
Journal of Theoretical and Applied Information Technology
31st October 2021. Vol.99. No 20

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4875

 DYNAMIC MAP PATHFINDING USING HIERARCHICAL
PATHFINDING THETA STAR ALGORITHM

1IRFAN DARWIN, 2SURYADIPUTRA LIAWATIMENA
1Bina Nusantara University, Computer Science Department, Jakarta, Indonesia

2Bina Nusantara University, Computer Engineering Department, Jakarta, Indonesia

E-mail: 1irfan@binus.ac.id

ABSTRACT

Theta Star is an efficient algorithm that can be used to find an optimal path in a map with better
performance compared to the A-Star algorithm. Combining the Theta Star with Hierarchical Pathfinding
further enhances its performance by abstracting a large map into several clusters. What this combination
lacks are the capability to handle a dynamic element in the map. Without that capability, the agent could
potentially collide with elements in the map that is undesirable in certain conditions, while adding that
capability might reduce the pathfinding algorithm's performance. The proposed algorithm aims to provide
the capability to handle dynamic elements without severe negative impact on the performance of the
algorithm. The effectiveness of the proposed algorithm is verified in terms of execution time, number of
nodes explored, final path length, and the number of collisions that occurred.

Keywords: Artificial Intelligence, Dynamic Map, Grid-Based, Hierarchical Pathfinding, Theta Star

1. INTRODUCTION

Pathfinding is one of the basic yet essential
tasks for Artificial Intelligence. Pathfinding
algorithms have many uses, such as autonomous
vehicle [1], unit movement in video games [2], path
planner application [3], and movement for robots
[4]. There are several algorithms for finding the
optimum path to travel from one position to
another, each with its advantages and
disadvantages. Most of the current algorithm,
however, primarily deals with a static map.
Meanwhile, a specific condition requires a
pathfinding algorithm to consider dynamic
elements. The navigation application may require
viewing a different route due to changing traffic. AI
may be required to consider a potentially dangerous
area, and an autonomous car will need to consider
other cars' locations. Therefore, adding the
capability to navigate a dynamic map to a
pathfinding algorithm is important to allow the
algorithm to be applied in more challenging
conditions.

Many researchers have continuously made
improvements to create a fast and accurate
pathfinding algorithm. They were starting from the
simplest one, which is Dijkstra's algorithm, also
known as the Shortest Path First (SPF) algorithm. A
few improvements were made into what becomes

the A-Star (A*) search algorithm, where a heuristic
function is added to determine the optimal path.
From these algorithms, another improvement was
made to make the algorithm suitable for many
nodes, which is then called the Hierarchical
Pathfinding (HP) algorithm.

Based on the comparison between several
pathfinding algorithms, the algorithm which has a
good overall performance is the Hierarchical
Pathfinding Theta Star algorithm, which can
calculate the optimum path to get from one point to
another with better memory usage while
maintaining the efficiency of the resulting path [5].
The algorithm works by combining the
characteristics of the Hierarchical Pathfinding
algorithm and the Theta Star algorithm. The
Hierarchical Pathfinding algorithm provides the
capabilities to process a large number of nodes by
separating them into several smaller grids. Some of
the grids partitioned from the Hierarchical
Pathfinding algorithm already offer the optimal
path, which the Theta Star algorithm will disregard.
Then, the grids that do not yet have an optimal path
will be further processed by the Theta Star
algorithm. This method allows the Hierarchical
Pathfinding Theta Star algorithm to provide an
optimum path for a large grid with the minimum
number of processed nodes.

Journal of Theoretical and Applied Information Technology
31st October 2021. Vol.99. No 20

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4876

While the Hierarchical Pathfinding Theta
Star algorithm provides a good result for a static
map, improvements can still be made to enable the
Hierarchical Pathfinding Theta Star algorithm to be
used on a dynamically changing map. A
dynamically changing map is defined as a map
containing elements such as moving obstacles or,
more generally, a map in which a path could
become invalid at one time and valid at another.
The main contribution of this paper is expected to
be an algorithm that allows the Hierarchical Theta
Star algorithm to be used on a dynamic
environment. Meanwhile, the performance of the
algorithm should not be significantly worse than the
original algorithm. Additionally, the paper also
aims to provide additional insight by implementing
the algorithm on a hexagon-grid instead of the usual
square-grid.

2. LITERATURE REVIEW

2.1 Related Works

Many different methods can be used to
find a path from one point to another. It started
from the simplest algorithm, which is Dijkstra’s
algorithm [6]. This algorithm is also known as the
Shortest Path First due to its function to find the
shortest path to traverse to get from the starting
point to the destination. The Dijkstra’s algorithm
serves as the basis for many other pathfinding
algorithms, which improves the performance of the
pathfinding by adding one or more criteria to
determine the most efficient path. Some of the
improvements made for the Dijkstra’s algorithm are
visualizing the path generated by the algorithm [7],
adding the ability to handle parameters given in
neutrosophic numbers [8], applying the algorithm
on a curved surface [9], combining it with other
algorithms such as the Floyd-Warshall algorithm
[10], and one of the well-known extensions of the
Dijkstra’s algorithm is the A-Star algorithm [11].
Adding a heuristic function to the pathfinding
algorithm improves the performance of the A-Star
algorithm compared to the Dijkstra’s algorithm.

