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ABSTRACT 
 

Driver fatigue and losing wariness during long driving hours is considered as one of the main road 
accidents causes. It affects road safety directly. Road safety is a major disquieting problem, since traffic 
accidents endanger divers, travelers, and everyone in their scope, in addition to the road and vehicle 
damages. The EEG signal becomes one of the most dependable biological signals utilized to estimate the 
drivers' drowsiness state, although a multichannel acquiring system must be used to transmit the EEG 
signal. Wearing a multi-channel headset is not readily accepted by drivers. Many attempts have been done 
by researchers to reduce number of EEG channels used to detect drivers’ fatigue. The present study 
proposed utilizing only one of EEG channels signal to estimate driver fatigue state to raise the acceptance 
of the system and its flexibility. The system starts with receiving the EEG signals, then pre-processing 
them using filtering and transformed them to color image using spectrogram. After that, the EEGs 
spectrogram passed to the proposed CNN deep network model to identify them either fatigue or normal 
fatigue. The present study measured up many EEG channels to identify the most accurate and dependable 
one to classify driver fatigue. The results indicate that the FP1, T3, and Oz channels considered as the 
most efficient channels to identify the drive’s state either fatigue or not. They achieved an accuracy of 
94.33%, 92.57 and 93% respectively. Therefore, using a single one of these channels and the proposed 
CNN model will lead to a more robust driver drowsiness/fatigue detection system using EEG signals. 

Keywords: Adam Optimizer, Convolutional Neural Network, Driver Fatigue, Deep Learning, EEG 
Spectrogram, EEG Signal. 

 
1. INTRODUCTION  

The problem of driver fatigue detection 
is essential as it affects roads safety directly. 
Fatigue can be described as a state reached 
when the brain is no longer capable of 
maintaining ongoing activity. Driver fatigue 
could happen as a result of many factors such 
as sleeping disorder, long work hours, driving 
hours or taking special medication. Staying 
awake for a long time could result in body 
crashing. Drivers’ conscious during late time 
driving is also affected, as some researchers 
reported that the brain tells the body it should 
be asleep after midnight till the sunrise [1]. In 
general mental fatigue dropping attentiveness 

and delaying reaction while performing 
activity [2]. It also causes the presence of 
blurred and distorted vision, problems with 
remaining alert and recalling [3]. It is hinders 
drivers from making decisions in time while 
driving, thus raising the risk of traffic crashes. 
According to the National Sleep Foundation, 
almost half of U.S. adult drivers report that 
they felt drowsy during driving hours, 
considering 20% admit that they fall asleep 
during driving hours at any stage in their 
driving professions. [4]. As reported in 
[5],16.5% of disastrous crashes related to 
driver fatigue. 



  
Journal of Theoretical and Applied Information Technology 

31st January 2021. Vol.99. No 2 
© 2021 Little Lion Scientific 

 
ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
463 

 

Driver fatigue detection systems could be 
categorized as vehicle based, behavioural based or 
physiological characteristics based. The 
behavioural based techniques rely on the driver’s 
visible indicators such as blinking eyes, facial 
characteristics, yawning, the changes of head 
position or gaze direction. Vehicle based 
approaches includes metrics related to the vehicle 
such as steering wheel grip or steering wheel 
angle [6], [7]. Both of behavioural and vehicle-
based methods affected with drivers’ culture and 
driving style. 

The physiological approaches make use of 
the measurement of physical characteristics of a 
drivers’ body. For example, these measures could 
be: 

1. Body temperature. 
2. Electroencephalogram (EEG) to indicate brain 

activity. 
3. Electrocardiogram (ECG) to indicate 

heartbeat. 
4. Breathing frequency. 

5. Electrooculogram (EOG) to indicate eye 
movement. 

6. Electromyography (EMG) to indicate 
muscles activity 

Drive fatigue physiological based methods 
characterized by its efficiency as they have 
sufficient information to reflect the driver's 
physical state. The main limitation facing the 
usage of the physiological approaches is that 
almost all of the physiological features are 
obtained using physically attached sensors to the 
driver's body. The contact of the sensors with the 
driver's body has an impact on the driver's 
comfort and decreasing the system acceptance. 
Therefore, several researchers tried to overcome 
this limitation by creating physiological portable, 
smaller, or even contactless sensors [8] and [7]. 
Among driver's fatigue physiological based 
approaches, EEG is the most trustworthy one, but 
the EEG signal acquiring sensors makes it less 
flexible due to its nature and contact to the 
driver's body [9]. The brain electrical activity had 
been recorded for the first time in 1924, by the 
German psychiatrist Hans Berger. It had been 
recorded by using electroencephalography (EEG). 
Brain consists of different lobes of cerebral cortex 

as shown in Figure 1, these lopes are responsible 
for handling different types of activities so, the 
EEG related to these lobes reflects different 
activities performed by the brain. For example, 
the frontal lobe is engaged with personality, 
problem-solving, motor development, reasoning, 
planning, and movement. Visuall processing 
controlled by the occipital lobe . The temporal 
lobe is implicated in recognizing auditory stimuli, 
speech, perception, and memory [10].  

