
Journal of Theoretical and Applied Information Technology
30th September 2021. Vol.99. No 18

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4220

PERFORMANCE ANALYSIS OF CHOREOGRAPHY AND
ORCHESTRATION IN MICROSERVICES ARCHITECTURE

1HANDI KRISTIANTO, 2AMALIA ZAHRA

1,2 Computer Science Department, BINUS Graduate Program, Master of Computer Science, Bina
Nusantara University, Jakarta, Indonesia 11480

E-mail: 1handi.kristianto@binus.ac.id, 2amalia.zahra@binus.edu

ABSTRACT

Microservices architecture (MSA) is a system architecture design pattern with an approach that applies
applications as a collection of small services. Service composition is combining various services together to
provide the solution. There are two methods for the microservice composition i.e., Choreography and
Orchestration. Both techniques have pros and cons based on the use case which is being implemented. In
the past some researchers have suggested the use cases for which these approaches are suitable, but a
quantitative analysis has not been performed thoroughly and did not evaluate the effects of large number of
concurrent users and number of service instances on performance of MSA. We perform an extensive
quantitative analysis to analyze and quantitatively measure the performance of Choreography and
Orchestration in a Saga which consists of several services, with a maximum number of eight services, and
to determine the criteria for selecting the Choreography or Orchestration method to be used based on the
measured parameters, namely response time, CPU utilization, and throughput. The factors which impact the
performance are the number of services, the number of concurrent users, and the number of service
instances. Both models are simulated by varying these parameters. It can be concluded that Choreography
has a better response time, throughput, and CPU utilization when compared to Orchestration.
Keywords: Microservices, Database per Service, Saga Pattern. Choreography, Orchestration

1. INTRODUCTION

Microservices architecture (MSA) is a
system architecture design pattern with an approach
that implements applications as a collection of
small services. MSA has similarities with Service-
Oriented Architecture (SOA) in that the services are
independent and stand-alone. The difference with
SOA is that MSA does not use Enterprise Service
Buses (ESB) as middleware that distributes tasks to
each connected application component, but MSA
uses a lighter technology. Each service is a unit that
can run autonomously and communicate with each
other with a simple mechanism, usually through an
Application Programming Interface (API). In MSA,
communication between services is done using
synchronous protocols such as HTTP/REST or
asynchronous protocols such as Advanced Message
Queuing Protocol (AMQP).

MSA is expected to be a solution to the

problems faced by monolithic system architecture,
namely in terms of horizontal scalability, high
availability, modular, and agile infrastructure.
Increasing the scalability and high availability of

monolithic systems must be done by scaling-up the
entire application so that it requires more
infrastructure resources. Monolithic architecture
requires more effort and human resources in
designing a modular system. To build a monolithic
system requires good infrastructure capacity
planning at the beginning of the project because
capacity addition cannot be done only for a part of
the system but must be done for the whole system.
By applying MSA, the deployment process of an
application becomes more independent because
each service can be built by a team with a relatively
small number of members so that the team can
focus more on developing services using
appropriate technology. Each service can be
developed using different programming languages
so that it becomes more appropriate because each
programming language has its own advantages and
can be applied according to the needs of the service
being built.

One of the advantages of using MSA in

building an application is the nature of the service
that is independent and isolated from other services
so that each service can be upgraded without

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
30th September 2021. Vol.99. No 18

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4221

affecting other services. The consequence of this
independent nature is that each service must have
its own separate database [1]. When a transaction
involves several services, the changes that occur in
one service's database cannot be recognized by the
other service’s database. Applications cannot use
ACID (atomicity, consistency, isolation, durability)
transactions locally because the database is
distributed across each service. Likewise, when a
failure occurs in one of the services involved in the
transaction, the rollback process cannot be done
using the Two-Phase Commit (2PC) method
because the database is distributed. This distributed
database concept is known as the Database per
Service pattern [2]. To handle the Database per
Service pattern, the Saga Pattern is used [3]. Saga is
a sequential transaction that involves more than one
service. In Saga, every service that has finished
running its process publishes an event that can
trigger the next service. When a failure occurs, the
services involved in a Saga must be able to rollback
by generating events in reverse order. According to
[3] Saga can be designed with two methods, i.e.,
Choreography and Orchestration.

