because it presents graduates who are competent in their fields. The selection process will be something that needs to be done considering that many criteria must be met by the student before being declared ready to compete for both in theory and practice so that a decision support system is needed that can provide recommendations for student choices. This research will discuss the process of determining the candidate for the race by analyzing two methods, namely the Weighted Product (WP) method and the Technique for Order by Similarity to Ideal Solution (TOPSIS) method in which the two methods will analyze what percentage of the resulting level of accuracy is the output on the system is the same as the manual calculation. Furthermore, the writer will also analyze how far the difference is between the two methods using Euclidean Distance and the weighting of the criteria using a Likert Scale. The results of the comparative analysis show that the WP method is the best method with a value of 0.14281 because it has a value close to zero compared to the TOPSIS method with a value of 0.51238 even though both produce the same level of accuracy reaching 100%, but the WP method is still more optimal in terms of program execution speed (Micro time) with an average time of 0.0781 seconds while the TOPSIS method takes an average of 0.2234 seconds

Keywords: Decision Support System, Candidate Participants, Likert Scale, Weighted Product, Technique for Order by Similarity to Ideal Solution, Euclidean Distance

1. INTRODUCTION

The best way to win the competition is to take advantage of technology. Building information technology-based systems in a precise, structured and simple manner is very important for the competitive advantage of modern companies and organizations. In the world of higher education, higher education is an effective place to transform knowledge and also a means of student education. Every college wants students who can implement their academic potential to reach achievements.

Faculty of computer science and information technology the Universitas Sumatera Utara always

sends students every year to take part in competitions both in the field of technology and other competitive fields, but there is rarely a selection process for students who want to take part in competitions and there are no suitable parameters for objective assessment. Students sometimes register themselves if there is a competition without a selection process in it so there is a lack of preparation to compete.

One reason for choosing this topic was because the selection process was limited to filing and tended to take a long time to announce the participants who passed because it was still done manually, such as announcing it through paper

www.jatit.org

E-ISSN: 1817-3195

affixed to the campus wall magazine. Each campus in selecting students for the competition should be done based on the criteria for academic aspects. For that, it is necessary to make web-based DSS software in this context.

Web technology has been increasing and improving in the last few years and it becomes one of the major improvements in the Information Technology (IT) world [1]. PHP is a "strong" language used in developing dynamic and interactive web applications. This is because of one of the defining features that PHP offers developers, namely the ease to connect and manipulate databases due to the built-in Database function provided by PHP itself. Apart from that, PHP is a powerful language because it offers several key advantages, such as performance, scalability, opensource, and portability [2]. The micro time function is one of the PHP functions used to restore the current Unix timestamp with units of microseconds [3].

Weighted Product (WP) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) are methods widely used to assist in making decisions. For instance, TOPSIS is used to rank attributes or criteria, rank suppliers, and evaluate optimal generation. Meanwhile, WP is used to calculate the attribute weights evaluate optimal generation, and evaluate the optimum generation of a particular [4].

Euclidean distance technique is an identification and classification technique based on Euclidean metrics that are related to trial and error, where the distance between points is related to the length of the line between them. The Euclidean distance is calculated using the Pythagorean formula [5].

The Likert scale is a measurement scale developed by Likert in 1932. In his discussion, he provides interpretation results in the form of an "opinion survey" [6]. This scale has four or more question items that are combined to form a score/value that represents individual traits, for example, knowledge, attitudes, and behavior. In the data analysis process, a composite score, usually the sum or average, of all the questions can be used. Five-point Likert scale with a weighted scoring range of 0–100 and which is a reliable measure of usability.

In the comparative analysis, the writer will compare it with Euclidean Distance to see how far the difference is between the two algorithms used and comparing the execution speed of the two methods using the Microtime function in PHP programming.

2. RELEVANT RESEARCH

In previous research conducted by Agus Setyawan, Florentina Yuni Arini, and Isa Akhlis [7] in 2017 entitled "Comparative Analysis of Simple Additive Weighting Methods and Weighted Product Methods Against the New Employee Recruitment Decision Support System (DSS) at PT. Warta Media Nusantara ", the test results show that the average execution time of the SAW method is 0.4106s while the execution time of the WP method is 0.92s. Average execution time is obtained by dividing the total execution time by the number of trials. From the average implementation time, it is known that the SAW method is faster in calculating the New Employee Recruitment Decision Support System than the WP method. This is because the SAW method uses a simpler calculation method than the WP method so that the required process is less. This is similar to research [8] which explains that the simplicity of the calculation makes the SAW method the fastest method in the calculation process compared to other MADM methods.

Research conducted by S Oktaviana, A Rozzaaq, and D A Rosatama in 2018 entitled "Comparative analysis using the WP and TOPSIS methods to find the best mountains for hiking", the test results show that the WP method to be the best order with 100%. For the Accuracy calculation value, the TOPSIS method becomes the second-best method with a percentage of 98.82% [9].