The A-Star algorithm is widely used in
many applications such as a map, games, or in
robotics. The improvement is based on how
effective the heuristic function is in approximating
the value it represents. The more accurate the
heuristic function used, the more efficient the A-
Star algorithm will perform. The A-Star algorithm
is also provably optimal in regard to the accuracy of
the return path. However, improvements can still be
made in other areas of the algorithm such as

improving the memory usage, adding other
constraints, or adding dynamic path planning
capability based on the A-Star algorithm [12].

After the A-Star algorithm, various
variations were developed, improving the
performance of the pathfinding algorithm in other
aspects. One of the variations that deals with a
dynamic environment are the Dynamic A-Star
algorithm, also known as the D Star Algorithm
[13]. The D Star algorithm extended the
functionality of the A-Star algorithm by allowing
the agent to update the heuristic function used in
the algorithm as it continually evaluates the
changing environment. The dynamic environment
can be divided into three categories. A known
dynamic environment means that all of the
information regarding the obstacles faced by the
agent is completely understood. A partially known
dynamic environment means that only some of the
information is provided to the agent at the
pathfinding stage, which will require the agent to
determine a path with incomplete information.
While a totally unknown dynamic environment
means the agent has absolutely no information
about the obstacles in the environment.

Another variation of the A-Star algorithm
is called the Theta Star algorithm [14]. This
variation aims to improve the performance of the
A-Star algorithm by reducing the number of nodes
that need to be visited to determine the optimum
path. The way the Theta Star algorithm works is
that the algorithm checks for line-of-sight between
the starting point and the destination instead of
checking each neighboring node. The Theta Star
algorithm can provide a near-optimal path while
providing a runtime comparable to A-Star
algorithm. Further variations of the Theta Star
algorithm, which further improves the runtime of
the algorithm is called the Lazy Theta Star
algorithm [15]. Other variation includes the Cluster
Theta Star which aims to improve performance by
dividing the map into several clusters [16],
combining the algorithm with a hybrid A-Star
algorithm [17], using a visibility graph as a
pathfinding method [18], and another variation
which aims to improve the line-of-sight efficiency
called the Batch Theta Star [19].

There is another method used to optimize
a pathfinding algorithm performance when used on
large maps. The method is called a Hierarchical
Pathfinding [20]. This method works by separating
a large map into several smaller clusters, which is

Journal of Theoretical and Applied Information Technology
31st October 2021. Vol.99. No 20

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4877

then evaluated separately, leading to a decrease in
search space required. This method, however,
requires a second step in the planning stage in
which the agent is required also to calculate the
most efficient cluster to visit, making the
implementation of the Hierarchical Pathfinding
more complicated. The Hierarchical Pathfinding is
used in combination with another pathfinding
algorithm to calculate the optimum path in each of
the cluster. Several of the implementation such as
the Hierarchical Pathfinding A-Star (HPA*)
Algorithm or the Hierarchical Pathfinding Theta
Star (HPT*) Algorithm, can be used to scale each
of the algorithms on a larger map. Hierarchical
Pathfinding can also be implemented under
multiple conditions such as using a navigation mesh
instead of a grid [21] or in a multi-agent condition
[22].

Hierarchical Pathfinding Theta Star works
by limiting the number of nodes to consider during
the pathfinding. Since the visibility check of the
Theta Star is a relatively time-consuming process,
this allows the algorithm to be executed quicker
compared to a non-hierarchical Theta Star
algorithm. A comparison was made, determining
that the Hierarchical Pathfinding combined with the
Theta Star algorithm provides a similar
improvement in reducing the number of nodes
visited compared with the Hierarchical Pathfinding
combined with the A-Star algorithm. As the
researchers suggest, further improvement on the
Hierarchical Pathfinding Theta Star algorithm can
be made by providing the capabilities to traverse a
dynamic environment.

2.2 Static Map Pathfinding

Most algorithms primarily deal with a
static map. A map is considered static if it contains
only stationary obstacles and does not change while
the agent deliberates which path is optimum [23].
This condition allows pathfinding algorithm to plan
the optimal path from the starting point to the
destination only once and ensures that once found,
the path will remain valid.