In Choreography every service involved in

a Saga can trigger a service event directly, without
going through a coordinator. Communication
between services can run autonomously because
each service knows when to start the process and
which service should be triggered next. While in
Orchestration, each event is determined and
triggered by a central coordinator. When a service
has finished the process, that service cannot directly
trigger another service, but must publish an event to
the coordinator and then the coordinator who will
continue to the next service. In Orchestration,
communication between services must go through a
coordinator, so that the coordinator's performance
greatly determines the overall system performance.

It is a big challenge to identify which

composition approach is better. Some researchers
already performed analysis on how microservices
Choreography and Orchestration techniques used
for implementing MSA [3], [4], [9], [10], [12].
Previous studies did not evaluate the effects of
large number of concurrent users and number of
service instances on performance of MSA. In this
research we performed an extensive quantitative
analysis on various considerable parameters like
response time, throughput, CPU utilization and
study the impact of multi-instances of service (with
large number of concurrent users - up to 1,000

users) on the performance of each technique.
Response time needs to be measured because the
faster the response time, the resources can be
immediately freed so that they can be allocated to
handle other processes. The higher the CPU
utilization, memory utilization, and power
utilization, the higher the server specifications that
need to be provided, thereby increasing
infrastructure costs. Throughput is also an
important parameter to measure because the higher
the throughput, the better the performance of an
application system.

In this study, the performance of

Choreography and Orchestration is evaluated based
on the number of services involved in a Saga so
that it will be known how effective the two
techniques are and how much influence the number
of services has on the performance of
Choreography and Orchestration. Furthermore,
experiments are conducted with different number of
concurrent users (the number of users who conduct
transactions simultaneously) and different number
of service instances. In this research we also
experimented by using two instances for each
service. By using more than one instance for each
service, a load balancer is needed as a proxy and
distributed the workload and traffic of each service.
Both methods also be evaluated based on how
much effort is required to change the order of
processes in a Saga.

2. MICROSERVICES

Microservices is a system architecture
with an approach that implements an application as
a collection of services that run independently and
communicate with each other using the HTTP API
[7]. Each service is built independently and
deployed automatically. This is what distinguishes
microservices from applications built on a
monolithic architecture. Enterprise applications
usually consist of three main parts, namely the user
interface (using HTML and javascript), the
database as a data storage medium (Relational
Database Management System - RDMS), and the
server-side application that handles HTTP requests,
executes business logic, saves to the database, and
sends the HTML script to display in the browser.
This server-side application is an example of a
monolithic architecture because every time there is
a change in the system, development and
deployment of the entire server-side application
must be carried out. Scalability is also one of the

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
30th September 2021. Vol.99. No 18

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4222

obstacles in monolithic architecture because it must
be applied to the application as a whole, while in
microservices each service can be scaled-up and
scaled-down independently without affecting other
services.

Database per Service is a pattern that

requires each service to have its own database that
is separate from other database services and the
database can be accessed directly only by the
service itself. Other services cannot access the
database of a service directly but must go through
the API provided by the respective service. By
implementing the Database per Service pattern,
each service will be completely independent of
each other so that if there is a database change in a
service, it will not affect the other database
services. In addition, each service will also have the
freedom to use a database schema that is more in
line with needs, for example, for services that
handle text searches, they can use elasticsearch [5]
and for services that handle fraud detection, they
can use graph databases such as neo4j [5].