Research conducted by Suhartono, Didit, and Tika Sari in 2019 with the title "Comparison of Weighted Product Methods and TOPSIS in Determining Recipients of the Hopeful Family Program" resulted in an accuracy rate of 89.48% where the TOPSIS method was more suitable in case study selection, eligibility for PKH recipients [10].

3. PROCESS ANALYSIS

The system built is a decision support system in determining candidates for the competition. In simple terms, users can see various kinds of competitions (competitions in the field of IT, arts, etc.) along with the quota of participants, then they choose the competition according to their wishes, then the system will calculate the weighting using the Weighted Product (WP) method followed by the process of calculating the Technique for Order method. by Similarity to Ideal Solution (TOPSIS) to analyze the comparison of output and program

ICCNI, 1002 0/45		E ICCN. 1017 210
155IN: 1992-8045	www.jatit.org	E-155N: 181/-319

execution speed. After users choose the competition they want, users can see the results of the announcement on their respective accounts after passing a series of selections, be it a theory test, a practical test, and uploading supporting files to the system. The following are the processes that the system will perform:

3.1 Determination of competition

The system built will be able to accommodate various types of competitions and accommodate many criteria and student registrants with a predetermined participant quota

3.2 Determination of criteria

The system built will be able to help provide recommendations for decision-making based on three main criteria, namely theoretical tests, practical tests, and supporting files.

Table 1: Type and Example of Criteria.

No	Type of Criteria	Example of Criteria
1	Theory test	Written programming
		comprehension test
2	Practice test	Practice test presenting
		the work
3	Support Files	Uploading of a similar
		competition certificate

3.3 Determination of weight

The weights of the criteria for determining candidates for competition in this system use the level of importance in the form of a Likert scale in table 2.

Table 2: Weight Value Criteria Based on the Likert Scale.

Name of Value	Value
Very not important	1
Not important	2
Quite important	3
Important	4
Very important	5

3.4 Determination of parameter value

Some of the criteria used in this system are qualitative data, so to facilitate the calculation process it is necessary to classify the data criteria. However, because this case study system accommodates many fields of competition, to make testing and analysis easier, it is enough to do it in one race. One of the fields of competition that will be tested in this research is the IT field with the "Web Development Competition" which is taken from the standardized weight of the web programmer at PT. Cipta Harapan Samudera. The parameter value of each criterion can be seen in table 3

Table 3: Data Parameter Value Criteria for Web	,
Development Competition	

No	Criteria	Parameter	Туре	Likert
				Scale
\mathcal{C}_1	Understand	Important	Theory	4
	the concepts			
	of HTML			
	and CSS			
C_2	Mastering	Very	Theory	5
	the	important		
	programming			
	language			
	PHP,			
	JavaScript,			
	JQuery, and			
C.	Understand	Ouite	Theory	3
03	the use of the	important	incory	5
	PHP			
	framework			
C4	Have good	Important	Theory	4
т	logic,			
	analysis, and			
	problem-			
	solving			
<i>C</i> ₅	Understand	Quite	Theory	3
	design	important		
	software			
<i>C</i> ₆	Mastering	Very	Theory	5
	Object-	important		
	Driented			
C	Inderstand	Ouite	Practice	2
C7	the concept	important	Tractice	5
	of web	mportant		
	hosting and			
	domains			
Co	Mastering	Verv	Theory	5
-0	MySQL	important		
	database			
	management			
С9	Understand	Important	Theory	4
	the use of			
	version			
	control (GIT)			
<i>C</i> ₁₀	Attach KHS	Quite	Support	3
	about the	important	files	
	value of web			
C	programming	Outite	Care	2
\mathcal{L}_{11}	Award or	Quite	Support	3
	those who	important	mes	
	have			
	narticinated			
	in similar			
	competitions			
C12	Able to	Important	Practice	4

ISSN: 1992-8645

www.jatit.org

<u>www.jau</u>

communica	te	
and presen	t	

3.5 Accommodate attached files

If the criteria used to require an attachment file in the assessment, the system will receive an uploaded file from the enrolling student

3.6 Calculation of alternatives according to the competition criteria

After the admin presses the calculate button, the system will calculate alternative recommendations for candidate participants according to the value per criteria entered by the admin including an assessment of the upload of the supporting files and a series of theoretical/practical tests.

3.7 Displays candidate recommendations

The system will normalize the weight and display the name of the participant's recommendation in a tablet form, complete with ranking, method execution speed, announcement button, and analysis button.

3.8 Announcing the results to the student account

If the admin presses the "Announce" button, the system will continue the selection results which can automatically be seen on the account of each student registrant, precisely on the announcement menu.

