
Journal of Theoretical and Applied Information Technology
31st October 2021. Vol.99. No 20

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4898

DESKTOP APPLICATION DEVELOPMENT FOR
IMPLEMENTING MERGE SORT ALGORITHM ON
DISTRIBUTED SYSTEM TO SORTING NUMBERS

1HANDRIZAL, 2SRI MELVANI HARDI, 3WINTO JUNIOR KHOSASIH

1,2,3Department of Computer Science, Faculty of Computer Science and Information Technology,

Universitas Sumatra Utara, Jl. University No. 9-A, Medan 20155, Indonesia

Email: handrizal@usu.ac.id

ABSTRACT

A long way back to 2008, the google infrastructure team reported that the google data center handles
around 20 Petabytes per day with an average of 100.000 MapReduce jobs spread across its massive
computing cluster with standard machine cluster node setup costs approximately $2400 each. According to
how google handles things we can conclude even high-performance computers could have difficulties in
processing large data, and even not all agencies could afford this kind of setup. Sorting is any process of
arranging an item according to a rule with two common, yet ascending (ordering from smallest to largest
item) or descending (ordering from largest to smallest item). Sorting is very important for indexing an item
to ease searching the item by the system, human, or algorithm. There are many sorting algorithms with time
complexity O(N log N) for sorting n items one of them is merge sort. Based on google’s case, computing
performance could be increased by dividing tasks to another node in the cluster computing environment,
with this similar approach we could increase the performance of the merge sort algorithm. Merge sort
algorithm based on divide and conquer technique that eases converting sequential process to parallel
process with dividing it to another computer processor in divide phase. Using this similar dividing
approach the system will divide the process into several hosts separated physically in cluster computing by
utilizing java RMI as middleware. A research test was conducted using 4 computers hosted for distributed
merge sort computing as well as a comparative computer for parallel merge sort computing. The system
was tested on two and four-processor usage of parallel merge sort and four hosts to three hosts
configuration with two processors and four processors for distributed merge sort, respectively. Performance
is measured by comparing computation time of distributed merge sort and parallel merge sort.

Keywords: Distributed MergeSort, High-Performance Computing MergeSort, Distributed System,
MergeSort Algorithm, Parallel MergeSort, Java RMI, number sorting, Distributed MergeSort
VS Parallel MergeSort, Cluster computing, Computer Network

1. INTRODUCTION

Sorting is one of the main core computational
algorithms used in many scientific and engineering
applications [8]. There are many algorithms with
time complexity O (N log N) for sort N numbers,
one of them is merge sort. Merge sort is a sorting
algorithm based on the divide and conquer
paradigm to solve the problem by dividing tasks
into sub-problems recursively as every subproblem
is small enough to be solved immediately, every
solution from each subproblem will be merged
again to obtain a solution from the main problem.

The simplest form of merge sort is sequential
merge sort that dividing input array elements into
half recursively until one element is left in the array,
then conquers the divided elements of the array
based on order rule and merging the conquered
array. All of this operation executes step by step
from half part to other remaining half parts in a
single execution thread process line at one time.

As for big data, computation takes place at the
application back-end commonly server computers
used RISC architecture, such as a mainframe, PC
(Personal Computer), supercomputer, etc. Then

Journal of Theoretical and Applied Information Technology
31st October 2021. Vol.99. No 20

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4899

high-performance computing must take place in the
non - mobile device because the amount of energy
used for the computing is high, in the case to
provide faster data services in the mobile device
without using the limited amount of energy for
computing large data set. Desktop PC as a type of
the Personal Computer variant with general-
purpose computing capability and wide high-
performance setup solution to choose for the cost to
performance widely used as a server rather than a
mainframe.

Now a day, computer technology is constantly
developed and more architecture is being
introduced to the market. The design of machines
with multiple core capabilities involves
programming for many logical processors working
independently [13]. Several parallel sorting
algorithms such as bitonic sort, sample sort, column
sort, and partitioned radix sort have been devised to
shorten execution time. Parallel sorts usually need a
fixed number of data exchange and merging
operations. The computation time decreases as the
number of processors grows. Since the time is
dependent on the number of data each processor
has [8].

To take advantage and adapting to parallel
computing, a parallel sorting merge sort algorithm
was introduced for utilizing all processors to
participate in the merging phase that takes place
during iteration. Parallel merge sort concept based
on sequential merge sort form with the only
difference is dividing phase not only divide
problem but divide task to be processed by several
other execution threads so that multiple execution
paths can be executed simultaneously at one time
and synchronized the thread during merging phase
to prevent thread interference error caused by array
access error that does not correspond to the
iteration.