3. CHOREOGRAPHY AND
ORCHESTRATION

Saga is a sequential transaction involving
more than one service [7]. In Saga, every service
that has finished running the process then publishes
an event that can trigger the next service. Likewise,
when a service fails, the services involved in a Saga
must be able to rollback by generating events in the
reverse order. According to [3] Saga can be
designed using two methods, namely Choreography
and Orchestration. In Choreography approach, each
service can communicate directly using events
without going through a coordinator [5]. A service
that has finished running its process can publish an
event that can trigger the next service. MSA that
uses the Choreography method, each service will be
more decouple [6]. A service that needs to interact
with other services can subscribe to the event
service.

In Choreography Saga, every service that

has finished running the process then publishes an
event that can trigger the next service. Likewise,
when a failure occurs in one of the services, the
service involved in a Saga must be able to roll back
by generating events in the reverse order. Fig 1
shows a Saga using Choreography starting from the
service Account. Following are the advantages of
Choreography:
• Changes in the flow of communication

between services are easier because it can be
done by rewiring the input and output queues.

• Application system becomes more autonomous
because it reduces dependence on other
components.

The disadvantages of Choreography:
• For workflows that involve many services,

communication between services becomes
more complicated and difficult to manage.

• More difficult for software developers to
understand because the process of a Saga is
implemented for every service involved.

Figure 1. Choreography Flow

Service Account validates the logged-in user
and then publishes an event that triggers the Service
Order to place a booking order. After the order has
been successfully booked, the Order service will
trigger the Payment service and after the payment is
successful, the Payment service will trigger the
Order service to place an order.

The other technique to implement Saga is
called Orchestration, in this approach each service
cannot communicate directly but must go through a
coordinator [5]. Each service that has finished
running the process can coordinator publish an
event to the coordinator and then based on the
predetermined routing, then will trigger the next
service. MSA which is built using the Orchestration
method, several services will be connected and
work together sequentially to complete a
transaction [8]. Fig. 2 shows a Saga that uses the
Orchestration method in communication between
services. Following are the advantages of
Orchestration:

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
30th September 2021. Vol.99. No 18

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4223

• Saga implementation becomes simpler because
each service works based on orders from the
coordinator.

• Business processes become easier to manage
because the logic is centralized in the
coordinator.

Following are the disadvantages of Orchestration:
• Each service has a high dependence on the

coordinator.
• Coordinator becomes a single point of failure.
• Too much business logic is implemented in the

coordinator so that the service becomes less
independent.

Figure 2. Orchestration Flow

4. RELATED WORK

Some researchers have conducted studies

on the performance of microservices applications
[9]-[12]. Most of the research conducted was to
compare the performance of microservices with
monolithic architectures [11], [13], [14]. Villamizar
et al. [11] claim that microservice applications
performance was reduced by 13% when compared
to the monolithic using the Web server use case.
Lloyd et al. [15] have done an extensive
performance evaluation of the microservices
application in server-less platforms. Hasselbring
and Steinacker [16] migrated the otto.de e-
commerce website from a monolithic architecture
to a microservices architecture. With the number of
website visitors reaching one million users every
day, otto.de is one of the largest e-commerce
platforms in Europe [16]. The increasing number of
visitors and transactions made the company Otto
decide to build the otto.de website from scratch
using the microservices architecture.
Communication between services is carried out by
using the REST API protocol.

There are several existing researches [9],
[10], [16], [18], [19], [20] that investigate the
performance characteristics of microservices
application in containers. Alam et al. [21] also use
docker and microservices in building Edge
Computing infrastructure as a supporting platform
for Internet of Things (IoT) applications.
Krylovskiy et al [22] designed a Smart City IoT
platform based on the Microservices architecture
and found MSA to have a better performance than
SOA. Sun et al. [23] developed simulation models
that can estimate the performance of microservice
applications. Barakat [24] used Kieker framework
for monitoring microservices performance during
run time and Kieker's trace analysis for analysis of
the application. Dai et al. [25] used Labeled
Transition System (LTS) as Choreography
specification language and performed analysis
under synchronous and asynchronous compositions.
Akbulut & Perros [26] performed a research on
performance of MSA by implementing various
applications using the API Gateway, Chain of
Responsibility, and Asynchronous Messaging
design patterns.