EEG representing the brain electrical (voltage) 
activity along the scalp, these activities are 
resulting from the brain neurons ionic current 
flows [10]. Electroencephalographic (EEG) signal 
comprises a rich information related to the 
functional processes in the brain. It reflects the 
brain state, activities, and diseases. The study of 
spectral features in electrode space has 
significantly relation to the brain process and their 
analysis, which has certainly confirmed useful to 
study the human brain in different states [11]. It 
allows monitoring driver’s brain waves and 
analyze them to detect drowsy, or fatigued state 
[7]. 

Figure 1. Anatomical areas of the brain [10]. 

EEG signal is mainly characterized by 
the richness of its frequency. This richness of 
frequency information facilitates the diagnostics 
of abnormalities in EEGs and for understanding 
its cognitive and functional behaviours. EEG has 
five main distinguished bands, as shown in figure 
2, each of them associated to a specific human 
activity [10]. The EEG frequency bands, as 
described in [10] and [12] as follows: 

1. Delta (0.5–4 Hz), it can be observed in all 
sleep stages, particularly in deep sleep stages 
it indicates also the waking state and serious 
brain disorders. 
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2. Theta (4–8 Hz), it arises in deep relaxation 
and subconscious activities, emotional 
stress, creative inspiration, deep meditation, 
and unconscious material. 

3. Alpha (8–13 Hz), it is the semi-conscious 
state indicator, it arises also in intense 
mental activity, tension and stress. 

4. Beta (13–30 Hz), it indicates the fully 
involved with a mental activity, state of 
clear alertness, entirely focused, learning, 
active attentions and focusing on the outside 
world or solving concrete problems. It is 
identified easily during relaxed vigilance or 
early drowsiness. 

5. Gamma (>30 Hz), it indicates the usage of 
multiple senses on the same time, associated 
with high energy activities such as cognitive 
or motor functions. 

Figure 2. EEG different frequency bands. 

The use of such a full 32 channel (10-20 EEG 
channel Montage system), as shown in Figure 3, 
tends to increase the complexity of the system. 
Prior training is required for the user to attach the 
electrodes to the head. Using a multi- channel 
system leads directly to a time-consuming and 
embarrassing feeling for drivers [13]. The amount 
of data that should be processed also increase as 
the number of used EEG channels increased. 
Complexity and time-consuming make EEG 
based driving fatigues system inapplicable in real 
life. Researchers are trying to minimize the 
number of used channels to detect driver 
drowsiness state, to reduce complexity and high 
cost when using the full EEG multichannel. They 

used machine learning techniques as in [13] [14], 
[15], [16], [17], [18] , [19] and [20]. Recently 
deep learning techniques arises on this field as a 
reliable technique such as in [3], [21], [22], [23], 

[24], [47],[48] and [49]. 

 

Figure 3. The standard EEG electrodes location on 

scullion, the tested electrodes on the current work 
surrounded with red. 

1.1 Machine Learning Based Driver Fatigue 
classification systems: 

In [16] they use the signal sample entropy as 
features with only one EEG channel which is F3. 
They reported results reach 95% correct 
classification. In [17] the authors tested different 
combinations to identify fatigue state by 
combining EEG , EOG, and ECG signals. For 
EEG they use only three channels which are Fz, 
T8, and Oz. they used fuzzy mutual information 
(MI)-based wavelet packet transform (FMIWPT) 
feature-extraction method for classifying the 
driver drowsiness state into one of pre-defined 
drowsiness levels and achieved the lowest error 
rate by combining the proposed three EEG 
channels. 

Li et al. in [14] attempted to find the best 
channels to indicate the fatigue state. They used 
Grey Relation Analysis (GRA) to find the best 
power indicator parameter and used Independent 
Component Analysis ICA to find the most 
appropriate channel to identify fatigue state. They 
concluded that using the mean value of signal 
power spectrum and Channels FP1 and O1 give 
the best results. 
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In [25], Li et al. continued to work on EEG 
channels minimization to classify fatigue state. 
They used the signal mean power spectrum and 
concluded that the difference between using only 
two channels (FP1 and O1) and the whole 16 
channels system is non-significant as using the 
only two channels gives 92.2% correct 
classification while the use of the whole 16 
channels gives 94.6% of correct classification. 

In [26] the authors used only the frontal head 
channel and proposed a wireless driver fatigue 
detection using U- Wake interfaced with a mobile 
device. To classify fatigue state, the system 
depends on calculating the frequency power of 
deferent EEG frequency bands to know their brain 
dynamic changes. They divided frequency power 
into the four main bands of the EEG signal which 
are, delta (l  ̴ 3 Hz), theta (4  ̴ 8 Hz), alpha (9 ̴ 12 
Hz) and beta (l3  ̴30 Hz). They used the frequency 
power level indicates the fatigue state by 
increasing the delta band power. The system 
needs 2 seconds to determine the driver state. 
Their result reached 93.9% mean accuracy of 
correct classification. The limitation on the 
classification computation method related to the 
dependence on the mobile device platform in 
calculations. Table 1 summarize the machine the 
previous researches that tried to reduce EEG 
channels to detect driver fatigue state. 

Table 1: Reduce Channels EEG based research 
groups to detect driver fatigue state. 