4. MANUAL TESTING

In the manual calculation testing between the two methods, namely, WP and TOPSIS will be carried out to 7 student registrants who are given the same weight and value per criteria. The following are the scores per criteria given to the 7 alternatives

Alternative	Criteria											
	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> ₃	<i>C</i> ₄	<i>C</i> ₅	<i>C</i> ₆	<i>C</i> ₇	<i>C</i> ₈	C,	<i>C</i> ₁₀	<i>C</i> ₁₁	<i>C</i> ₁₂
Haristia Kumala	70	70	60	80	70	80	50	80	60	80	70	80
Arif Iskandar	80	80	70	80	90	70	60	70	70	70	80	90
Boby Kurniawan	60	70	60	70	90	60	80	70	60	80	80	70
Muhibuddin	80	90	70	80	80	90	70	70	70	80	60	90
Rudianto Sihombing	70	90	70	80	50	70	70	80	80	90	50	70
Hadhe Panii	60	50	70	70	80	70	60	80	60	80	70	90
Ricky Julpiter	80	60	80	70	60	70	80	70	90	70	70	80

Figure 1: Alternative value per criteria.

4.1 Weighted Product method

Normalization is carried out to compare the parameter values between the criteria weight values with one another, so that the total criteria weight $\sum wj = 1$

$$Wj = \frac{wj}{\Sigma wj}$$

Become:

So that the total weight after normalization becomes:

 $\sum wj = w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 + w11 + w12 = 1$

That is :

 $\sum wj = 0.087 + 0.1087 + 0.0652 + 0.087 + 0.0652 + 0.1087 + 0.0652 + 0.1087 + 0.0652 + 0.0652 + 0.0652 + 0.087 = 1$

Criteria	Initial	New
	Weight	Weight
Understand the concepts	4	0.087
of HTML and CSS		
Mastering the	5	0.1087
programming language		
PHP, Javascript, JQuery,		
and Ajax		
Understand the use of the	3	0.0652
PHP framework		
Have good logic,	4	0.087
analysis, and problem-		
solving		
Understand design	3	0.0652
software		
Mastering Object-	5	0.1087

Table 4: Weight After Normalization

15th November 2021. Vol.99. No 21 © 2021 Little Lion Scientific

```
ISSN: 1992-8645
```

www.jatit.org

E-ISSN: 1817-3195

Oriented Programming		
Understand the concept	3	0.0652
of web hosting and		
domains		
Mastering MySQL	5	0.1087
database management		
Understand the use of	4	0.087
version control (GIT)		
Attach KHS about the	3	0.0652
value of web		
programming		
Award or certificate for	3	0.0652
those who have		
participated in similar		
competitions		
Able to communicate and	4	0.087
present works well		

Determine the vector value S

The vector value S, which can be calculated using the following formula:

$$(S_i = \prod_{j=1}^n (\mathbf{X}_j^*)^{wj})$$

Raise and multiply the value of each alternative per criteria by the previously normalized weight.

 $S_1 = (X_{11}^{w1})(X_{12}^{w2})(X_{13}^{w3})(X_{14}^{w4})(X_{15}^{w5})(X_{16}^{w6})(X_{17}^{w7})$ $(X_{18}^{w8})(X_{19}^{w9})(X_{110}^{w10})(X_{111}^{w11})(X_{112}^{w12})$

Becomes:

- $$\begin{split} S_1 &= (70^{0.087})(70^{0.1087})(60^{0.0652})(80^{0.087})(70^{0.0652})(80^{0.1087})\\ &(50^{0.0652})(80^{0.1087})(60^{0.087})(80^{0.0652})(70^{0.0652})(80^{0.087}) \end{split}$$
 = 71.128692173385
- $S_{2} = (80^{0.087})(80^{0.1087})(70^{0.0652})(80^{0.087})(90^{0.0652})(70^{0.1087})$ $(60^{0.0652})(70^{0.1087})(70^{0.087})(70^{0.0652})(80^{0.0652})(90^{0.087})$ = 75.457915838002
- $S_3 = (60^{0.087})(70^{0.1087})(60^{0.0652})(70^{0.087})(90^{0.0652})(60^{0.1087})$ $(80^{0.0652})(70^{0.1087})(60^{0.087})(80^{0.0652})(80^{0.0652})(70^{0.087})$
- = 69.255011534828
- $S_4 = (80^{0.087})(90^{0.1087})(70^{0.0652})(80^{0.087})(80^{0.0652})(90^{0.1087})$ $(70^{0.0652})(70^{0.1087})(70^{0.087})(80^{0.0652})(60^{0.0652})(90^{0.087})$
 - = 77.946019945666
- $S_5 = (70^{0.087})(90^{0.1087})(70^{0.0652})(80^{0.087})(50^{0.0652})(70^{0.1087})$ $(70^{0.0652})(80^{0.1087})(80^{0.087})(90^{0.0652})(50^{0.0652})(70^{0.087})$ = 72.711315265209
- $S_6 = (60^{0.087})(50^{0.1087})(70^{0.0652})(70^{0.087})(80^{0.0652})(70^{0.1087})$ $(60^{0.0652})(80^{0.1087})(60^{0.087})(80^{0.0652})(70^{0.0652})(90^{0.087})$