Algorithms such as the A-Star [11]
provides a simple and efficient way to calculate the
optimum path. While other algorithms, such as the
Theta Star [14] improves the execution time and
memory usage of the algorithm by optimizing the
number of nodes that needed to be visited to
determine the optimum path. Further improvement

to the execution time was also provided by the Lazy
Theta Star [15]. The accuracy of the path produced
by both the A-Star and Theta Star algorithm is
proven to optimal given an accurate heuristic
function.

To determine whether the heuristic
function used in the pathfinding algorithm is
accurate, one of the criteria required is for the
heuristic function to be admissible. For a heuristic
function to be admissible, its estimated cost of
reaching the destination must never exceed the
actual cost [24]. Admissibility is easier to achieve
on a static map since the initial cost estimate will
not change over time. Therefore, one of the
improvements that can be made to both algorithms
is by adding the capability for the algorithm to
provide an accurate path in a dynamic map.

2.3 Dynamic Map Pathfinding

Some pathfinding algorithms can also be
implemented in a dynamic map. A map is
considered dynamic if it contains a moving obstacle
or changes in such a way, that over time some path
will become invalid and other will become valid
[25]. This condition requires the initial path that
was considered optimum to be refined according to
constantly changing environment to ensure it is still
valid and optimum.

In a dynamic map the agent should also
take into account the movement of an obstacle to
ensure no collision will occur while keeping the
path as short as possible. Certain path in a dynamic
map might be shorter than another but has a high
chance of causing a collision between the agent and
an obstacle. While a longer path might provide a
much safer route to the destination cell. A dynamic
map pathfinding algorithm should be able to choose
which path is optimum.

One of the pathfinding algorithms that has
the capability to provide an accurate result in a
dynamic environment is the D Star [13]. The D Star
also classifies the dynamic environment into
several categories, such as a known dynamic
environment, a partially known dynamic
environment, and a totally unknown dynamic
environment. These three categories are based on
the observability of the environment. A known
dynamic environment means that information such
as the path of the moving obstacle is known. A
partially known dynamic environment means that

Journal of Theoretical and Applied Information Technology
31st October 2021. Vol.99. No 20

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4878

only some information is available to the agent.
While a totally unknown dynamic environment
means that the agent does not possess any initial
information about the environment, requiring the
agent to both collect the required information and
refine its path on the go.

The D Star algorithm provides the basis
which could be used to allow a pathfinding
algorithm to be used on a dynamic map. Based on
the observability of the environment, the behavior
of the algorithm itself should change to be able to
perform optimally. This algorithm could be further
improved by increasing the performance of the
algorithm when used in a larger known dynamic
environment. This improvement can also be applied
to partially known dynamic environment, as long as
one of the known information is the size of the
map. While for totally unknown dynamic
environment this improvement might be difficult to
achieve.

There are also several other dynamic
pathfinding algorithms that can be used as a
reference. Algorithms such as the Hierarchical
Pathfinding Lifelong Planning A Star (HPLPA*)
are algorithms that combine several algorithms to
enable an A-Star algorithm to be implemented in a
dynamic map [26]. Other dynamic pathfinding
algorithms includes the Dynamic Hierarchical
Pathfinding A Star (DHPA*) [27] and there is also
research on waypoint graph-based pathfinding
algorithm that can be used on a dynamic
environment [28].

2.4 Hierarchical Pathfinding

Hierarchical Pathfinding provides a
method to allow a pathfinding algorithm to deal
with a large environment. The general idea of the
Hierarchical Pathfinding is to create abstractions
that can help simplify a large environment into a
more manageable part. One of the abstraction
methods used is by dividing a large environment
into several clusters. Each cluster can then be
treated as a single node by the highest-level entity
when performing the pathfinding. The way this
method works is similar to a command structure,
where the highest-level entity will decide the
general strategy and delegate its implementation to
a lower-level entity. The delegation will continue
until it reaches the lowest level entity which will
perform the actual action, in this case determining
the optimal path.

Hierarchical Pathfinding has been applied
to both the A-Star and Theta Star algorithm. Based
on the test performed, the Hierarchical Pathfinding
method combined with the Theta Star algorithm is
proven to be more efficient than Hierarchical
Pathfinding combined with the A-Star algorithm
[20]. The variables compared between to determine
the performance of both algorithms are path
lengths, number of node visits, and number of
nodes in memory.

Since both of the algorithms used are static
pathfinding algorithms, improvements can be made
to allow a combination of the Hierarchical
Pathfinding method with dynamic map pathfinding.
Exactly which algorithm will be chosen and
combined will impact the performance and its
ability to handle certain factor such as the
observability of the environment.

There is a constraint when combining the
Hierarchical Pathfinding method with a dynamic
map pathfinding algorithm. The constraint is that
the agent's information should include the structure
of the map that the agent will traverse. Using that
information, the agent will be able to split the map
into several smaller clusters. However, a dynamic
map with a totally unknown dynamic environment
classification cannot implement the Hierarchical
Pathfinding method since the agent has little or no
information about the map to split it into smaller
clusters effectively.