Research 
Group 

Used EEG 
Channels 

Accuracy 

Khushaba et. 
al.[17] 

Fz, T8, and 
Oz 

92.8 

Li [14] Fp1 O1 91.5 

Z. Xiaohua [16] F3 95 

C. Zhang [18] O1 and O2 96.5 

Li-Wei Ko [20] FP1 93.9 

R. Fu [15] FP1 and O1 91.5 

J. Hu [13] CP4 96.6 

J. M. Morales 
[19] 

FP1 and A1 Using other 
metrics 

The Present 
study 

FP1 94.36% 

 

 

2.1 Deep Learning Based Driver Fatigue 
classification systems: 

The previously motioned machine learning 
based techniques required a lot of computation in 
preprocessing and feature extraction stages while 
CNN has the ability of self-feature extraction as it 
require no feature extraction stage. In general, 
neural networks are themselves bio-inspired, i.e., 
trying to follow the same biological brain system 
learning and classification and particularly deep 
learning techniques more tended to the brain 
working system [27]. It is designed to suit the task 
of exploiting computational structure in data. 
These facts recommend it to be more appropriate 
to work with biological signals such as EEG 
signal. 

Generally, if we considered the signal 
representation to the system, the use of CNN deep 
networks will be characterized by two main 
approaches. The first approach, depending on the 
temporal characteristic of the EEG signal using 
more than one channel. On this approach, the 1-D 
EEG signal converted to a 2-D image 
representation showing the signal amplitude 
change with time during a certain time interval, 
using filtering techniques such as common spatial 
patterns (CSPs) algorithm as represented on [28] 
and [29]. The second approach, depending on 
converting the1-D EEG signal, converted to a 2-D 
image representation depending on frequency 
transformation such an FFT and WTP as 
described in[30] and [31]. 

Deep learning had been combined with 
spectrogram for to classify EEG signal in many 
problems of classification. In [31], they used a 
multi-channel EEG signal spectrogram as an input 
a deep learning classifier to classify sleep stages 
into five stages. The used deep neural classifier 
based on transfer learning using VGGNet. They 
achieved an average accuracy of 86%. In [32], the 
same technique of using EEG signal spectrogram 
as an input to a CNN classifier was applied. They 
used a multi-channel EEG signal to classify Rapid 
Eye Movement (REM) Behavior Disorder. They 
implement their own deep convolutional neural 
network, and it consisted of a five-layer 
architecture combining filtering and pooling. 
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They reached a maximum accuracy of 81% with 
87% AUC. In [30], they also use the same 
approach by combining the multi-channel EEG 
signal frequency spectrum with a CNN 
classification model to classify the brain status 
into either an ordinary or new task. 

Cheng et al. in [23] used a new approach to 
classify drivers drowsiness using their own 
developed CNN model. The CNN model input 
was the multi-channel EEG 1-D spectral feature 
interpolated to a topological map using Clough- 
Tocher scheme. The pixel data points related to a 
corresponding channel from the used 32 channel, 
resulting in a 32 ×32 input image size. Their 
results reached 82.8401% of accuracy. 

In [33], Zeng et. al. tested the performance of 
two deep network classifiers with multi-channel 
EEG signal input. The 1-D EEG signal of multi 
channels is converted to 2-D temporal 
representation, they proposed two models. The 
first one is called EEG-Conv, it consisted of 8 
ordinary CNN layers. The second model is called 
EEG-Conv_R, it combined CNN with recent deep 
residual learning. The first mode reached average 
accuracy of 91.78% while the second model 
reached 92.68% average accuracy. 

Ma et al. in [21], introduced an EEG based 
driving fatigue detection system. They used the 
standard EEG montage channels standard system 
in acquiring the 32 EEG channels and use them as 
the system input. They use principal component 
analysis (PCA) to reduce the 32 EEG channels 
dimensions then feed the output to PCANet 
classifier which was proposed in [34]. The 
PCANet classifier was used as feature extractor. 
The PCANet output fed to SVM and KNN 
classifiers to test both of them. The system 
reached 95% as the higest classification accuracy. 

Guarda et al in [3], introduced a driver 
fatigue system based on their designed CNN 
classifier. They used the standard montage EEG 
10-20 channels to capture Fz and Pz channels as 
an input to their proposed system. They started 
with converting the selected two channels signal 
to the spectrogram into a gray level 
representation. The proposed CNN model 
contained three convolutional layers, each 

followed by a pooling layer. The proposed CNN 
ended with two fully connected layers. They 
reached average classification accuracy equal to 
86%. 

In 2019 Budak et al. [22] introduced a 
complicated hybrid model to detect driver fatigue. 
The system was composed basically of three main 
blocks. The final decision made through a voting 
layer fused the three classification blocks. They 
used three combinations of the 32 EEG channels. 
These combinations are C3-O1, C4-A1 or O2-A1 
channels. The first block used EEG signal to get 
its zero-crossing rate and energy and also EEG 
spectrogram to get its spectral energy and instant 
frequency, then all of these inputs fed to a long-
short term memory (LSTM) network. The second 
block used EEG spectrogram with transfer 
learning using AlexNet and VGG16 deep nets as a 
feature extractor. The extracted features then fed 
to an LSTM network. Finally, in the third block a 
tunable Q-factor wavelet was applied on EEG 
signal to get its the mean and standard deviation 
of each sub-band separately and then feed it to a 
LSMT network. The final output output is the 
three blocks fusion result. The maximum 
accuracy for each block separately reached 
88.47%, while the three block fused output got 
94% present of correct classification.  