Parallel merge sort has limited hardware
resources on a device while processing a large data
set. To overcome this hardware limitation in
computing merge sort algorithm operation, the
merge sort algorithm operation was applied on a
distributed system. Where in the system the
distributed array object was distributed to all
existing hosts to be executed in parallel among each
hosted resource then synchronization was done

when merging back all data from the existing host,
this form so-called distributed merge sort.

One of the widely used distributed computing
software concepts is MOS (Middleware Operating
System) which provides several services for local
applications and several independent services for
remote applications. The available services in MOS
(Middleware Operating System) are finding objects
and interface location names, controlling
information protocol, synchronization, concurrency,
the security of objects, etc. Using the MOS
paradigm parallel merge sort algorithm can be
implemented into distributed merge sort.

Being able to communicate in distributed
computing in addition to requiring a MOS
paradigm also required the existence of
communication architecture, one of the
architectures that are often used to provide APIs in
the development of distributed computing
applications is CORBA (Common Object Request
Broker Architecture). CORBA is a middleware
based on an object distributed system that provides
interoperability capability for two heterogeneous
objects, CORBA usually is used in C, C++,
COBOL, and JAVA.

Research by Dr. Mamta C. Padole in 2007
shows that a heterogeneous distributed system is
considered as a better alternative to HPC for
processing big data without the need for high-
performance computing machines integration.

Based on the description above, the problem to
be solved is how to develop a desktop application
that implements integration in a distributed system
to analyze performance gains in sorting large
amounts of data.

This research contributes to network-based
software developers who need new methods to
improve application performance by increasing the
computational speed of the algorithms used,
especially merge sort through the use of computer
networks so that all available computer resources
can be used efficiently without having to upgrade
hardware specifications. computer to be able to
keep up with the services that the application
executes against many requests.

Journal of Theoretical and Applied Information Technology
31st October 2021. Vol.99. No 20

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4900

The limitations of the problem in this study
are as follows:
1. The algorithm used is the Merge Sort

Algorithm.
2. The middleware used is JAVA RMI.
3. The system runs closed on a high-

speed Local
4. Area Network without any data traffic

to the internet.
5. The system is running on a powered

host and ready to accept assignments.
6. Messages sent by master and slave

have a maximum chunk size of 1 KB.
7. The number of threads of execution

per host is a maximum of 4 threads per
host. A minimum number of hosts is 3
end systems.

8. The IP address of each host is known
before the system starts.

2. MERGE SORT ALGORITHM

Merge Sort is one sorting algorithm in
computer science designed to meet the sequencing
needs of a data set that is not possible to be
accommodated in a computer’s memory due to the
large number size of the data. The algorithm was
invented by John Von Neuman in 1945.

Merge sort algorithm data was sorted using
divide and conquer that is by breaking then
completing each section and merging it again. First
data are broken down into 2 parts where the first
part is half (if even array size) or half minus one (if
odd array size) of all data, then continue resolving
each section until it consists of only one data per
section.

After breaking down (dividing) the section, the
data is re-combined by comparing it on the same
section whether the first data is greater than the data
to the middle + 1 if true then the data to the middle
+ 1 is moved as first data, then the data in the first
middle is shifted into data to two to the middle + 1,
so on until it becomes one whole block as before.
Because of this process, the merge sort algorithm
requires a recursion function method for its
completion. Pseudocode merge sort algorithm is as
follows :

Algorithm 1: Merge Sort

1. procedure mergesort(var an as array)

2. if (n == 1) return a
3. var l1 as array = a[0] ... a[n/2]
4. var l2 as array = a[n/2+1] ... a[n]
5. l1 = mergesort(l1)
6. l2 = mergesort(l2)
7. return merge(l1, l2)

8. end procedure

9. procedure merge(var as an array, var b as an

array)

10. var c as an array
11. while (a and b have elements)
12. if (a[0] > b[0])
13. add b[0] to the end of c
14. remove b[0] from b
15. else
16. add a[0] to the end of c
17. remove a[0] from a
18. end if
19. end while
20. while (a has elements)
21. add a[0] to the end of c
22. remove a[0] from a
23. end while
24. while (b has elements)
25. add b[0] to the end of c
26. remove b[0] from b
27. end while
28. return c