2.5 Algorithm Comparison

Each pathfinding algorithm has different
advantages and disadvantages. Some are easier to
implement while others provide additional
capabilities in handling certain conditions. The
following table summarizes the comparison of all
the algorithms that have been previously discussed.

TABLE 1: ALGORITHM COMPARISON

No
Algorithm

Name
Accurate Dynamic

Map
Size

1 A* Small
2 Theta* Small

3
Lazy

Theta* Small

4 D* Small
5 HPA* Large
6 HPT* Large
7 Mod HPT* Large

Journal of Theoretical and Applied Information Technology
31st October 2021. Vol.99. No 20

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4879

As shown in Table 1, most of the basic
form of the pathfinding algorithms can only be
applied on a static map. Each algorithms have their
own advantage and disadvantage in terms of
execution time, memory usage, return path length,
and dynamic capability. For example, D Star
algorithm provides dynamic capability but requires
an undetermined amount of time since it lacks
preprocessing ability. Meanwhile, hierarchical
pathfinding algorithms provide a longer return path
in exchange for a faster execution time when
applied to a large map. While Theta Star provides a
more efficient memory usage in exchange for a
longer execution time.

Prior research regarding the Theta Star
algorithm aims to combine the Theta Star with the
Hierarchical Pathfinding, creating the Hierarchical
Pathfinding Theta Star algorithm. This allows the
algorithm to be applied in a large map while also
providing a more efficient memory usage
advantage that Theta Star provides when compared
to the A Star algorithm. For this research, the
Hierarchical Pathfinding Theta Star algorithm is
further extended by combining it with some aspect
of a dynamic pathfinding algorithm. Allowing the
modified algorithm to consider dynamic elements
when creating a path for the agent.

The proposed algorithm (highlighted in
yellow) is a modified version of the Hierarchical
Theta Star algorithm. Different from the original
algorithm, which is considered a static pathfinding
algorithm, the proposed algorithm will also take
dynamic elements into consideration, making it a
dynamic pathfinding algorithm. The algorithm is
expected to add dynamic capability to the algorithm
while maintaining all of the advantages of the basic
pathfinding algorithm. Which is providing an
accurate path as expected from any pathfinding
algorithm, efficient memory usage as the algorithm
is using the Theta Star as its basis, and can be
applied in a large map as the algorithm is also
implemented using Hierarchical Pathfinding.

3. RESEARCH METHODOLOGY

3.1 Benchmark

The experiments are done using the
benchmark grids from the Dragon Age computer
game [29]. The grid is provided in a text file
format, which will be interpreted by the simulator
to form the environment. Each character represents
a different type of grid.

Figure 1: Text Representation of the Benchmark Grid
Used in the Experiment (Partial)

As shown in Figure 1, the grids provided
have several characters used to identify each cell's
type in the grid. The experiments are conducted
while keeping the original definition for the "."
character, which represents a walkable cell. The
changes made are on the definition for the "T"
character. Initially, the "T" represents trees which is
impassable. In this experiment, the "T" will
represent a trap cell, the grid's dynamic part. A trap
cell will continuously switch between the "off" and
"on" states. While the trap is in the "on" state, the
agent moving to that cell will count as a collision.

Apart from the text representation of the
map, a total of 130 scenarios are also provided
benchmarking purpose. These scenarios place a
different starting and destination point for the
agent. By executing each of the pathfinding
algorithm using the same map and scenario, a
comparison can be made to determine the
efficiency of each algorithm.

TABLE 2: TEXT REPRESENTATION OF THE SCENARIOS

(PARTIAL)

Bucket
X

Start
Y

Start
X

End
Y

End
Optimal
Length

0 19 26 19 29 3.00
0 44 30 43 28 2.41
0 31 23 33 23 2.00
0 30 22 31 21 1.41
0 40 14 43 16 3.82

… … … … … …
5 24 35 43 27 22.31

Journal of Theoretical and Applied Information Technology
31st October 2021. Vol.99. No 20

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4880

5 26 41 32 20 23.48
5 28 24 26 45 21.82

… … … … … …
13 39 7 3 41 50.08
13 15 42 47 6 49.25
13 5 39 39 3 50.08
13 3 33 46 14 50.87
13 4 32 47 19 48.38

Table I displays the text representation of
several scenarios from the 130 total scenarios for
the map. The text is formatted in a certain pattern,
the leftmost value indicates which bucket the
scenario belongs to. Each bucket contains 10
scenarios which means there is a total of 13 buckets
for this set of scenarios. The bucket value serves to
categorize the scenario based on its complexity,
with more complex scenario having a higher bucket
value. The second and third value indicates the
coordinate of the starting point, while the fourth
and fifth value indicates the coordinate of the
destination point. Finally, the sixth value indicates
the optimal length of the scenario, calculated by the
square root of the diagonal cost of the distance
between the starting and destination point given in
the scenario.