W. Shalash, in [24] the researcher used 
transfer learning techniques depending on the 
well-known CNN structure AlexNet as a 
classifier. The EEG signals converted to 
spectrogram to be suitable as 2D input to 
AlexNet. The author tested many channels to 
select the most appropriate one to identify the 
driver fatigue state. She concluded that channels 
FP1 and T3 are the most effective channels; they 
achieved 90% and 91% average accuracy, 
respectively. 

In [47] and [48], the authors proposed a 
system for drivers fatigue detection depending on 
EEG and EOG signals. They acquired data from 
channels O1 and O2 for EEG signals and Vu and 
Vd for EOG (above and under the left eye). The 
system based on the alpha wave change as the 
alpha band is highly reflecting the difference 
between the sleepiness and awake cases. They 
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used continuous wavelet transformation for 
feature extraction. As the signals have a temporal 
characteristic, they used Long Short Term 
Memory (LSTM) neural network to classify it. To 
overcome the shortage in subjects number, they 
used a leave-one-subject-out cross-validation 
method and achieved an average accuracy of 
98%. Using four electrodes with two of them 
attached up and down to the drivers' eye helps 
achieve high accuracy, but it might not be suitable 
or accepted for drivers in real life. 

F. Rundo et al.[49] suggested a system 
acquired the signals from O1 and O2. They 
collected their data from 62 subject. The signals 
acquired while the subjects were totally relaxed 
while the awakens signal was acquired while the 
subjects were performing mental activities. Then 
extract features using the Discrete Cosine 
Transform (DCT) and finally used a deep learning 
neural stage consists of stacked autoencoders with 
softmax layers. The autoencoder layers 
characterized with their ability to learn with 
correlated input. Their results indicated 100% 
accuracy in drowsy/wakeful discrimination. The 
data acquisition stage perfumed in both relaxes 
and mental activities, which is not an exact 
simulation for the driving state. 

In [51], they proposed a recurrence network-
based convolutional neural network (RN-CNN) 
method to detect drivers’ fatigue.  After acquiring 
the signal, they passed the 30 channels to a 
recurrent neural network, each channel 
individually. They then employed a mutual 
information matrix to form a multiplex recurrence 
network to reduce the original EEG signal's 
complexity, dimension. They mentioned they tried 
to overcome the low signal-to-noise ratio and the 
signal's nonstationary nature by using a recurrent 
mutual matrix. Reducing the signal dimension also 
helped in improving the training efficiency of 
CNN. In the last stage, the signal fed to their own 
shallow CNN model, they reached an average 
accuracy of 92.95% on their on data.  This method 
combines both the classical and deep learning 
methods but still depends on the whole 30 channels. 

In [52], Zhang et al. introduced a mental 
fatigue detection method using a graph convolution 

combined with brain function connection theory.  
They focus on studying the effect of the electrodes’ 
special location relation as the brain function itself 
is a collaborative activity among different areas of 
it, so they use the graph neural network, reflecting 
this idea. They used the whole 32 channels. They 
called the method the partial directed coherence 
graph convolutional neural network (PDC-GCNN), 
which can analyze the characteristics of single 
electrodes while automatically extracting the brain 
network's topological features. They used the PDC 
method to construct a matric representing the 
relationship between EEG channels, and the GCNN 
combines to identify the fatigue state. They perform 
two methods, once by using differential entropy 
and the other by using power spectral density as an 
input to their model; they reached a result of 
84.32%  for using DE and 83.84% for using PSD. 

In [53], they tied to reduce the number of used 
electrodes and used only FPz-Cz channel. They 
proposed a model combining both CNN and LSTM 
characteristics as LSTM prediction depends not 
only on the current state but also on the previous 
state. They designed a one-dimensional convolution 
neural network and bidirectional LSTM to learn the 
EEG signals' alertness level.   The used data was 
obtained from the sleep edf dataset and Neurosky 
sensor readings, but they mentioned that most of 
the used data were taken from the sleep edf dataset. 
The sleep edf dataset is a five-stage sleeping record, 
not a driver fatigue dataset. They focus on 
developing a real-time system, so they implemented 
it on an ARM-based single-board computer (SBC). 
The trained CNN-LSTM based Model gave an 
accuracy of 93.3%, and the test model gave an 
accuracy of 89.4% percentage when tested with 
real-time signals using the Neurosky mind wave 
electrode. 

The current work proposed s system to detect 
driver fatigue using CNN based on EEG signal, the 
proposed system used only one EEG electrode to 
simplify the system and make it more applicable, 
cheap, and accepted by drivers. The author 
emphasizes introducing a simple real-time system 
that could be attached to drivers during lengthened 
driving and easily attached electrode location. 
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The suggested model could be abbreviated as 
follows; firstly, the raw EEG signal is passed 
through a bandpass filter (0.5 and 45 Hz), next each 
1 sec. (sampling rate 1000 sample / second) length 
of the signal is downsampled to 500 sample/second 
rate. Then the EEG signal is transformed into a 2D 
color image using spectrogram. In the final stage 
the signal spectrogram is classified by the suggested 
trained CNN model to distinguish it, either Normal 
or Fatigue state. The present study aims to examine 
the accuracy of seven channels from the whole 
32channels of 10-20 EEG standard montage 
system. These channels (FP1, FP2, T3, T4, O1, O2, 
and Oz) are on the rim of the head to find the 
uppermost one. The author suggests using the 
uppermost accurate channel only or combined with 
the second-ranked accurate channel with the 
proposed CNN classification model to recognize 
the driving fatigue state. Using the uppermost 
accurate channel as a single channel to classify 
fatigue state will increase the system acceptance 
among drivers and make it easy to wear and adjust 
a bandage with one  

This paper's content is illustrated as follows: 
Section two presented the suggested system high-
level architecture; section three presents method 
and data. Section four shows results, section five 
is the discussion, and lastly, section six presents 
the conclusion. 