= 68.666704292828

 $S_7 = (80^{0.087})(60^{0.1087})(80^{0.0652})(70^{0.087})(60^{0.0652})(70^{0.1087})$ $(80^{0.0652})(70^{0.1087})(90^{0.087})(70^{0.0652})(70^{0.0652})(80^{0.087})$

= 72.575296804507

 $V_{7} =$ 72.5753 71.1287+75.4579+69.25 .946+ .7113+68.6667+72.5753

$$=\frac{72.5753}{507.7409}$$
$$= 0.142938$$

$$71.1287+75.4579+ .255$$

$$= \frac{71.1287}{507.7409}$$

$$= 0.140089$$

Determine the vector value V

The formula is as follows:

with the total vector value S

Simply put like:

The vector value V is to be used for ranking.

 $V_i = \frac{S_i}{\sum_{i=1}^m S_i}$

Where the vector value (V) is a choice that will be used in determining the ranking of each vector S

 $V_1 = \frac{S_1}{S_1 + S_2 + S_3 + S_4 + S_5 + S_6 + S_7}$

Following are the results of calculating preferences

71.1287

+7 .946+72.7113+68.6667+72.5753

$V_{2} =$		
-	7	5.4579
71.1287+	.4579+69.255+ 579	.946+72.7113+68.6667+72.5753

507.7409 = 0.148615

$$V_3 =$$

 (V_i) :

 $V_1 =$

= =

$$\frac{69.255}{71.1287+75.4579+69.255+7 .946+72.7113+68.6667+72.5753} = \frac{69.255}{507.7409} = 0.136398$$

$$V_4 =$$

$$\frac{71.1287+75.4579+}{=\frac{77.946}{507.7409}} \frac{.255+77.946+72.7113+68.6667+72.5753}{=0.153515}$$

$$V_{5} =$$

72.7113 71.1287+75.4579+69.255+77.946+72.7113+68.6667+72.5753 72.7113 $=\frac{1}{507.7409}$

$$= 0.143206$$

$$V_6 =$$

www.jatit.org

E-ISSN: 1817-3195

Finding the highest value from the calculation of the vector V

Rank	Alternative	Student Name	Vektor S	Vektor V
1	A_4	Muhibuddin	77.9460	0.153515
2	A ₂	Arif Iskandar	75.4579	0.148615
3	A ₅	Rudianto Sihombing	72.7113	0.143206
4	A ₇	Ricky Julpiter	72.5753	0.142938
5	A ₅	Haristia Kumala	71.1287	0.140089
6	A ₃	Boby Kurniawan	69.2550	0.136398
7	A ₆	Hadhe Panji	68.6667	0.13524

Figure 2: Result of weighted product decisions.

Alternative						Cr	iteri	a				
	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> ₃	<i>C</i> ₄	<i>C</i> ₅	<i>C</i> ₆	C ₇	<i>C</i> ₈	C9	C ₁₀	C ₁₁	<i>C</i> ₁₂
Haristia Kumala	0.368	0.357	0.329	0.399	0.35	0.412	0.278	0.406	0.32	0.384	0.382	0.369
Arif Iskandar	0.42	0.408	0.384	0.399	0.45	0.361	0.334	0.355	0.374	0.336	0.436	0.416
Boby Kurniawan	0.315	0.357	0.329	0.349	0.45	0.309	0.445	0.355	0.32	0.384	0.436	0.323
Muhibuddin	0.42	0.459	0.384	0.399	0.4	0.464	0.389	0.355	0.374	0.384	0.327	0.416
Rudianto Sihombing	0.368	0.459	0.384	0.399	0.25	0.361	0.389	0.406	0.427	0.432	0.273	0.323
Hadhe Panji	0.315	0.255	0.384	0.349	0.4	0.361	0.334	0.406	0.32	0.384	0.382	0.416
Ricky Julpiter	0.42	0.306	0.439	0.349	0.3	0.361	0.445	0.355	0.48	0.336	0.382	0.369

Figure 4: Normalized matrix.