Rudrabhatla [3] compared the performance

of the two communication methods by building a
simulation model consisting of several services and
each service has its own separate database and
cannot be accessed directly by other services
(database per service pattern). The performance of
Choreography and Orchestration was measured
using the time parameter required to complete a
transaction. Experiments were simulated for each
model with a maximum number of services of eight
services, up to 10 users, and single instance.
Singhal, et al. [4] compared the performance of the
two methods based on three parameters, namely
execution time, memory utilization and power
utilization. The measurement of these three
parameters was not carried out from the beginning
of the transaction to the end of the transaction but
on every service involved in a transaction.

In previous studies, it can be seen that the

Choreography method has better performance when
compared to the Orchestration method, especially
for systems that are not too complicated, and the
number of services is not too much. Research on
the performance of these two techniques has been
performed before but has not been performed
thoroughly and the effect of the number of service
instances and the large number of concurrent users

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
30th September 2021. Vol.99. No 18

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4224

on the performance of the two models has not been
evaluated yet, thus it is necessary to perform a
quantitative analysis to measure the performance of
each technique. In previous research, when
developing applications with MSA, the criteria for
selecting the Saga Pattern have not been
determined, especially criteria related to code
management. We compared the performance of
Choreography and Orchestration based on
parameters of response time, throughput, and CPU
utilization. Furthermore, experiments were
performed with various number of services, various
number of concurrent users and various number of
service instances. The model built will also use a
load balancer which functions to distribute the
workload to each service. We also evaluated both
methods based on how much effort is required to
change the order of processes in a Saga.

5. RESEARCH METHODOLOGY

To determine which saga implementation
technique is more suitable under which scenario,
we have implemented a research project and
simulated various circumstances. We have
developed two models of MSA application using
Spring Boot Java programming language, MySQL
database, and system messaging Kafka. Then the
performance of the two application models is
evaluated by measuring the parameters of response
time, throughput, and CPU utilization. A
transaction simulation is carried out involving
several services and each measurement parameter is
recorded. Furthermore, we perform experiments
with different number of services, concurrent users,
and service instances to determine how much the
impact on the performance of Choreography and
Orchestration. Fig 3 shows a model developed
using Choreography approach.

Each service has an API which functions
to accept requests from other services and an
internal function that is used to trigger other
services. The event of each service is published to
the event broker Kafka and each service is
registered as a subscriber at Kafka so that the
service can find out when there is an event
addressed to itself. For simulations with multi-
instances and multi-users, a load balancer is
implemented so that the workload can be divided
and not focused on just one service instance.

Each service in the model Choreography

method communicates directly with other services
in the following order:
1) Service S1 starts the Saga by publishing an

event S1.
2) Event S1 triggers service S2.
3) After service S2 has finished its process, it

publishes event S2.
4) Event S2 triggers service S3.
5) After service S3 has finished its process, it

publishes event S3.
6) Event S3 re-triggers service S1 and service S1

ends the Saga.

Figure 3. MSA Model using Choregraphy

Choreography makes the communication

process between services faster because it does not
depend on a service controller (coordinator) as used
in Orchestration (Fig. 4). In this model, a service is
built and has a function as a coordinator.

In Orchestration each service has an API

which functions to receive requests from the
coordinator and an internal function which is used
to publish events to the coordinator. The event of
each service and coordinator will be published to
the event broker Kafka and each service and
coordinator will be registered as a subscriber at
Kafka so that the service and coordinator can find
out when there is an event addressed to itself.

Each service in the model using the

Orchestration method can communicate with other
services through the coordinator in the following
order:
1) Service S1 starts the Saga by publishing an

event to coordinator.
2) Coordinator receives event S1.
3) Coordinator publishes an event to channel S2.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
30th September 2021. Vol.99. No 18

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4225

4) Channel S2 triggers service S2.
5) After service S2 has finished its process, it

publishes an event to Coordinator.
6) Coordinator receives event S2.
7) Coordinator publishes an event to channel S3.
8) Channel S3 triggers service S3.
9) After service S3 has finished its process, it

publishes an event to Coordinator.
10) Coordinator receives event S3 and ends the

Saga.