29. end procedure

3. PARALLEL MERGE SORT

Parallel merge sort consists of two phases:
local sort and merges [8]. Once keys in each
processor are sorted locally, processors merge them
in log P steps as explained below if P processors
are used [8]. In the first step, processors are paired
as (sender, receiver) [8]. Each sender sends its list
of N/P keys to its partner (receiver), then the two
lists are merged by each receiver to form a sorted
list of 21 N/P keys [8]. Half of the processors work
during the merge and the other half sit idling [8]. In
the next step, only the senders in the previous step
are paired as (sender, receiver), and the same
communication and merge operations are

Journal of Theoretical and Applied Information Technology
31st October 2021. Vol.99. No 20

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4901

performed by each pair to form a list of 22 N/P keys
[8]. The process continues until a complete sort list
of N keys is obtained. The algorithm is given as
follows :

Algorithm 2: Parallel Merge Sort

P: the total number of processors
(assume P = 2k for simplicity)
Pi: a processor with index i
h: the number of active processors
N: list of keys

1. Begin
2. h := P
3. for all i:= 0 to P – 1
4. Pi sorts a list of N/P keys locally.
5. for j:= 0 to (log P)-1 do
6. for all i:=0 to h-1
7. if(i < h/2) then
8. Pi receives N/h keys from Pi +h/2
9. Pi merge two lists of N/h keys into a sorted list

of 2N/h
10. Else
11. Pi sends its list to Pi – h /2
12. h := h/2
13. end

4. DISTRIBUTED MERGE SORT AND

JAVA RMI

A distributed system is a collection of
independent computers that appears to its users as a
single coherent system [3]. This definition has
several important aspects. The first one is that a
distributed system consists of components (i.e.,
computers) that are autonomous [3]. A second
aspect is that users (be they people or programs)
think they are dealing with a single system [3]. This
means that one way or the other autonomous
components need to collaborate [3]. How to
establish this collaboration lies at the heart of
developing distributed systems [3].

In principle, a distributed system should also
be relatively easy to expand or scale [3]. This
characteristic is a direct consequence of having
independent computers, but at the same time,
hiding how these computers take part in the system
as a whole [3]. A distributed system will normally
be continuously available, although perhaps some
parts may be temporarily out of order [3]. Users

and applications should not notice that parts are
being replaced or fixed, or that new parts are added
to serve more users or applications [3].

To support heterogeneous computers and
networks while offering a single system view,
distributed systems are often organized using a
layer of software-that is, logically between a
higher-level layer consisting of users and
applications, and a layer underneath consisting of
operating systems and basic communication
facilities. Such a distributed system is sometimes
called middleware [3].

An important class of distributed systems is
one for high-performance computing tasks [3].
Roughly speaking, one can make a distinction
between the two subgroups. In cluster computing,
the underlying hardware consists of a collection of
similar workstations or PCs, closely connected
using a high-speed local-area network and each
node runs the same operating system [3]. The
situation has become quite different in the case of
grid computing [3]. This subgroup consists of
distributed systems that are often constructed as a
federation of computer systems, where each system
may fall under a different administrative domain
and may be very different when it comes to
hardware, software, and deployed network
technology [3].

As communication must support heterogeneous
computers and networks in offering a single system
view, then interprocess communication is the heart
of all distributed systems [3]. Communication in
distributed systems is always based on low-level
message passing as offered by the underlying
network [3]. Expressing communication through
message passing is harder than using primitives
based on shared memory, available for non-
distributed platforms. The modern distributed
system often consists of thousands or even millions
of processes scattered across a network with
unreliable communication such as the internet [3].
Unless the primitive communication facilities of
computer networks are replaced by something else,
the development of large-scale distributed
applications is extremely difficult. There are three
widely used models for communication: Remote
Procedure Call (RPC), Message Oriented
Middleware (MOM), and data streaming [3].

Journal of Theoretical and Applied Information Technology
31st October 2021. Vol.99. No 20

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4902

An RPC allowing programs to call procedures
located on other machines. When a process on
machine A calls a procedure on machine B, the
calling process on A is suspended and execution of
the called procedure takes place on B. Information
can be transported from the caller to the callee in
the parameters and can come back in the procedure
result. No message-passing at all is visible to the
programmer [3].

RPC (Remote Procedure Class) and ROI
(Remote Object Invocation) contribute to hiding
communication in distributed systems, that is, they
enhance access transparency. Unfortunately, neither
mechanism is always appropriate. In particular,
when it cannot be assumed that the receiving side is
executing at the time a request is issued, alternative
communication services are needed. Likewise, the
inherent synchronous nature of RPCs, by which a
client is blocked until its request has been
processed, sometimes needs to be replaced by
Message-Oriented Communication [3]. A class of
Message Oriented Communication services
generally known as message queueing system or
just MOM (Message Oriented Middleware. MOM
provides extensive support for persistent
asynchronous communication. The essence of these
systems is that they offer intermediate-term storage
capacity for messages, without requiring either the
sender or receiver to be active during message
transmission [3].