4.2 TOPSIS method

Normalization of the matrix. Matrix normalization is done by squaring each element of the matrix in figure 1, for example, cell A_1 - C_1 squared to be 70 x 70 = 4900 the results are as follows:

Alternative						Cr	iteri	a				
	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> ₃	<i>C</i> ₄	<i>C</i> ₅	<i>C</i> ₆	C 7	<i>C</i> ₈	C9	<i>C</i> ₁₀	<i>C</i> ₁₁	<i>C</i> ₁₂
Haristia Kumala	4900	4900	3600	6400	4900	6400	2500	6400	3600	6400	4900	6400
Arif Iskandar	6400	6400	4900	6400	8100	4900	3600	4900	4900	4900	6400	8100
Boby Kumiawan	3600	4900	3600	4900	8100	3600	6400	4900	3600	6400	6400	4900
Muhibuddin	6400	8100	4900	6400	6400	8100	4900	4900	4900	6400	3600	8100
Rudianto Sihombing	4900	8100	4900	6400	2500	4900	4900	6400	6400	8100	2500	4900
Hadhe Panji	3600	2500	4900	4900	6400	4900	3600	6400	3600	6400	4900	8100
Ricky Julpiter	6400	3600	6400	4900	3600	4900	6400	4900	8100	4900	4900	6400
Total	36200	38500	33200	40300	40000	37700	32300	38800	35100	43500	33600	46900

Figure 3: Value squared.

The total row (in blue) is obtained by adding up each row on each criterion. For example the total column C_1 is obtained from 4900 + 6400 + 3600 + 6400 + 4900 + 3600 + 6400 = 36200. After getting the total, then normalizing it by dividing each element of the matrix value figure 1 by the root (sqrt) of the corresponding total rows, the result is as follows :

For example for row A_1 obtained from:

$$A_1 - C_1 = \frac{70}{\sqrt{36200}} = 0.368$$

$$A_1 - C_2 = \frac{70}{\sqrt{38500}} = 0.357$$

$$A_1 - C_3 = \frac{60}{\sqrt{33200}} = 0.329$$

$$A_1 - C_4 = \frac{80}{\sqrt{40300}} = 0.399$$

$$A_1 - C_5 = \frac{70}{\sqrt{40000}} = 0.35$$

$$A_1 - C_6 = \frac{80}{\sqrt{37700}} = 0.412$$

$$A_1 - C_7 = \frac{50}{\sqrt{32300}} = 0.278$$

$$A_1 - C_8 = \frac{80}{\sqrt{38800}} = 0.406$$

$$A_1 - C_9 = \frac{60}{\sqrt{35100}} = 0.32$$

$$A_1 - C_{11} = \frac{70}{\sqrt{43500}} = 0.382$$

$$A_1 - C_{11} = \frac{70}{\sqrt{46900}} = 0.369$$

Normalization of weights.

Weighted normalization is obtained from the multiplication of the matrix in figure 4 (normalized matrix) with figure 3 (weight criteria), the results are as follows:

ISSN: 1992-8645

www.jatit.org

5045

Positive/negative ideal solution distance

To find the total nd ranking, you must find the distance between the positive and negative ideal solutions obtained from the processing of figure 5 (weight normalization) and figure 6 (positive/negative ideal matrix). The trick is to square the difference between each element of the weighted normalized matrix and the ideal solution matrix, and then add up each alternative, after which it is rooted. For example, to find the positive ideal distance A_1 as follows:

A_1	Positive:
-	

	$(1.472 - 1.682)^2 + (1.784 - 2.293)^2 + (0.988 - 1.317)^2$
	$+(1.594 - 1.594)^2 + (1.05 - 1.35)^2 + (2.06 - 2.318)^2$
	$+(0.835 - 1.335)^{2} + (2.031 - 2.031)^{2} + (1.281 - 1.922)^{2}$
١	$+(1.151 - 1.295)^{2} + (1.146 - 1.309)^{2} + (1.478 - 1.662)^{2}$
	= 1.145

 A_1 negative :

	$(1.472 - 1.261)^2 + (1.784 - 1.274)^2 + (0.988 - 0.988)^2$
	$+(1.594 - 1.395)^{2} + (1.05 - 0.75)^{2} + (2.06 - 1.545)^{2}$
	$+(0.835 - 0.835)^{2} + (2.031 - 1.777)^{2} + (1.281 - 1.281)^{2}$
١	$+(1.151 - 1.007)^{2} + (1.146 - 0.818)^{2} + (1.478 - 1.293)^{2}$
	= 0.963

Preference is obtained from the ideal negative divider divided by the sum of the positive and negative ideal.

$$V_i = \frac{D_i}{D_i^- + D_i^+}$$

The following is the result of the preference calculation (V_i) :

V.	_	0.963	_	0 4 5 6 8
v 1	_	1.145 + 0.963 1 306	_	0.1500
V_2	=	$\frac{1.000}{0.893 + 1.306}$	=	0.5939
V_2	=	1.064	=	0.4413
		1.347 + 1.064 1.557		
V_4	=	0.672 + 1.557	=	0.6985
V_5	=	$\frac{1.28}{1.071 \pm 1.297}$	=	0.5458
V_6	=	$\frac{1.071 + 1.287}{0.808}$ $1.462 + 0.808$	=	0.3559
V_7	=	$\frac{1.115}{1.14 + 1.115}$ =	= 0	.4945