Figure 4. MSA Model using Orchestration

6. EXPERIMENTAL DESIGN

We implemented the models using Spring
Boot Framework, MySQL database, and Kafka as
messaging broker. Each service was deployed to
Google Cloud Platform by leveraging Kubernetes.
We used JMeter, which is widely adopted in
workload characterization literature [13, 26], as a
load testing client and compared the performance of
Choreography and Orchestration based on the
parameters of response time, throughput, and CPU
utilization.

 Data is collected by performing
transaction simulations involving several services
and each measurement parameter is recorded
starting from the beginning of the transaction until
the transaction ends as shown in Fig 5. For
example, in Saga which involves two services i.e.,
S1 (with database DB1) and S2 (with database DB2).
The timestamp is recorded when S1 writes to DB1
(1) and ended when S1 writes back to DB1 after
being triggered by S2 (3).

The simulation is done by using a different
number of services, starting from 2 services, 4
services, 6 services, and 8 services. Furthermore,
experiments were carried out by increasing the
number of concurrent users gradually with
multiples of 100 starting from 1 user, 100 users,
200 users, and up to 1,000 users. The models also

simulated by using a different number of service
instances (maximum two instances) to analyze
which method has the better performance.
Simulations with a single instance is done without a
load balancer, while when the number of instances
of each service is increased to two instances and in
multi-user environment, the load balancer is added
to distribute the workload.

Figure 5 Saga Involving Two Services

7. EXPERIMENTAL RESULT

In this paper various comparison analyses
were performed for Choreography and
Orchestration methods based on the following two
parameters namely average response time,
throughput, and CPU utilization. Response time
needs to be measured because the faster the
response time, the resources can be freed
immediately so that they can be allocated to handle
other processes. Throughput is one of the key
metrics in performance testing. It is used to check
how many requests a software will be able to
process per second, per minute or hour. In this
paper we measure the throughput in how many
transactions per second. CPU utilization needs to be
measured because the higher the CPU utilization,
the higher the server specifications that need to be
provided, thereby increasing infrastructure costs.
6.1 Response Time

Fig. 6. and Fig. 7 show the response time
difference between Choreography (shown as solid
blue line) and Orchestration (shown as dotted
orange line). Fig. 6 gives the two average response
time as a function of number of users. The Saga
consists of two services, single instance, without
load balancer. Choreography represented by c2-1
while Orchestration represented by o2-1. In Fig. 7
the Saga consists of six services, single instance,
and without load balancer. Choreography
represented by c6-1 while Orchestration
represented by o6-1.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
30th September 2021. Vol.99. No 18

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4226

Figure 6. Average Response Time 2 Services without

Load Balancer

Figure 7. Average Response Time 6 Services without

Load Balancer

In the environment which does not use
load balancer, Choreography has a better response
time than Orchestration either a small or large
number of services. With the increasing number of
services and the number of concurrent users, the
system workload becomes heavier so that this has
an impact on the higher average response time. In
Orchestration the impact is more significant, this is
due to the back-and-forth communication between
the service and the Coordinator.

In a multi-users environment especially

with heavy traffic load, system performance can be
improved by adding more service instance and
using a load balancer to distribute the workload.
Fig. 8 gives the two average response time as a
function of number of users. The Saga consists of
two services, two instances, and use load balancer.
Choreography represented by c2-2 while
Orchestration represented by o2-2. In Fig. 9 the
Saga consists of six services, two instances, and use
load balancer. Choreography represented by c6-2
while Orchestration represented by o6-2. From both
charts it can be seen that in the environment that
uses load balancer, Orchestration is slower than
Choreography (same result as in the environment
that does not use load balancer.

Figure 8. Average Response Time 2 Services with Load

Balancer

Figure 9. Average Response Time 6 Services with Load

Balancer.