Communication as discussed so far has
concentrated on exchanging more or less
independent and complete units of information [3].
Examples include a request for invoking a
procedure, the reply to such a request, and
messages exchanged between applications as in
message queuing systems [3]. The characteristic
feature of communication sometimes does not
matter at what particular point in time
communication takes place [3]. Although a system
may perform too slow or too fast, timing does not
affect correctness. The question that addresses is
which facilities a distributed system should offer to
exchange time-dependent information such as audio
and video streams [3]. Various network protocols
that deal with this are called stream-oriented
communication.

4.1. Java RMI

Java RMI is a Java API that performs the
object-oriented equivalent of Remote Procedure
Calls (RPC), with support for the direct transfer of
serialized Java classes and distributed garbage
collections. The RMI provides a mechanism to
create distributed applications in java as explained
in the three communication models above. The
RMI allows an object residing in one system to
invoke methods on an object running in another
JVM [1]. RMI is used to build distributed
applications such an application is sometimes
referred to as a distributed object application.

RMI provides remote communications between
java programs with a typical server program that
creates some remote objects, makes references to
these objects accessible, and waits for clients to
invoke a method on these objects [1]. A typical
client program obtains a remote reference to one or
more remote objects on a server and then invokes
methods on them [1].

The distributed object applications in java RMI
need to do 3 things: locate remote objects,
communicate with the remote object and load class
definitions for objects that are passed around. The
following illustration in figure 1 depicts an RMI
distributed application that uses the RMI registry to
obtain a reference to a remote object. [1] The server
calls the registry to associate (or bind) a name with
a remote object [1]. The client looks up the remote
object by its name in the server’s registry and then
invokes a method on it [1]. The illustration also
shows that the RMI system uses an existing web
server to load class definitions, from server to client
and from client to server, for objects when needed
[1].

Figure 1: RMI distributed application

Java RMI has been designed following a
layered architecture approach. Figure 2 presents,
from bottom to top, the transport layer, responsible

Journal of Theoretical and Applied Information Technology
31st October 2021. Vol.99. No 20

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4903

for managing all communications, the remote
reference layer, responsible for handling all
references to objects, the stub/skeleton layer, in
charge of the invocation and execution, respectively,
of the methods exported by the objects; and the
client and server layer, also known as service layer
[12]. The activation, registry, and distributed
collection (DGC) services are also part of this
service layer [12].

Figure 2: Java RMI layered architecture

RMIregistry is a namespace on which all server
objects are placed [7]. Each time the server creates
an object, it registers this object with the
RMIregistry (using bind() or reBind() methods)
[7]. These are registered using a unique name
known as bind name [7].

To invoke a remote object, the client needs a
reference of that object [7]. At that time, the client
fetches the object from the registry using its bind
name (using the lookup() method) [7]. The
following illustration explains the entire process :

Figure 3: Java RMI Process Summary

Java RMI as discussed so far has offered high-
speed network support, a high-performance library
for cluster computing, remote communication
abstraction to the programmer, security of
transmitted objects. The question addressed is why

use java RMI in the development of this desktop
application for implementing merge sort on a
distributed system. Java technology runs
consistently on any operating system supported by
the java platform. The main problem faced in
deployments of distributed computing is that each
node must have installed JRE (Java Runtime
Environment) in their system. This makes
scalability of distributed computing easier, different
variety systems can participate dynamically in the
cluster without every node has to be configured
individually.

4.2. Distributed Merge Sort

Distributed merge sort has a similar approach
with parallel merge sort counterpart, the main and
only differences are local sort and merge process in
distributed merge sort run in different host except
for the final sort and merge process is done by the
local host (client). Once all host H is located, the N
list will be divided by H host. In the first step, the
hosts are paired to their list to sort tasks according
to division results. Then each task to send the
sorting task for H host is assigned in the queue
waiting to be processed by cP processors on sender
host (client), then each sender sends its list of N/H
keys to the listed receiver host (server)
simultaneously, after that, the receiver host (server)
executes parallel merge sort locally in their
machines then send back their result of the sorted
list to sender host (client).