The best alternative is the one with the greatest preference. So that the ranking is as follows

Alternatif						Kı	iteri	a				
	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> ₃	<i>C</i> ₄	<i>C</i> ₅	<i>C</i> ₆	<i>C</i> ₇	<i>C</i> ₈	C9	C ₁₀	<i>C</i> ₁₁	<i>C</i> ₁₂
Haristia Kumala	1.472	1.784	0.988	1.594	1.05	2.06	0.835	2.031	1.281	1.151	1.146	1.478
Arif Iskandar	1.682	2.039	1.153	1.594	1.35	1.803	1.002	1.777	1.495	1.007	1.309	1.662
Boby Kumiawan	1.261	1.784	0.988	1.395	1.35	1.545	1.335	1.777	1.281	1.151	1.309	1.293
Muhibuddin	1.682	2.293	1.153	1.594	1.2	2.318	1.168	1.777	1.495	1.151	0.982	1.662
Rudianto Sihombing	1.472	2.293	1.153	1.594	0.75	1.803	1.168	2.031	1.708	1.295	0.818	1.293
Hadhe Panii	1.261	1.274	1.153	1.395	1.2	1.803	1.002	2.031	1.281	1.151	1.146	1.662
Ricky Julpiter	1.682	1.529	1.317	1.395	0.9	1.803	1.335	1.777	1.922	1.007	1.146	1.478

Figure 5: Normalized weight.

For example for row A_1 obtained from:

 $\begin{array}{l} A_1\text{-}C_1 = \ 0.368 * 4 = 1.472 \\ A_1\text{-}C_2 = \ 0.357 * 5 = 1.784 \\ A_1\text{-}C_3 = \ 0.329 * 3 = 0.988 \\ A_1\text{-}C_4 = \ 0.399 * 4 = 1.594 \\ A_1\text{-}C_5 = \ 0.35 * 3 = 1.05 \\ A_1\text{-}C_6 = 0.412 * 5 = 2.06 \\ A_1\text{-}C_7 = \ 0.278 * 3 = 0.835 \\ A_1\text{-}C_8 = \ 0.406 * 5 = 2.031 \\ A_1\text{-}C_9 = \ 0.32 * 4 = 1.281 \\ A_1\text{-}C_{10} = \ 0.384 * 3 = 1.151 \\ A_1\text{-}C_{11} = \ 0.382 * 3 = 1.146 \\ A_1\text{-}C_{12} = \ 0.369 * 4 = 1.478 \end{array}$

Positive/negative ideal matrix.

The ideal solution matrix is obtained based on weighted normalization and the criteria attribute (cost or benefit). Since all criteria are of benefit, the ideal positive solution is the maximum value of weighted normalization. While the negative ideal solution is the minimum value of weighted normalization.

Туре]	Posit	ive /	Nega	tive	ideal	mat	rix.		
	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> ₃	<i>C</i> ₄	<i>C</i> ₅	<i>C</i> ₆	C 7	C ₈	С,	<i>C</i> ₁₀	C ₁₁	<i>C</i> ₁₂
Posititive	1.682	2.293	1.317	1.594	1.35	2.318	1.335	2.031	1.922	1.295	1.309	1.662
Negative	1.261	1.274	0.988	1.395	0.75	1.545	0.835	1.777	1.281	1.007	0.818	1.293

Figure 6: Positive/negative ideal matrix.

Journal of Theoretical and Applied Information Technology

15th November 2021. Vol.99. No 21 © 2021 Little Lion Scientific

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

Rank	Alternative	Student Name	Preference (V_i)
1	A ₄	Muhibuddin	0.6985
2	A2	Arif Iskandar	0.5939
3	A ₅	Rudianto Sihombing	0.5458
4	A ₇	Ricky Julpiter	0.4945
5	A ₅	Haristia Kumala	0.4568
6	A ₃	Boby Kurniawan	0.4413
7	A ₆	Hadhe Panji Kastowo	0.3559

Figure 7: Result of TOPSIS decisions.

5. SYSTEM TESTING

Following are the results of the implementation and testing of data into the system by entering the same test data to meet the suitability of the data

Weighted Product Method Execution Speed Is: 0.0609406948089 Seconds

Show	10 ~	entries	
	Search:		
Rank	Participant Recommendation	Vector S	Vector V
1	Muhibuddin	77.946	0.15351
2	Arif Iskandar	75.4579	0.14861
3	Rudianto Sihombing	72.7113	0.14320
4	Ricky Julpiter Sipayung	72.5753	0.14293
5	Haristia Kumala	71.1287	0.14008
6	Boby Kumiawan	69.255	0.13639
7	Hadhe Panji	68.6667	0.13524
87 7	41 7 57 11		< >

Figure 6: Result of System Recommendation (WP).