3.2 Map Representation

In order to visualize the path formed by
each of the pathfinding algorithm, the application
developed for the simulation will convert the text
representation into an image representation. While
originally represented by a square grid, the
application for this experiment will use a hexagon
grid. A different color will be used to differentiate
one type of cell from the other, with a blue-colored
hexagon representing the starting position of the
agent and a dark green-colored hexagon
representing the destination that the agent needs to
reach.

Figure 2: Original Square-Grid Representation (Left)
and Hexagon-Grid Representation Used in the

Experiment (Right)

Figure 2 illustrates the visual
representation of the map. The specific map used in
the experiment is the arena map. There are two
types of terrains in this map, the "." and "T" cell. In
the application used, the "." cell will be represented
by a green-colored hexagon which is walkable,
while the "T" cell will be represented by a red-
colored hexagon which could cause a collision if
stepped on by the agent at a particular time.

Figure 3: Hierarchical Cluster Representation

Figure 3 shows the clusters formed by the
Hierarchical Pathfinding algorithm. For a map with
a dimension of 49 x 49, the algorithm creates 25
clusters, represented with 25 different colors, with a
dimension of 10 x 10. The various color indicates
which grid belongs in which cluster, where a grid
with similar color belongs to the same cluster. The
clusters act as an abstraction which simplifies the
whole map into a few clusters, which minimizes the
number of nodes a pathfinding algorithm need to
consider when creating a path to a destination. The
blue-colored grid represents the connection node,
an abstraction that simplifies multiple neighboring
grids of two clusters into a single node. The
Hierarchical Pathfinding algorithm will only
consider the connection node when trying to find a
path for the agent to move from one cluster to the
other.

3.3 Proposed Algorithms

The proposed algorithm, called the
Modified Theta Star, is at its core, a Theta Star
algorithm with additional logic during its visibility
checking step. The additional logic will allow the
algorithm to not only consider the static obstacle
but also dynamic obstacle. Meanwhile, other step
such as the cluster separation during the
hierarchical pathfinding are followed according to a

Journal of Theoretical and Applied Information Technology
31st October 2021. Vol.99. No 20

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4881

regular Theta Star algorithm. This setup is expected
to allow the modified algorithm to have a
comparable performance to the original algorithm,
while at the same time adds the capability for the
algorithm to consider dynamic obstacle during the
pathfinding.

The following pseudocode describe the
main point of the Theta Star algorithm. Different
from the A-Star algorithm, a parent node in Theta
Star does not have to be a direct neighbor of the
child node. As long as the parent node has a line of
sight to the child node, then it is possible for the
two to be connected, bypassing other nodes
between the two. Otherwise, the algorithm will
work similar to the A-Star algorithm. This allows
the Theta Star algorithm to create a more direct
path to the destination while minimizing the
number of nodes that has to be processed. This
results in the Theta Star algorithm to be more
efficient in memory usage compared to the A-Star
algorithm.

TABLE 3: PSEUDOCODE FOR THE ORIGINAL THETA STAR

ALGORITHM

if (visibilityCheck(s, n))

 if (gScore(parent(s)) + c(parent(s), n) < gScore(n))

 gScore(n) = gScore(parent(s)) + c(parent(s), n)

 parent(n) = parent(s)

 if neighbor in open

 open.remove(n)

 open.insert(n, gScore(n) + heuristic(n))

else

 if gScore(s) + c(s, n) < gScore(n)

 gScore(n) = gScore(s) + c(s, n)

 parent(n) = s

 if n in open

 open.remove(n)

 open.insert(n, gScore(n) + heuristic(n))

As shown in Table 3, the pseudocode for
the Theta Star will serve as a basis for the Modified
Theta Star algorithm. Most of the variables used are
similar to the A-Star algorithm. Variables such as
the open, which denotes a list of node that the
algorithm can consider to explore, gScore, which
denotes the current shortest distance from the start
to this node and the c(node1, node2) which denotes

the Euclidean distance from node1 to node2. The
visibility check is the main function which
differentiates the Theta Star from other pathfinding
algorithms, as such, the changes made to extend the
algorithm will be made in that function, shown by
the following pseudocode.

TABLE 4: PSEUDOCODE FOR THE MODIFIED THETA STAR

VISIBILITY CHECK ALGORITHM

foreach (node in nodeInBetween(node1, node2))

 if (node.isStaticObstacle || node.isActiveDynamicObstacle)

 return false;

return true;

As shown in Table 4, the pseudocode for
the Modified Theta Star differs from the original
Theta Star during the visibility check process. By
adding additional condition (highlighted in yellow),
the Modified Theta Star will also consider the
dynamic element in the environment. The dynamic
element will only be considered as an obstacle if
the algorithm determine that it will be in an active
state when the agent is considering moving there.
This will allow the Modified Theta Star to be less
likely to pick a path that will cause a collision while
at the same time retains the ability to accept
collision instead of picking an overly long or failing
to find a return path. How the algorithm determines
whether a trap will be active or not during a
particular time is shown in the following
pseudocode.