The sender host (client) sits idling, waiting for
the completing task returned from the listed
receiver host (server). While completing the sorted
list task returned from a receiver host (server), the
sender host (client) will begin to execute the local
sort and merge it with the other completed list from
another receiver host (server), this process
continues until a complete sort list of N keys are
obtained. The algorithm of distributed merge sort is
summarized as follows :

Algorithm 3: Distributed Merge Sort

P: the total number of receiver host (server)
processors (assume P = 2k for simplicity)
Pi: server processor with index i
cP: the total number of sender host (client)
processors (assume cP = 2k for simplicity)
cPi: client host processor with index i

Journal of Theoretical and Applied Information Technology
31st October 2021. Vol.99. No 20

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4904

h: the number of active processors
H: the number of available receiver hosts

(server)
Hi: receiver host (server) with index i
L: list of receiver returned sorted keys

1. procedure parallel mergesort(var N as an array):
N as an array

2. h := P
3. for all i:= 0 to P – 1
4. Pi sorts a list of N/P keys locally.
5. for j:= 0 to (log P)-1 do
6. for all i:=0 to h-1
7. if(i < h/2) then
8. Pi receives N/h keys from Pi +h/2
9. Pi merge two lists of N/h keys into a sorted list

of 2N/h
10. Else
11. Pi sends its list to Pi – h /2
12. h := h/2
13. end procedure

14. procedure distributedMergeSort(var N as array)
15. cP := H
16. for i:= 0 to H-1
17. cPi send a list of N/H keys to Hi => list add (Hi

invoke parallelMergeSort(N/H) local in Hi’s
machine)

18. end for
19. i :=0
20. while(i < H-1)
21. if(receives N/H keys from Hi)
22. if(sizeOf(L) > 2)
23. merge two list of L into single sorted list of L
24. end if
25. i++
26. end if
27. end while
28. end for
29. end procedure

5. UNDERSTANDING THE WORKING
ENVIRONMENT

To perform the experimentation, different
hardware and software configurations are chosen.
Here, we will understand the need for different
configurations with their specification. Each node
in the system is preloaded by some computation

and the processing job with its details is discussed
in the following subsection.

5.1. Heterogeneous Cluster Node Configuration

In this system, two setups are used for both the
setup we are varying the number of processors used
in the node with 2 and 4 CPU usage. To understand
the effect of computation-distribution we are
varying the number of nodes in the cluster from 3
to 4 in a distributed merge sort setup, the purpose is
to understand the effect of computation-distribution
techniques like memory, the number of the CPU
core usage, and the number of cluster nodes for
comparison with parallel merge sort computation in
similar CPU core usage configuration. This is to see
the effect of processing, overall performance, and
adaptiveness of the algorithm in a cluster, in
different configuration parameters.

For the projected system, 4 different Personal
Computers models are used. The hardware
configurations are as follows.

Table 1: Hardware configurations of cluster nodes

PC
Index

Processor Memory
Operating

System

PC_1

AMD E-
350 @
1,6GHz

(2 CPUs)

8GB
DDR3L

Windows 7
ultimate 32-bit

(build 6.1.7601)

PC_2

Intel(R)
Core(TM)
i7-8550U
CPU @
1,8GHz

(4 CPUs)

8GB
DDR4

Windows 10
Home Single

Language 64-bit
(build

10.0.1863.1198)

PC_3

Intel(R)
Core(TM)
i5-8400
CPU @
2,8GHz

(6 CPUs)

16GB
DDR4

Windows 10
Pro 64-bit

(build
10.0.19042.572)

Journal of Theoretical and Applied Information Technology
31st October 2021. Vol.99. No 20

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4905

PC_4 Intel(R)
Core(TM)
i5-2450M
CPU @

2,5Ghz (2
CPU)

4GB
DDR3

Windows 7
Professional 32-

bit (build
6.1.7600)

The PC_3 node is the most higher hardware
performance, following by PC_2 as the second-
highest and PC_4 as the third-highest. Meanwhile,
PC_1 is the lowest hardware performance in terms
of processing power. The PC_3 node is higher in
terms of processing, communication, and memory.
Purposely the higher node is introduced in the
system so that the system behavior can be studied
over the other parameters and a good algorithm can
be designed accordingly. In all varying nodes, the
java RMI client node is always PC_3. Other
computing parameters on which the system
performance relies are bus speed, internal clock rate,
instruction sets architecture, cache memory, and
processor. The details of the distributed merge sort
configuration are given below in table 2.

Table 2: Distributed merge sort configuration

Experimental
Configuration

Participating Nodes

3 Nodes PC_2, PC_3, PC_4

4 Nodes
PC_1, PC_2, PC_3,

PC_4

Meanwhile, for a parallel merge sort setup,
each node will execute the process locally using a
different number of processor core usage. Thus, our
system comprises three setups that generating
elapse time of execution data for each chosen setup.