2. MATERIALS AND METHODS 
2.1 The Proposed System High-Level 

Architecture 

In recent times, deep learning, especially CNN, 
has demonstrated outstanding success in image 
classification and recognition, outperforming the 
classical machine learning methods. In the present 
work CNN utilized it to identify the driver's EEG 
signal, whether as normal or as fatigue. CNN is 
dedicated mainly to work with image input or 2D 
input data. Therefore, the driver’s EEG signal is 
transformed to a spectrogram representation, color 
image, to be suitable as an input to the proposed 
CNN model. The spectrogram of a signal is defined 
as a 2D representation to the usual 1D signal. We 
can consider it a frequency-time representation to 
the signal. It is a visual way for signal 
representation, and a standard method to display a 
signal's frequencies. The spectrogram's vertical axis 

represents frequency, with the lowest frequencies at 
the bottom and the highest frequencies at the top, 
while the horizontal axis represents time; it runs 
from left to right of the axis. The colors enrich the 
spectrogram representation as its third dimension; 
different colors represent different energy levels 
[35]. 

 

Figure 4: The high-level structure of the suggested driver 
fatigue detection system. 

The suggested system consists of three stages. 
The first stage is the preprocessing stage, where 
the raw EEG signal rolled filtered to select the 
desired band. The second stage converts the 1-D 
signal representation into a 2D image 
representation using the spectrogram 
representation. The third stage is the classification 
stage, where the proposed CNN receives the 
driver's EEG spectrogram, to evaluate the driver's 
mantel status, whether it is Normal or Fatigue. 
Figure 4 shows the proposed system high-level 
structure (building blocks). 

2.2 The Dataset 

There is a shortage in the available public data 
set which measures the drivers fatigue status. 
Most of the mentioned work in the literature 
review used private data set. The author selected 
to use a dataset exported from [37] web site as 
described in [38]. This data set was easily used as 
both normal and fatigue state was separated by 
the authors [38] research group. A static driving 
simulator was used in recording the dataset in a 
controlled lab environment including both normal 
and fatigue drivers and saved in. cnt format. The 
dataset was recorded with the participation of 
twelve subjects. All of the twelve participants 
were fit, stable people, aged between 19 and 24 
years, engaging in a highway-driving simulator 
project. The data was collected with a 32-
electrode Neuroscan data acquisition system as 
described in [37], and the international 10–20 
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system was used for the EEG collection protocol. 
All channels data were referenced to two 
electrically linked mastoids at A1 and A2and 
digitized at 1000 Hz. The present work examined 
only a limited number of channels on the head 
rim. These channels were FP1, FP2, T3, T4, O1, 
O2, and Oz. The Checked channels have been 
chosen on the head rim to indicate that the usage of 
simple head banding requires just one channel 
(electrode) rather than a complicated 10-20 EEG 
32 channels method. The author selected these 
channels as they are related to frontal, temporal 
and occipital lobes as these lobes related to 
personality, problem-solving, motor development, 
reasoning, planning, movement, visually 
processing perception and memory. While all of 
these activities expected to be affected by fatigue 
status. After the downsampling process for each 
channel, , the author took each sample size as 500 
samples which resulted in a total number of 3440 
sample for each class (Normal or Fatigue) per 
single channel. These samples converted to signal 
spectrogram images. 

2.3 Signal Pre-processing 
The preprocessing began with signal filtering. 

A bandpass filtering was applied to clean the input 
signal and limit signal frequency between 0.5 Hz 
and 45 Hz. Singles lower or higher than the band 
is not included in the current study Next, the 
signal is downsampled to 500 sample/sec. The 
first 10 seconds from the signal database are 
excepted to avoid unstable records. 

2.4 EEG Signal 2D representation 
The second stage started with calculating the 

spectrogram for each 500 sample. The present 
work used Short- time Fourier Transform (STFT) 
with Kaiser window type (β = 10) of size 64 
samples (equation 1) , as illustrated in[36]. The 
current study applied the reassignment technique 
to increase the sharpening of the spectrogram 
(time- frequency) representation. If the signal has 
a well-localized temporal or spectral component, 
this will generate a sharper spectrogram to 

emphasize the temporal change [33],[50]. A 
sample from the EEG spectrogram is shown in 
Figure 5 and 6; It shows samples of EEG 
spectrogram for channels FP1 and T3 for both 
normal and fatigue state. 

 

Where: The length of the window is N+1, and 
N can be even or odd, I0 is the zeroth-order 
modified Bessel function of the first kind, L is the 
window duration, and, α is a non-negative real 
number that determines the shape of the window. 
In the frequency domain, it determines the trade-
off between main-lobe width and side lobe level, 
which is a central decision in window design, and 
β = πα. 