TABLE 5: PSEUDOCODE FOR THE MODIFIED THETA STAR

DYNAMIC OBSTACLE DETECTION ALGORITHM

if (node.isDynamicObstacle)

 return numberOfStep % trapFrequency == 0;

return false;

As shown in Table 5, the algorithm takes
advantage of the information of how often the trap
will become active. By keeping track of how many
steps the agent needs to reach that cell, the
calculation is simply to perform modulo on both
numbers. If the number of steps required is a
multiple of the trap frequency, then the trap will be
active during that time. If that condition is met, the
agent will try to avoid moving there during that
time.

Journal of Theoretical and Applied Information Technology
31st October 2021. Vol.99. No 20

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4882

3.4 Algorithm Limitations

As a result of combining several
pathfinding algorithms, the proposed algorithm
carries several limitations that is inherent to the
basic algorithm used. The first is that by using the
Hierarchical Pathfinding algorithm, the algorithm
needs information regarding the size of the
environment that will be traversed, which is
required in order to form the hierarchical clusters.

The second limitation is that in order to
form the optimal path, the algorithm also requires
information about the dynamic elements in the
environment. More detailed information will allow
the algorithm to create a more accurate path by
simulating what the environment will be like at a
certain time.

4. RESULT AND DISCUSSIONS

Six pathfinding algorithms are considered
during the experiment. A-Star algorithm (A*),
Theta Star algorithm (Theta*), Modified Theta Star
algorithm (Mod Theta*), and the Hierarchical
counterpart of the three algorithms (HPA*, HPT*,
and Mod HPT*). Each of the pathfinding algorithm
is executed to provide the return path for each one
of the 130 scenarios provided with the map. The
result of each execution is then stored and then
further processed to determine the general
performance of the algorithm on this particular map
under varying scenarios. The following figure
illustrates the different path produced by Theta Star
Algorithm compared to the Modified Theta Star
Algorithm when executed on one of the 130
scenarios.

Figure 4: Return Path Theta Star (Left) and Modified

Theta Star (Right)

Figure 4 shows the return path comparison
between the Theta Star algorithm and the Modified
Theta Star algorithm. The yellow-colored cell

indicates the path which the algorithm produces.
The Theta Star Algorithm creates a path that passes
through the red-colored grid, which results in some
collision. Meanwhile the Modified Theta Star
creates a longer path which evades the red-colored
grid, choosing to minimize the number of
collisions.

The data used for the final comparison are
calculated from after each pathfinding algorithms
have finished executing all 130 scenarios. The total
result for the execution time, path length, and
number of visited nodes are averaged, while
number of collisions is summed for the comparison
between each of the pathfinding algorithm.
Execution time indicates how long the algorithm
requires to find the return path and is counted in
milliseconds (ms), meanwhile explored node
indicates how many cells the pathfinding algorithm
need to consider before finding the final return
path. Return path length indicates how many steps
the agent needs to take to reach the destination,
meanwhile collision count indicates how many
times the agent steps on an active trap cell. The
following figures compares the execution result of
each of the six algorithms.

Figure 5: Execution Time Comparison Chart

Figure 5 shows the execution time
comparison between the six pathfinding algorithms.
For the non-hierarchical pathfinding algorithm, the
average execution time for the A-Star algorithm is
lower compared to the Theta Star algorithm and the
Modified Theta Star algorithm. Implementing the
Hierarchical Pathfinding algorithm improves the
execution time of all three of the pathfinding
algorithms. In comparison between the original
Hierarchical Theta Star algorithm and the Modified
Hierarchical Theta Star algorithm, adding the
dynamic pathfinding capability to the Theta
algorithm does not negatively impact its execution
time significantly.

Journal of Theoretical and Applied Information Technology
31st October 2021. Vol.99. No 20

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4883

Figure 6: Explored Node Comparison Chart

Figure 6 shows the number of explored
graph nodes comparison between the six
pathfinding algorithms. For the non-hierarchical
pathfinding algorithm, the average number of
explored nodes for the A-Star algorithm is higher
compared to the Theta Star algorithm and the
Modified Theta Star algorithm. Implementing the
Hierarchical Pathfinding algorithm increases the
number of nodes explored for all three of the
pathfinding algorithms. This is due to the
preprocessing needed for the Hierarchical
Pathfinding algorithm, which aims to split the map
into clusters and create a hierarchical abstraction. In
comparison between the original Hierarchical Theta
Star algorithm and the Modified Hierarchical Theta
Star algorithm, adding the dynamic pathfinding
capability to the Theta Star algorithm further
increases the number of nodes explored due to the
need to find alternative path that will not cause a
collision.