5.2. System Design and Processing Job
Description

Merge sort as sorting algorithm need access
array and comparing array, this process has interval
time from starting point to the finishing point. This
time interval is in milliseconds and by comparing it
with two different computation setups (i.e. parallel
and distributed) we can find whether high-

performance computing between two methods has
advantages on the heterogeneous cluster.

The main problem we faced when calculating
elapsed execution time is a consistent result of
elapsed time value, then developed application
must have the process’s looping feature for average
measurement of execution time. The result of
calculating average time will be used as an
observation variable in comparing the performance
of both computation types.

Java RMI has tight–coupling middleware, it
needs client and server applications to know each
other. So a node must determine to act as either a
server or a client. The server node is a node that
performs given tasks and a client node is a node in
charge of dividing tasks to the server nodes, client
node is the actual main application while the server
node is only modules/parts of the main application.

The client application contains five phases:
choosing algorithms, initializing the algorithm
configuration, choosing logging type, starting the
process, process result. The initializing algorithm
phase depends on the type of algorithm selected at
the beginning of the choosing algorithm phase. The
basic initialization parameter supported by all
chosen algorithms is the number of process
loop/stress tests and a random number input file to
sort. The initialization parameter number of
processor cores used is a special configuration for
parallel merge sort. Initialization parameter for
distributed merge sort consists of the number of
available server hosts, the number of processor
cores used in the client, the number of processor
cores used for each server host, and the amount of
data sent to the host server.

As for choosing the logging type phase in the
client application is configured to set the message
format displayed in real-time windows at the
starting process phase. Lastly, the process result
phase is a process that tasks to create and display
the result of sorted numbers and sorting process
results in execution time data.

The data used in the experiment are a random
number with values ranging between 0 and 10.000.
The amount of random data used in the experiment
process ranges from ten million to one hundred
million. Similar random data is used as input data

Journal of Theoretical and Applied Information Technology
31st October 2021. Vol.99. No 20

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4906

for all existing node sorting processes to preserve
consistent results. These data will be sorted
repeatedly according to the number of process
loop/stress test parameters during the initialization
phase so that the average value of execution time
data can be calculated.

6. SORTING USING PARALLEL MERGE
SORT

Parallel merge sort experimentation was
performed on four nodes with different hardware
specifications. Each experiment is carried out with
two and four-processor core configurations. The
test is conducted on ten files measuring from ten
million to one hundred million random numbers.
The execution time result of four nodes with each
number of processor’s core usage configuration is
dual-core (2 processor cores) and quad-core (4
processor cores) are presents using graphs will
explain in the following.

6.1. Parallel Merge Sort Execution Time Result
on PC_1

As discussed in previous sections, parallel
merge sort on PC_1 will be performed on two
numbers of processor’s core usage configuration
that is 2 cores and 4 cores, each configuration will
be looped ten times for each file contains ten
million to eighty million random numbers. The
average execution time results are shown in figure
4.

Figure 4: PC_1 Execution Time

For the system setup mentioned and is used to
get figure 4 results, the performance observed in
eight file sizes is not showing improvement. This is
because the number of node’s physical processor
cores is only two and processors not supporting

hyperthreading feature, increasing the number of
processor core usage in system configuration will
be useless. After all, the configuration dropped to
the maximum physical cores (that is two)
automatically by PC_1’s operating system. As
noticed in figure 4, the file size only counts to eight
of ten, this is because the PC_1 system does not
have enough memory to store all the contents of the
file from the hard disk drive.

6.2. Parallel Merge Sort Execution Time Result
on PC_2

Similar to the previous section, parallel merge
sort on PC_2 also performed on two numbers of
processor’s core usage configuration that is 2 cores
and 4 cores, each configuration will be looped ten
times for each file contains ten million to one
hundred million random numbers. The average
execution time results are shown in figure 5.

Figure 5: PC_2 Execution Time

Based on figure 5 results, the performance
observed in ten file sizes showing some
improvement in the quad-core configuration for
PC_2 nodes. This is because the number of node’s
physical processor’s core reaching four, here
significant improvement is shown while processing
ninety million and one hundred million file size, but
having some performance degradation between ten
million to forty million file sizes. This result shows
that PC_2 having CPU throttling issues in the
experiment. Hence, further in this paper, the result
would be taken as a reference for comparison to
other nodes and computation setup.