As the number of services and the number
of concurrent users increases, the system workload
becomes heavier, which causes the response time of
both models to be slower. In Orchestration the
impact becomes more significant because of the
back-and-forth communication between the service
and the coordinator.
6.2 Throughput

The throughput of both models can be
seen in Fig. 10 and Fig. 11, Choreography shown as
solid blue line and Orchestration shown as dotted
orange line. Fig. 10 gives the two throughputs as
the function of number of users. The Saga consists
of eight services, single instance, does not use load
balancer. Choreography represented by c8-1 while
Orchestration represented by o8-1. In Fig. 11, the
Saga consists of eight services, two instances, and
uses load balancer. Choreography represented by
c8-2 while Orchestration represented by o8-2. As
the number of users and number of services
increasing, in terms of throughput, Choreography
(both without load balancer and with load balancer)
performed better than Orchestration.

In the environment which uses load

balancer (Fig. 11) has a higher throughput than

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
30th September 2021. Vol.99. No 18

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4227

environment which does not use load balancer (Fig.
10). The use of load balancer can improve the
throughput of both models especially in a multi-
users environment with heavy traffic load.

The simulation results show that

Choreography has better throughput than
Orchestration for both models that use a load
balancer and do not use a load balancer. This is due
to the existence of a coordinator in the
Orchestration model which increases the possibility
of bottlenecks, especially when the number of
concurrent users and the traffic load increases.

Figure 10. Throughput 8 Services without Load

Balancer.

Figure 11. Throughput 8 Services with Load Balancer.

6.3 CPU Utilization

Fig. 12 and Fig. 13 shows the difference of
CPU utilization between Choreography (shown as
solid blue line) and Orchestration (shown as dotted
orange line). Fig. 12 gives the two average CPU
utilization as a function of number of users. The
Saga consists of eight services, single instance,
without load balancer. Choreography represented
by c8-1 while Orchestration represented by o8-1. In
Fig. 13 the Saga consists of eight services, two
instances, and uses load balancer. Choreography
represented by c8-2 while Orchestration
represented by o8-2.

Figure 12. CPU Utilization 8 Services without Load

Balancer.

Figure 13. CPU Utilization 8 Services with Load

Balancer.

The simulation results for both models
show that Choreography has better CPU utilization
than Orchestration. Overall, a model that uses a
load balancer has better CPU utilization because the
load balancer can help distribute the workload
evenly across each service instance.
6.4 Changes of Process Sequence

In this paper we also simulate a situation
where there is a change in business process which
results in a change in the sequence of processes.
This will impact to the interaction flow between
services. The initial processing sequence is S1 – S2
– S3 – S4 and then changed to S1 – S3 – S2 – S4.

Service inventory of Choreography before and after
changes are given in the Table 1 and Table 2.
Service inventory of Orchestration before and after
changes are given in the Table 3 and Table 4. As
the process sequence was changed to S1 – S3 – S2 –
S4 , in Choreography we need to modify 6 APIs
(i.e., : API A, API B, API C, API D, API E, and
API F) and the total services impacted is 4 services,
while in Orchestration there is only 1 API that need
to be modified and total services impacted is 1
service (i.e.,: coordinator). This shows that when
there is workflow change, more effort is required to
modify Choreography than Orchestration.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
30th September 2021. Vol.99. No 18