 
(a) 

 
(b) 

Figure 5 A sample of EEG signal 
spectrogram using reassignment technique for FP1channel, 

(a) Normal state and (b) Fatigue state. 

 
(a) 

 
(b) 

Figure 6 A sample of EEG signal 
spectrogram using reassignment technique for T3 
channel, (a) Normal state and (b) Fatigue state. 

2.5 CNN Model Architecture 
The third stage of the suggested system is the 

classification stage. The author developed a 
convolutional neural network (CNN) and trained 
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it from scratch to adequate the EEG signal nature. 
Figure 7 shows the proposed CNN model 
architecture used to classify the driver EEG 
signals while, Table I shows each layer details. 
The model consists of input layer and ordinary 
CNN 18 layers. The input layer receiving the 
colored spectrogram image representation and 
resize it to 128×128×128×3, followed by a 
convolutional layer with 20 filters, 3×3 kernel 
sizes, and batch normalization layer to speed the 
learning process. A dropout layer was introduced, 
followed by a ReLU activation were used, and a 
max-pooling layer with kernel size (3, 3). This 
same structure is repeated on layers from 6 to 13 
with different settings, as shown in figure 7 and 
table 2. The repeated structure consisted of a 
convolutional layer followed by batched 
normalization, ReLU activation layer followed by 
a pooling layer. Finally, 2 layers of a fully 
connected neural net introduced with ReLU 
activation. The model ended with SoftMax and 
classification layers to classify the input either 
normal or fatigue state. 

Table 2: The Proposed CNN Model Architecture. 

Input 

Layer 

Input Layer 128×128×3 

Layer 1: 2D Convolution layer - 

Layers size= 20 – Kernel size 3 × 3 

Layer 2: Batch Normalization Layer 

Layer 3: Dropout Layer with 25% probability 

Layer 4: ReLu Layer 

Layer 5: 2D Max. Pooling pooling Size 3 × 3 

Layer 6: 2D Convolution layer - Layers size =30– 
Kernel size 3 × 3 

Layer 7: Batch Normalization Layer 

Layer 8: Dropout Layer with 20% probability 

Layer 9: ReLu Layer 

Layer 10: 2D Max. Pooling pooling Size 3 × 3 

Layer 11: 2D Convolution layer -Layers size=45– 
Kernel size 3 × 3 

Layer 12: Batch Normalization Layer 

Layer 13: ReLu Layer 

Layer 14: Fully connected layer (Size = 12) 

Layer 15: ReLu Layer 

Layer 15: Fully connected layer (Size = 2) 

Layer 17: Softmax Layer 

Layer 18: Classification Layer 

2.6 CNN Model Training 

When training complex neural networks as 
the proposed CNN model, adaptive optimizers 
techniques are the right choice for faster 
converging. The present study used Adam 
(Adaptive Moment estimation) [39] as optimizer 
during the training process. Recently, when 
working with deep learning, Adam considered as 
the best optimizer for most cases. It also performs 
better than other adaptive techniques (adadelta, 
adagrad, etc.), but it is computationally costly 
[40]. 

Adam optimizer combines the pros of two 
common efficient optimizers in one optimizer; 
these optimizers are Momentum and RMSProp. 
Adam uses an exponential weighted average of 
past derivatives as Momentum optimizer, and it 
also uses the exponentially weighted averages of 
past squared derivatives as RMSProp. During 
training, Adam is too oscillating around the 
minimum, but it reaches it in most cases. 
Generally, it is faster and better than other 
optimizers till now [41]. 

The present study faced the problem of model 
overfitting during the training process. Overfitting 
prevents the CNN model from generalization to 
new data. Overfitting problem was recognized as 
the model achieved higheraccuracy and minim 
loss with the training data while it reached 
relatively lower accuracy and higher loss with the 
validation data. In other words, the model acts as 
it learned noise associated with data as well as 
data itself. To overcome this problem the 
researcher needed to apply a regularization 
technique to the proposed model. Regularization 
techniques were defined by Kukaka et al. in [42] , 
“Regularization is any supplementary technique 
that aims at making the model generalize better, 
i.e., produce better results on the test set.” Many 
techniques proposed by researchers to overcome 
this problem, such as L1, L2 regularization, 
dropout, and early stop [40],[41] and [43]. 

The present study used both L2 
Regularization and dropout techniques. L2 
Regularization is considered as one of the most 
common regularization techniques, and it aims to 
reduce model complexity by achieving weight 
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decay. L2 Regularization technique adding a 
regularization term to the cost function. Adding 
the regularization term aims to reduce the network 
capacity in an effective way to adapt to complex 
datasets [40] and [43]. 

Dropout is applied simply by removing nodes 
randomly from the network during the training 
phase. The author achieved it by adding two 
dropout layers in the model architecture as layers 
3 and 8, as shown in figure 7, setting the 
probability of removing nodes to 25% and 20% 
respectively. When a node selected to drop it out 
this resulting in dropping all of its incoming and 
outgoing connections from that node [43]. 

The model building and training process had 
been implemented using MATLAB 2019a [44]. 
The training process requires to tune many 
hyperparameters to reach the desired goal of the 
model. Adam optimizer was used during model 
training process. Table 3 shows the model tuned 
hyperparameters. As mentioned in Table II, the 
initial learning rate was started with 0.0001, batch 
size of 45 and L2 Regularization of 0.99. 