6.3. Parallel Merge Sort Execution Time Result
on PC_3

Journal of Theoretical and Applied Information Technology
31st October 2021. Vol.99. No 20

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4907

Parallel merge sort on PC_3 is similarly
performed on two numbers of processor’s core
usage configuration that is 2 cores and 4 cores, each
configuration will be looped ten times for each file
contains ten million to one hundred million random
numbers. The average execution time results are
shown in figure 6.

Figure 6: PC_3 Execution Time

Figure 6 shows that PC_3 has the best
execution time compared to other nodes, the dual-
core and quad-core performance of PC_3 shows a
relatively consistent improvement compared to
PC_2 performance for the same configuration even
though it has more physical processor cores
compared to other nodes.

6.4. Parallel Merge Sort Execution Time Result
on PC_4

Similar to PC_1 discussed in the previous
section, parallel merge sort on PC_4 also performed
on two numbers of processor’s core usage
configuration that is 2 cores and 4 cores, each
configuration will be looped ten times for each file
contains ten million to eighty million random
numbers. The average execution time results are
shown in figure 7.

Figure 7: PC_4 Execution Time

For the system set up in PC_4 having similar
hardware specification as PC_1, but figure 7
showing a slight improvement in PC_4 execution
time while increasing numbers of the processor’s
core used configuration, this performance
improvement remains consistent as the file size
increase. This is because of the hyperthreading
feature of the processor, even the number of the
physical processor is only two, hyperthreading
enables the processor to act as two logical
processors in a physical processor. This
hyperthreading feature is hidden from the
application and shown as four physical processor
cores on the application side.

7. SORTING USING DISTRIBUTED

MERGE SORT

Distributed merge sort was performed on four
setups: distributed merge sort 3 nodes dual-core
configuration, distributed merge sort 3 nodes quad-
core configuration, distributed merge sort 4 nodes
dual-core configuration, and distributed merge sort
quad-core configuration. Each experiment is carried
out on ten files measuring from ten million to one
hundred million random numbers. The following
section will present the execution time result in
graphs for each setup.

7.1. Distributed Merge Sort Execution Time
Result on 3 nodes

The following graph showing the average
execution time result for each file contains ten
million to one hundred million random numbers in
3 nodes configuration with two processor’s cores
and four processor’s cores configuration.

Journal of Theoretical and Applied Information Technology
31st October 2021. Vol.99. No 20

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4908

Figure 8: Distributed Merge Sort 3 Nodes Execution
Time

Execution time results in figure 8 graphs
showing a huge performance hit, there was
unbalance node bottlenecking in a cluster
environment that slowing performance further after
increasing the number of processor’s core usage.

7.2. Distributed Merge Sort Execution Time
Result on 4 nodes

The following graph showing the average
execution time result of each file contains ten
million to one hundred million random numbers in
4 nodes configuration with two processor’s cores
and four processor’s cores configuration.

Figure 9: Distributed Merge Sort 4 Node Execution Time

Figure 9 graphs showing dramatic performance
enhancement for the dual-core to the quad-core
configuration in a four-node cluster environment.
The result of this experiment based on figure 9
graph shows an increasing number of participant
nodes and the number of processor’s cores
configuration is very influential at the level of
performance in merge sort algorithm execution
implementation of the distributed system cluster
environment.

8. DISTRIBUTED MERGE AND PARALLEL
MERGE SORT COMPARISON BASED
ON CPU USAGE

This section presents graphs for comparing
parallel merge sort performance with distributed
merge sort performance. The previous discussion,
we find there was four parallel merge sort setup
with dual cores (two core configuration) and quad
cores (four-core configuration) configuration and
we find there was two distributed merge sort setup
also with dual cores and quad cores configuration,
this two setup have a similar characteristic in
several processor’s core usage, then the following
subsection explaining distributed merge sort and
parallel merge sort comparison based on two
groups.

8.1. Dual Cores Comparison

The following graph showing a line diagram to
visualize the difference performance between four
parallel merge sort setups and two distributed
merge sort setups in two processor’s core used
configuration, higher lines indicate worsening
performance because the execution time becomes
longer and vice versa lower lines indicate better
performance because of the execution time is
getting faster.

Figure 10: Performance Comparison in Dual Core
Configuration

The performance observes base on the Figure
10 graph showing that distributed merge sort
overall performance is worse than parallel merge
sort overall performance. its performance is even
much worse than nodes with the lowest
specification compared with distributed merge sort
with the most nodes setup, oddly distributed merge
sort with the least node setup has better

Journal of Theoretical and Applied Information Technology
31st October 2021. Vol.99. No 20

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4909

performance than distributed merge sort with the
most nodes setup.