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4228

Table 1:
Service Inventory of Choreography Processing Sequence

S1 – S2 – S3 – S4

Service Name API Name API Function

Service S1 API A Handle a request from
User

API B Trigger S2
Service S2 API C Handle a request from

S1
API D Trigger S3

Service S3 API E Handle a request from
S2

API F Trigger S4
Service S4 API G Handle a request from

S3
API H Trigger S1

Table 2

Service Inventory of Choreography Processing Sequence
S1 – S3 – S2 – S4

Service
Name

API Name API Function

Service S1 API A Handle a request from
User

API B Trigger S3
Service S2 API C Handle a request from

S3
API D Trigger S4

Service S3 API E Handle a request from
S1

API F Trigger S2
Service S4 API G Handle a request from

S2
API H Trigger S1

Table 3:
Service Inventory of Orchestration Processing Sequence

S1 – S2 – S3 – S4

Service
Name

API Name API Function

Service S1 API A Handle a request from
User

API B Trigger Coordinator
Service S2 API C Handle a request from

Coordinator
API D Trigger Coordinator

Service S3 API E Handle a request from
Coordinator

API F Trigger Coordinator
Service S4 API G Handle a request from

Coordinator
API H Trigger Coordinator

Coordinator API I Handle a request from
S1, S2, S3, S4

API J Trigger S1, S2, S3, S4
API K Routing API call from

and to service S1-S2-
S3-S4

Table 4:

Service Inventory of Orchestration Processing Sequence
S1 – S3 – S2 – S4

Service
Name

API Name API Function

Service S1 API A Handle a request from
User

API B Trigger Coordinator

Service S2 API C Handle a request from
Coordinator

API D Trigger Coordinator
Service S3 API E Handle a request from

Coordinator
API F Trigger Coordinator

Service S4 API G Handle a request from
Coordinator

API H Trigger Coordinator
Coordinator API I Handle a request from

S1, S2, S3, S4
API J Trigger S1, S2, S3, S4
API K Routing API call from

and to service S1-S3-
S2-S4

8. CONCLUSION AND FUTURE WORK

In this research, we evaluated the
performance of Choreography and Orchestration
based on the number of services involved in a Saga
so that it will be known how effective the two
techniques are and how much influence the number
of services has on the performance of
Choreography and Orchestration. Furthermore, we
performed experiments with various number of
concurrent users (the number of users who conduct
transactions simultaneously) and various number of
service instances. By default, a service is deployed
into a virtual machine (single instance), in this
research we experimented using two instances for
each service. By using more than one instance for
each service, a load balancer is introduced and used
as a proxy to divide the workload and traffic of
each service. Both methods are also evaluated
based on how much effort is required to change the
order of processes in a Saga. We used the collected
data to analyze and determine the criteria for
selecting Choreography or Orchestration.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
30th September 2021. Vol.99. No 18

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4229

Based on the experimental results, it is
found that with the increase in the number of
services and the number of concurrent users
involved in a Saga, the response time of the two
models become slower. This is because the
workload of the system becomes heavier. In
addition, it was also found that Choreography has a
better response time than Orchestration and the
addition of the number of services and the number
of concurrent users will have a more significant
impact on Orchestration due to back-and-forth
communication between the service and the
coordinator.

The experimental results also show that

Choreography has a better throughput than
Orchestration for both models that do not use load
balancers and models that use load balancers. The
presence of an Orchestration coordinator can
increase the possibility of bottlenecks at the
coordinator, especially when the number of
concurrent users increasing and more traffic load.
Simulation results for both models show that
Choreography has better CPU utilization than
Orchestration due to back-and-forth communication
between the service and the coordinator in the
Orchestration so that increase the workload of each
service. In overall, models that use load balancers
have better CPU utilization than models that do not
use load balancers because load balancers can help
distribute workloads evenly across each service
instance.

Based on the experimental results

Choreography is much faster when compared to
Orchestration. When both models were measured
using throughput Choreography has a better
performance than Orchestration. Choreography is
also more efficient in CPU utilization because of
the back-and-forth communication between the
service and the coordinator in the Orchestration that
increases the workload of each service.
Choreography model becomes very difficult to
code especially in managing multiple events
triggered by each service. Without a central
coordinator, the code will become complex,
especially when there are more than one software
developers in the team. We recommend using
Choreography approach when there are a fewer
number of microservices participating in the
distributed transaction, or the number of event
triggers are not too many or when the trigger
actions are not too complex. Orchestration is slower
than Choreography, but it is useful for handling
complex transactions and easier to maintain the

code. In this paper, we performed a quantitative
analysis of performance of both event
Choreography and Orchestration techniques used
for implementing the Saga design pattern to handle
the distributed transactions in microservices
architecture with various scenarios such as different
number of services, different number of concurrent
users, and different number of service instance. In
future work, a performance analysis of the hybrid
model (combination of Choreography and
Orchestration) can be performed.