Table 3: The proposed CNN model hyperparameters 
tuning values. 

Parameter Value 

InitialLearnRate' 0.0001 

LearnRateSchedule 'piecewise' 

'LearnRateDropFactor' 0.5 

'GradientDecayFactor' 0.6 

'SquaredGradientDecayFactor' 0.6 

'MiniBatchs' 45 

'L2Regularization' 0.099 

'Shuffle' 'every- 

epoch' 

'ValidationFrequency' 20 

 
3. RESULTS 

The present study has been evaluated using 
performance indicators. These indicators are 
accuracy (Acc), sensitivity (Sn), specificity (Sp) 
and also receiver operating characteristics(ROC) 
curve and also the area under curve (AUC) [45]and 
[46]. 

The selected performance indicators to evaluate 

the current study, defined in the following: 

 

 

 
 TP (true positive) : is the number of the data 

inputs that refer to fatigue state correctly 
classified as fatigue. 

 FP (false positive): is the number of data 
inputs that refer to normal state classified as 
fatigue state. 

 TN (true negative) is number of the data 
inputs that refer to normal state correctly 
classified as normal state. 

 FN (false negative) is the data inputs that 
refer to fatigue state classified as normal 
state. 

The (ROC) graph is defined in [46] as “ a 
technique for visualizing, organizing and selecting 
classifiers based on their performance. “ The AUC 
demonstrates the accuracy of binary classifiers with 
the change of its threshold value and how it will 
change. The ROC is developed by plotting the 
fraction of true positives out of the positives (TPR= 
true positive rate) versus the fraction of false 
positives out of the negatives (FPR = false positive 
rate), at different threshold settings. TPR is also 
known as Sn (equation 2), and FPR is one minus 
the Sp (equation 3). The AUC value of a classier is 
equivalent to the probability that the classier will 
rank a randomly chosen positive instance higher 
than a randomly chosen negative instance. The 
ROCs graphs are usually used to show the tradeoff 
between hit rates and false alarm rates of 
classifiers.[46], [45]. 

Table 4: The system average accuracy and 
AUC of each tested EEG Channel with the suggested 

CNN architecture. 
Channel Accuracy AUC 

FP1 94.36% 0.9798 

FP2 81.83% 0.899 
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T3 92.57% 0.97 

T4 89.62% 0.9595 

O1 74.47% 0.8361 

O2 82.36% 0.9075 

Oz 93.02% 0.9746 

 
The selected channels have been tested with the 

proposed CNN classifier. The data have been split 
into three groups, with the percentage of (70%, 
10%, and 20%) for training, validation, and testing. 
The obtained average accuracy and AUC are listed 
in Table 4. The proposed CNN classifier model 
accuracy and AUC are illustrated in figures Figure 
8 and 9 with each of the selected individual channel 
EEG channels (FP1, FP2, T3, T4, O1, O2, and Oz). 
As shown in figures 8 and 9 and Table 4, channel 
FP1, T3, and Oz achieved the highest accuracy and 

AUC among all of the selected channels. The ROC 
curves for the proposed classifier is shown in figure 
10 for each of the individual EEG channels (FP1, 
FP2, T3, T4, O1, O2, and Oz). The ROC graph 

indicates that channel FP1, T3, and Oz achieved the 
highest AUC. 

 
 

Figure 8: The accuracy for the proposed CNN classifier 
for the selected EEG channels. 

 

 
 

Figure 9: The resulted AUC for the proposed CNN 
classifier for each the selected EEG channels. 

 
 
 
 
 

 

Figure 10. The ROC for the proposed CNN model for the 
selected EEG Channels. 

4. DISCUSSION  

The present study mainly aims to introduce a 
CNN neural network model to classify the 
driver’s drowsiness state using driver’s EEG 
signal acquired from only one channel (electrode). 
The presented study suggested a CNN based 
model combine with a driver fatigue detection 
system. The system stated with the input signal 
preprocessing, including limiting its frequency 
band to (0.5 Hz to 45 Hz) and downsampling it to 
500 sample/sec. The second stage transforms the 
1D signal representation to a 2D representation 
using spectrogram technique to be ready as an 
input for the classification stage. In the final 
stage, the author suggested a CNN model suitable 
to classify the EEG signal spectrogram into 
fatigue or normal state. The author tested a 
selected seven channels, these channels located on 
the head's rim according to the 10-20 EEG 
channel Montage system. These channels were 
tested to determine which one of them is capable 
of categorizing the driver fatigue state more 
accurately than the others. The findings 
demonstrate that the FP1, T3, or Oz channels 
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obtained the highest average accuracy and the 
highest AUC among the seven tested channels, as 
shown in Table 4 and Figures 7, 8, and 9. The 
researcher recommended that the combining of 
only one of these EEG channels (FP1, T3, or Oz) 
with the suggested CNN classifier to identify 
driver drowsiness would achieve sufficient 
accuracy. Using only one electrode to detect 
driver fatigue state will increase the system 
reliability, solving the problem of driver 
comfortless and system acceptance, reducing cost, 
reducing the amount of processed data, and 
needing less train to wear it. 