8.2. Quad Cores Comparison

The following graph also showing a line
diagram to visualize the difference performance
between four parallel merge sort setups and two
distributed merge sort setups in four processor’s
core used configuration, using similar measurement
approaches like the dual cores line graph
counterpart that is a higher line indicates worsening
performance because the execution time becomes
longer and vice versa lower lines indicate better
performance because of the execution time is
getting faster.

Figure 11: Performance Comparison in Quad-Core
Configuration

Performance comparison observed based on
figure 11 showing dramatic improvement of
distributed merge sort with most nodes
performance. Although the distributed merge sort
with most nodes setup is better than the distributed
merge sort with the least nodes and parallel merge
sort with the lowest hardware specification, the
overall performance of distributed merge sort still
worse than the overall performance of parallel
merge sort in quad cores configuration.

9. CONCLUSION AND FUTURE
DIRECTION

Based on the designing, analysis, and test
results and discussion, from the implementation of
merge sort algorithms on a distributed system, then
the conclusions obtained are as follows :

 Distributed merge sort algorithm can improve
the performance of parallel computing merge
sort on the nodes with low hardware
specifications, however, raises the bottleneck
effect on nodes with higher hardware
specification when combined with a node with
the lowest hardware specification in a
distributed system environment.

 Distributed merge sort performance on dual-
core configuration is 167.119% worse than the
parallel merge sort performance on dual-core
configuration and distributed merge sort
performance on quad-core configuration is
93.5708% worse than the performance of
parallel merge sort on the quad-core
configuration. So it can be summed up a
different performance of parallel merge sort
with distributed merge sort is -130.345% or
2.3x slower.

 Parallel merge sort algorithm and distributed
merge sort algorithm speed heavily influenced
the number of processors utilized based on the
system configuration.

Based on the result of conducting research,
high-performance computing with implementing
merge sort algorithm on the distributed system has
no performance improvement. In the development
and testing of the system, the author finds some
weaknesses and errors in this study. Here are some
suggestions and factors to be aware of as
consideration for research, repair, and research
development in the future, that is :

 To achieve a better and more accurate result in
the next research, the entire used nodes in the
system’s cluster environment needs to be
homogenous.

 Try using another divide and conquer
algorithm such as quicksort, bitonic sort,
column sort, sample sort, partitioned radix sort,
etc.

 Try using another middleware such as manta
RMI, MPI, restful API, SOAP, etc.

 Try using more participant nodes in the cluster
environment.

 For the next research better use another
programming approach in division task held in
the client node rather than just dividing it based
on the number of available nodes.

REFERENCES:

Journal of Theoretical and Applied Information Technology
31st October 2021. Vol.99. No 20

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4910

[1] An Overview of RMI Applications,
https://docs.oracle.com/javase/tutorial/rmi/ove
rview.html

[2] Alyasseri, Zaid & Al-Attar, Kadhim & Nasser,
Mazin, Parallelize Bubble and Merge Sort
Algorithms Using Message Passing Interface
(MPI), 2014.

[3] Andrew, Maarten, Distributed Systems
Principles and Paradigms, Pearson Education
Inc, 2016.

[4] George, Jean et. all, DISTRIBUTED
SYSTEMS Concept and Design, Addison-
Wesley, 2012.

[5] Grosso, W., Java RMI (1st ed.), O'Reilly,
2001.

[6] Janeš, I., An Overview of Distributed
Programming Techniques, University of
Zagreb, 2019.

[7] Java RMI – Introduction,
https://www.tutorialspoint.com/java_rmi/java
_rmi_introduction.htm.

[8] Minsoo Jeon, Dongseung Kim, Load-
Balanced Parallel Merge Sort on Distributed
Memory Parallel computers, Korea University,
2002.

[9] Nugroho, A. a. , Dcom, Corba, Java Rmi:
Konsep Dan Teknik Dasar Pemrograman.
Jurnal Sistem Informasi, 7, 2011, pp. 132-142.

[10] Radenski, A., Shared Memory, Message
Passing, and Hybrid Merge Sort for
Standalone and Clustered SMPs. CSREA
Press, 2011.

[11] Shi, Feng & Yan, Zhiyuan & Wagh,
Meghanad., An Enhanced Multiway Sorting
Network Based on n-Sorters. 2014 IEEE
Global Conference on Signal and Information
Processing, GlobalISIP 2014, 2014.

[12] Taboada, G. &. T. C. &. T. J., High-
Performance Java Remote Method Invocation
for Parallel Computing on Clusters, 2007, pp.
233 – 239.

[13] Zbigniew Marzalek, Parallelization of
Modified Merge Sort Algorithm, Symmetry
176, 2017.