Figure 7: Return Path Length Comparison Chart

Figure 7 shows the return path length
comparison between the six pathfinding algorithms.
For the non-hierarchical pathfinding algorithm, the
average path length for the three algorithms is
relatively similar. Implementing the Hierarchical
Pathfinding algorithm increases the length of the
return path for the A-Star algorithm due to the lack
of path smoothing on the final hierarchical result. In

comparison between the original Hierarchical Theta
Star algorithm and the Modified Hierarchical Theta
Star algorithm, adding the dynamic pathfinding
capability to the Theta Star algorithm also increases
the length of the return path due to the need to find
alternative path that will not cause a collision.

Figure 8: Collision Count Comparison Chart

Figure 8 shows the collision count
comparison between the six pathfinding algorithms.
For the non-hierarchical pathfinding algorithm,
both the A-Star and Theta Star algorithm has a
similar number of collisions. Implementing the
Hierarchical Pathfinding algorithm does not
significantly change the number of collisions. In
comparison between the original Hierarchical Theta
Star algorithm and the Modified Hierarchical Theta
Star algorithm, adding the dynamic pathfinding
capability to the Theta Star algorithm successfully
reduces the number of collisions that would
otherwise occur.

Summarizing the result shown from Figure
5 – 8, a Hierarchical Theta Star algorithm could be
extended to be able to handle a hexagon grid and
dynamic elements without significant penalty on its
performance. The Modified Hierarchical Theta Star
algorithm manages to reduce the total number of
collisions by up to 90%, while keeping the average
execution time within 5% range compared to the
original algorithm and keeping the average return
path length within 8% range compared to the
original algorithm.

Based on the results of the experiment, the
Modified Hierarchical Theta Star is capable of
performing at a comparable level with the original
algorithm. However, this result is achieved with
several limitations, where the algorithm has access
to complete information regarding the size of the
environment and behavior of the dynamic elements.
Further improvements can be made to ensure that
the algorithm can also perform with incomplete

Journal of Theoretical and Applied Information Technology
31st October 2021. Vol.99. No 20

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4884

information. Such as incomplete environment
dimension, where the algorithm does not know the
exact size of the environment, or unknown dynamic
element behavior, where the algorithm cannot
perfectly predict what will happen to the dynamic
element at a certain time.

5. CONCLUSION

This primary focus of this research is in
extending the capability of the Hierarchical Theta
Star algorithm. Based on the total number of
collisions shown in Figure 8, the Modified
Hierarchical Theta Star algorithm can reduce the
number of the collision of the final path in most
scenarios. This result is achieved while maintaining
the efficiency that hierarchical pathfinding provides
by abstracting the map into several clusters,
reducing the number of explored nodes, and
reducing execution time as shown in Figure 5 – 6.
Using the Theta Star algorithm as the main
pathfinding algorithm ensures that the abstraction
will not cause the final path to become significantly
longer as shown in Figure 7. These results shows
that the Hierarchical Theta Star algorithm can be
extended, adding additional capabilities while
maintaining the performance of the original
algorithm.

Further modifications can still be made to
the algorithm. Including adding a more complex
dynamic element, multi agent scenario, or
implementing the algorithm on a three-dimensional
environment. Adding a more complex dynamic
element or using multiple agents would require
modifying the dynamic obstacle detection
algorithm according to the type of obstacle that the
agent might encounter. While a three-dimensional
environment will require modifying the
neighboring node detection algorithm to consider
additional directions.

Improvements can also be made to
improve the efficiency of the algorithm, such as
implementing a Lazy Theta algorithm instead of the
original Theta Star algorithm. A Lazy Theta
algorithm could further improve the execution time
of the algorithm by reducing the number of
visibility check required. Another possibility is
using a non-uniform cluster separation instead of
the basic square cluster. A more efficient cluster
separation could potentially reveal a more efficient
return path compared to the path that would be
generated otherwise.

REFRENCES:

[1] Kulbiej E. Autonomous Vessels' Pathfinding

Using Visibility Graph. 2018 Baltic Geodetic
Congress (BGC Geomatics). 2018.

[2] Hagelback J. Hybrid Pathfinding in StarCraft.
IEEE Transactions on Computational
Intelligence and AI in Games. 2016, pp. 319–
324.

[3] Imran M, Kunwar F. A hybrid path planning
technique developed by integrating global and
local path planner. 2016 International
Conference on Intelligent Systems Engineering
(ICISE). 2016.

[4] Chudý J, Popov N, Surynek P. Deployment of
Multi-agent Pathfinding on a Swarm of Physical
Robots Centralized Control via Reflex-based
Behavior. Proceedings of the International
Conference on Robotics, Computer Vision and
Intelligent Systems. 2020.