When comparing the proposed system with 
the previous state-of-art systems mentioned in the 
literature review, it would be evident that it 
achieves better performance with less complexity 
(fewer electrodes). Table 5 lists a comparison 
between the proposed system and the other 
systems in terms of the system's input 
representation, classifier type, number of used 
EEG electrodes, and average accuracy. Regarding 
to the input, it is noticed from the table 5 that the 
two main approaches for EEG driver fatigue 
detection with deep learning is either using 
spectrogram as [23], [3] and [24], temporal 
representation [33] and [21], combing 
spectrogram and temporal representation as in 
[22],or just using the original EEG signal in time 
domain representation as in [51],[52] and [53]. On 
the other hand, the classification approach is 
either building CNN model as [3] [23] and [33], 
using transfer learning as in [21], [22] and [24], or 
combining CNN with other classifier as in 
[51],[52] and [53]. 

Although the current work concluded that only 
one of the highest accuracy three channels is 
enough to detect drives fatigue state, but one of 
proposed system limitations that it needs more 
investigation to decide which one of these 
channels would be more accepted by drivers and 
easy to adjust without affecting the signals value, 
FP1 which will be attached to the front head, Oz 
which will be attached to the back head or T3 to 
the head side.   

The usage of deep learning with the problem 
of driver fatigue detection faced many problems 

such as the lack of public dataset with sufficient 
amount of data as deep learning required huge 
amount of data for training. Most of the previous 
racehorses used their own developed EEG dataset, 
although table five provides a comparison among 
different works, this comparison will not be 
totally fair, or at least there is an error margin on 
it because most of the mentioned methods did not 
use the same dataset. As in [52], when they 
perform a comparison by repeating the same work 
introduced in [51] and compare it with their 
method, the results seem very different. 

Most of the EEG datasets recorded for young, 
healthy drivers so,  what would be the system on 
older drivers or the effect of taking medication, or 
coffee during driving. The problem of driver 
fatigue detection needs more efforts in building 
EEG with big number of subjects including all 
drivers’ categories not only young healthy drivers. 

The second limitation the computational 
power needed to train the deep neural model. Due 
to the limitation of used CPU and GPU, I limit the 
spectrogram size to 128 by 128, while this issue 
needs to be more addressed and the effect to study 
the effect of increasing the spectrogram image 
size on the efficiency of the system. 

In future the author aims to test which one of 
the three highest accurate channels (FP1, T3, or 
Oz) would be comfort for drivers, and also to test 
the best fusion among the three channels would 
give high accuracy. As CWT and DWT are less in 
computation than STFT so, the author aims use it 
in future to generate signal spectrogram 
representation. The author aims also to study the 
effect of changing the input image size to the 
CNN on the performance. 

5. CONCLUSION 

Using multi-electrodes to detect the drivers' 
fatigue state increases the cost and the complexity 
and inconvenient use for the drivers. Many 
attempts have been exerted to reduce the number 
of EEG channels used to identify normal and 
fatigue states. The present study proposed a fully 
connected convolutional neural network model to 
classify driver fatigue state using single EEG 
signals channel with only one EEG electrode. 
Using only one electrode in a suitable location on 
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the head rim will facilitate attaching it to the 
driver's head. The proposed work compares the 
proposed CNN's performance to build an EEG 
classification system using different EEG 
channels and proves that the CNN classifier can 
rely only on a single channel with excellent 
performance. Using a single EEG channel to 
classify driver fatigue makes the fatigue detection 
system simple and increases the driver’s 
acceptance of the system use, making its usage 
possible to diverse of people. The proposed work 
supports the possibility of combining a simple 
headband with only one EEG electrode with low 
power consumption devices using edge AI 
technology to provide a full monitoring system 
for drivers of highways. 
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Figure 7. The proposed CNN layer model architecture. 

 

Table 5. A comparison between the proposed system and the other systems in term of input representation, classifier 
type, number of used EEG electrodes, and average accuracy. 

 

 

 

Research 
Group 

Input 
Representation 

Type of classifier EEG 
Channels 

Highest 
Accuracy 

Cheng et al. in 
[23] 

Spectrogram 
Image 

CNN model Multi- 
Channels 

82.8401 

[33], Zeng et. al. Temporal 
Representation 

image 

CNN model Multi- 
Channels 

92.68% 

In [21], Ma et al Temporal 
Representation 

image 

CNN with transfer 
learning 

Multi- 
Channels 

95%. 

In [3], Guarda et 
al. 

Spectrogram 
Image 

CNN model Fz and Pz 86% 

Budak et al.[22] Both temporal 
representation 

and   
Spectrogram 

Image 

(LSTM) 
networkand 

transfer learning 
with AlexNet and 

VGG16 

C3-O1, 
C4-A1 

94% 

W. Shalash [24] Spectrogram 
Image 

CNN with transfer 
learning 

FP1 and T3 90% - 91% 

Gao et al.[51] Time 
domain 

RNN- CNN Multi- 
Channels 

92.95% 

Zhang et al. [52] Time 
domain 

PDC-GCNN Multi- 
Channels 

84.32%  for 
using DE  
 83.84% for 
using PSD. 

 
Nissimagoudar et 
al. [53] 

Time 
domain 

LSTM -CNN FPz-Cz 
channel 

89.4% 

Present study Spectrogram 
Image 

CNN model FP1, 
T3 and Oz 

94.36% 
92.75% 
and 93% 