			A
Nilai Matriks	Nilai Matriks	Ternormalisasi	Nilai Bobot Ternormalisa
Matriks Ideal P	osistif/Negatif	Jarak Solusi I	deal Posistif/Negatif

Preference Value

TOPSIS Method Execution Speed Is: 0.25981740951538 Seconds

Rank	Participant Recommendation	Preference Value (V _i)			
1	Muhibuddin	0.6985			
2	Arif Iskandar	0.5939			
3	Rudianto Sihombing	0.5458			
4	Ricky Julpiter	0.4945			
5	Haristia Kumala	0.4568			
6	Boby Kurniawan	0. <mark>4</mark> 413			
7	Hadhe Panji	0.3559			

rigure 7. Result of System Recommendation (10FSIS	Figure 7:	Result of S	System	Recommendation	n (TOPS	IS)
---	-----------	-------------	--------	----------------	---------	-----

6. COMPARATIVE ANALYSIS

Based on manual testing and system testing, a comparative analysis will be carried out at the following points

- **1.** Comparison of Euclidean Distance between the two methods
- **2.** Comparison of calculation accuracy between systems with manual calculations
- **3.** Comparison of program execution speed between the two methods

6.1 Euclidean Distance result

The comparative analysis uses the Euclidean Distance method to see which method is the most optimal in terms of the ranking priority averages of the two methods.

Enrolling	$WP_{(vector v)}$	TOPSIS _(preference)
Students		-
Muhibuddin	0.1535	0.6985
Arif Iskandar	0.1486	0.5939
Rudianto S	0.1432	0.5458
Ricky Julpiter	0.1429	0.4945
Haristia K	0.1400	0.4568
Boby K	0.1363	0.4413
Hadhe Panji	0.1352	0.3559
Average	0,14281	0,51238

Table 5: Euclidean distance comparison analysis.

ISSN: 1992-8645	<u>www.jatit.org</u>	E-ISSN: 1817-3195

Based on the average results of the two methods used, it can be said that the Weighted Product method is the best because it has a value close to zero.

6.2 Comparison of calculation accuracy levels

In addition to the comparative analysis using Euclidean Distance, a comparative analysis of calculation accuracy is also used which is described as follows

	5	2
Recommended	WP	TOPSIS
Alternative		
A_4	A_4	A_4
A_2	A_2	A_2
A_5	A_5	A_5
A_7	A_7	A_7
A_1	A_1	A_1
A_3	A_3	A ₃
A ₆	A ₆	A ₆

Table 6: Comparison result of calculation accuracy.

Testing of the WP method and the TOPSIS method is carried out to determine the recommendations of candidates for competition by using the following formula:

Accuracy =
$$X / N x 100\%$$

Where:

N = number of data tested X = number of correct data

TOPSIS method accuracy accuracy = X / N x 100%

= 7/7 x 100% = 100%

Weighted Product (WP) method accuracy = $X / N \ge 100\%$ = 7/7 $\ge 100\%$

6.3 Comparison of program execution speed

In addition to the comparative analysis of calculation accuracy, a comparative analysis of the execution speed of the PHP file was also carried out. The following table shows the results of the experiment execution time in the PHP program listing part of the calculation method of 10 trials in micro time/second

Table 7: Type and Example of Criteria.

Trial	Speed (Micro time/Second)		
	WP	TOPSIS	
1	0.074 second	0.236 second	

2	0.068 second	0.242 second
3	0.049 second	0.220 second
4	0.089 second	0.255 second
5	0.088 second	0.259 second
6	0.097 second	0.226 second
7	0.093 second	0.198 second
Average	0.0781 second	0.2234 second

As seen in Table 7 above, the comparative analysis in terms of time shows that the weighted product is the best method because it has a value close to zero compared to the TOPSIS method.

Figure 8:	Execution	speed	comparison	chart.
		· · · · · · ·	· · · · · · · · · · · · · · · · · · ·	

6.4 Difference from prior work

The difference between the results of the system and relevant research can be seen in the following table:

Table 7.	Difference	e from	prior	work
----------	------------	--------	-------	------

No.	Prior work	Our Research
1.	Agus Setyawan,	Comparative
	Florentina Yuni	analysis using
	Arini, and Isa	Euclidean
	Akhlis in 2017	Distance shows
	entitled	that the WP
	"Comparative	method is the best
	Analysis of Simple	in determining
	Additive	candidates for
	Weighting	competition
	Methods and	participants
	Weighted Product	compared to the
	Methods Against	TOPSIS method.
	the New Employee	The total average
	Recruitment	time required for
	Decision Support	the WP method to
	System (DSS) at	execute the
	PT. Warta Media	program is 0.0781
	Nusantara ", the	seconds while the
	test results show	total time required
	that the average	for the TOPSIS
	execution time of	method to execute
	the SAW method is	the program is

Journal of Theoretical and Applied Information Technology

15th November 2021. Vol.99. No 21 © 2021 Little Lion Scientific www.jatit.org

doi:

E-ISSN: 1817-3195

	0.4106s while the execution time of the WP method is 0.92s.	0.2234 seconds. The level of accuracy of the system calculation	1. Comparative analysis using Euclidean Distance shows that the WP method is the best in determining candidates for competition
2.	S OKTAVIANA, A Rozzaaq, and D A Rosatama in 2018 entitled "Comparative analysis using the WP and TOPSIS methods to find the best mountains for hiking", the test results show that the WP method to be the best order with 100%. For the Accuracy calculation value, the TOPSIS method becomes the second-best method with a percentage of 98.82%	with manual calculations on the WP method and the TOPSIS method in determining the candidate for competition reaches 100%	 2. The total average time required for the WP method to execute the program is 0.0781 seconds while the total time required for the TOPSIS method to execute the program is 0.2234 seconds. 3. The level of accuracy of the system calculation with manual calculations on the WP method and the TOPSIS method in determining the candidate for competition reaches 100%. 4. This system can assist the campus in determining candidate recommendations according to the competition criteria. 5. The ranking results produced by the WP method and the TOPSIS method have the same ranking order. 6. This system is only a tool for a decision support system for determining candidates for competition, the final decision remains in the hands of the decision-maker
3.	Suhartono, Didit, and Tika Sari in		REFERENCES:
	2019 with the title "Comparison of Weighted Product Methods and TOPSIS in Determining Recipients of the Hopeful Family Program" resulted in an accuracy rate of 89.48% where the TOPSIS method was more suitable in case study selection, eligibility for PKH		 F. Shahzad, "Modern and Responsive Mobile- enabled Web Applications," Procedia Comput. Sci., vol. 110, pp. 410–415, 2017, doi: 10.1016/j.procs.2017.06.105. Padilla A and Hawkins T 2010 Pro PHP application performance: tuning PHP Web projects for maximum performance (New York: Apress). S. I. Adam and S. Andolo, "A New PHP Web Application Development Framework Based on MVC Architectural Pattern and Ajax Technology," 2019 1st Int. Conf. Cybern. Intell. Syst. ICORIS 2019, vol. 1, no. August, pp. 45– 50, 2019, doi: 10.1109/ICORIS.2019.8874912. N. S. Fitriasari, S. A. Fitriani, and R. A.
	recipients.		Sukamto, "Comparison of weighted product method and technique for order preference by

7. CONCLUSION

ISSN: 1992-8645

Based on the results of the analysis and implementation results of the system for determining candidates for competition participants using the comparative analysis of the Weighted Product (WP) method and the Technique for Order by Similarity to Ideal Solution (TOPSIS) method so that it can be concluded that:

10.1109/ICSITech.2017.8257155. [5] M. Kintali, S. R. Sura, N. R. Pulivarthi, and A. K. Kondaji, "Euclidean Metric based Fault Diagnosis in Power Transmission Line," Int. J.

pp.

similarity to ideal solution method: Complexity

and accuracy," Proceeding - 2017 3rd Int. Conf. Sci. Inf. Technol. Theory Appl. IT Educ. Ind.

Soc. Big Data Era, ICSITech 2017, vol. 2018-

453-458,

2017,

January,

ISSN: 1992-8645

www.jatit.org

Innov. Technol. Explor. Eng., vol. 9, no. 2S3, pp. 226–231, 2019, doi: 10.35940/ijitee.b1057.1292s319.

- [6] A. Joshi, S. Kale, S. Chandel, and D. Pal, "Likert Scale: Explored and Explained," Br. J. Appl. Sci. Technol., vol. 7, no. 4, pp. 396–403, 2015, doi: 10.9734/bjast/2015/14975.
- [7] A. Setyawan, F. Y. Arini, and I. Akhlis, "Comparative Analysis of Simple Additive Weighting Method and Weighted Product Method to New Employee Recruitment Decision Support System (DSS) at PT. Warta Media Nusantara," Sci. J. Informatics, vol. 4, no. 1, pp. 34–42, 2017, doi: 10.15294/sji.v4i1.8458.
- [8] Velasquez, M. and Hester, P.T. 2013. An Analysis of Multi-Criteria Decision Making Methods. International Journal of Operations Research, 10(2), pp.56-66.
- [9] S. Oktaviana, A. Rozzaaq, and D. A. Rosatama, "Comparative analysis using WP and TOPSIS method to find the best mountain for hiking," J. Phys. Conf. Ser., vol. 1193, no. 1, 2019, doi: 10.1088/1742-6596/1193/1/012023.
- [10] D. Suhartono and T. Sari, "Comparative Method of Weighted Product and TOPSIS to Determine The Beneficiary of Family Hope Program," IJIIS Int. J. Informatics Inf. Syst., vol. 2, no. 2, pp. 67–74, 2019, doi: 10.47738/ijiis.v2i2.16.