[5] Linus van Elswijk, Hierarchical Path-Finding
Theta*, 2013, pp. 11–13.

[6] Javaid MA. Understanding Dijkstra Algorithm.
SSRN Electronic Journal. 2013.

[7] Mavrevski R, Traykov M, Trenchev I. Finding
the shortest path in a graph and its visualization
using C# and WPF. International Journal of
Electrical and Computer Engineering (IJECE).
2020.

[8] Broumi S, Bakal A, Talea M, Smarandache F,
Vladareanu L. Applying Dijkstra algorithm for
solving neutrosophic shortest path problem.
2016 International Conference on Advanced
Mechatronic Systems (ICAMechS). 2016.

[9] Luo M, Hou X, Yang J. Surface Optimal Path
Planning Using an Extended Dijkstra
Algorithm. IEEE Access. 2020, pp. 147827–
147838.

[10] Risald, Mirino AE, Suyoto. Best routes
selection using Dijkstra and Floyd-Warshall
algorithm. 2017 11th International Conference
on Information & Communication
Technology and System (ICTS). 2017.

[11] Cui X., Shi H. A*-based pathfinding in modern
computer games. International Journal of
Computer Science and Network Security, 2011,
pp 125-130.

[12] Wang C, Wang L, Qin J, Wu Z, Duan L, Li Z,
et al. Path planning of automated guided
vehicles based on improved A-Star algorithm.
2015 IEEE International Conference on
Information and Automation. 2015.

Journal of Theoretical and Applied Information Technology
31st October 2021. Vol.99. No 20

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4885

[13] Raheem FA, Hameed UI. Heuristic D*
Algorithm Based on Particle Swarm
Optimization for Path Planning of Two-Link
Robot Arm in Dynamic Environment. Al-
Khwarizmi Engineering Journal. 2019, pp. 108–
123.

[14] Daniel K, Nash A, Koenig S, Felner A. Theta*:
Any-Angle Path Planning on Grids. Journal of
Artificial Intelligence Research. 2007, pp. 533–
579.

[15] Nash A, Koenig S, Tovey C. Lazy Theta*: Any-
angle path planning and path length analysis in
3D. In Proceedings of the AAAI Conference on
Artificial Intelligence. 2010.

[16] Mendonca P, Goodwin S. C-Theta*: Cluster
Based Path-Planning on Grids. 2015
International Conference on Computational
Science and Computational Intelligence (CSCI).
2015.

[17] Михалько ВГ, Круш ІВ. Effective pathfinding
for four-wheeled robot based on combining
Theta* and hybrid A* algorithms. ScienceRise.
2016.

[18] Abdul Latip NB, Omar R, Debnath SK. Optimal
Path Planning using Equilateral Spaces Oriented
Visibility Graph Method. International Journal
of Electrical and Computer Engineering
(IJECE). 2017.

[19] Dang V-H, Thang ND, Viet HH, Tuan LA.
Batch-Theta* for path planning to the best goal
in a goal set. Advanced Robotics. 2015, pp.
1537–1550.

[20] Botea A, Müller M, Schaeffer J. Near optimal
hierarchical path-finding. J. Game Dev. 2004,
pp. 1-30.

[21] Pelechano N, Fuentes C. Hierarchical path-
finding for Navigation Meshes (HNA⁎).
Computers & Graphics. 2016, pp. 68–78.

[22] Rahmani V, Pelechano N. Multi-agent parallel
hierarchical path finding in navigation meshes
(MA-HNA*). Computers & Graphics. 2020, pp.
1–14.

[23] Nilsson NJ. Artificial intelligence: A modern
approach. Artificial Intelligence. 2009, pp. 369–
380.

[24] Korf RE. Recent Progress in the Design and
Analysis of Admissible Heuristic Functions.
Lecture Notes in Computer Science. 2000, pp.
45–55.

[25] Charniak E, McDermott D. Introduction to
artificial intelligence. Reading, MA: Addison-
Wesley; 1991.

[26] Li Y, Zhao W, Zhou Z, Chen C. Hierarchical
and Dynamic Pathfinding Algorithms in Game
Maps. International Journal of Advancements in
Computing Technology. 2013, pp. 87–98.

[27] Kring AW, Champandard AJ, Samarin N.
Dhpa* and shpa*: Efficient hierarchical
pathfinding in dynamic and static game worlds.
In Sixth Artificial Intelligence and Interactive
Digital Entertainment Conference. 2010.

[28] Zhu W, Jia D, Wan H, Yang T, Hu C, Qin K, et
al. Waypoint Graph Based Fast Pathfinding in
Dynamic Environment. International Journal of
Distributed Sensor Networks. 2015.

[29] Sturtevant NR. Benchmarks for Grid-Based
Pathfinding. IEEE Transactions on
Computational Intelligence and AI in Games.
2012, pp. 144–148.