REFRENCES:

[1] H. Kang, M. Le, and S. Tao, “Container and

microservice driven design for cloud
infrastructure DevOps,” Proc. - 2016 IEEE
Int. Conf. Cloud Eng. IC2E 2016 Co-located
with 1st IEEE Int. Conf. Internet-of-Things
Des. Implementation, IoTDI 2016, pp. 202–
211, 2016.

[2] A. Messina, R. Rizzo, P. Storniolo, M.
Tripiciano, and A. Urso, “The database-is-the-
service pattern for microservice architectures,”
Lect. Notes Comput. Sci. (including Subser.
Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics), vol. 9832 LNCS, no. January
2018, pp. 223–233, 2016.

[3] C. K. Rudrabhatla, “Comparison of event
choreography and orchestration techniques in
Microservice Architecture,” Int. J. Adv.
Comput. Sci. Appl., vol. 9, no. 8, pp. 18–22,
2018.

[4] N. Singhal, U. Sakthivel, and P. Raj,
“Selection Mechanism of Micro-Services
Orchestration Vs. ChoreographyInt. J. Web
Semant. Technol., vol. 10, no. 1, pp. 01–13,
2019.

[5] C. Richardson, Microservices patterns. Shelter
Island, NY: Manning Publications, 2019.

[6] S. Newman, Building Microservices:
Designing Fine-Grained Systems. O'Reilly
Media, 2015.

[7] J. Lewis and M. Fowler, "Microservices",
martinfowler.com, 2014. [Online]. Available:
https://www.martinfowler.com/articles/micros
ervices.html. [Accessed: 02- Apr- 2020].

[8] R. V, Spring 5.0 Microservices - Second
Edition (2). Birmingham, UK: Packt
Publishing, 2017.

[9] M. Amaral, J. Polo, D. Carrera, I. Mohomed,
M. Unuvar and M. Steinder, "Performance
Evaluation of Microservices Architectures
Using Containers," 2015 IEEE 14th

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
30th September 2021. Vol.99. No 18

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4230

International Symposium on Network
Computing and Applications, Cambridge, MA,
2015, pp. 27-34, doi: 10.1109/NCA.2015.49.

[10] D. Shadija, M. Rezai, and R. Hill,
“Microservices: Granularity vs. Performance,”
UCC 2017 Companion - Companion Proc.
10th Int. Conf. Util. Cloud Comput., pp. 215–
220, 2017.

[11] M. Villamizar et al., "Evaluating the
monolithic and the microservice architecture
pattern to deploy web applications in the
cloud," 2015 10th Computing Colombian
Conference (10CCC), Bogota, 2015, pp. 583-
590, doi:
10.1109/ColumbianCC.2015.7333476.

[12] T. F. Wenisch, “μ Suite : A Benchmark Suite
for Microservices,” 2018 IEEE Int. Symp.
Workload Charact., no. 1, pp. 1–12, 2018.

[13] T. Ueda, T. Nakaike and M. Ohara,
"Workload characterization for
microservices," 2016 IEEE International
Symposium on Workload Characterization
(IISWC), Providence, RI, 2016, pp. 1-10, doi:
10.1109/IISWC.2016.7581269.

[14] S. Stoja, S. Vukmirovic, N. Dalcekovic, D.
Capko, and B. Jelacic, “Accelerating
performance in critical topology analysis of
distribution management system process by
switching from monolithic to microservices,”
Rev. Roum. des Sci. Tech. Ser. Electrotech.
Energ., vol. 63, no. 3, pp. 338–343, 2018.

[15] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly
and S. Pallickara, "Serverless Computing: An
Investigation of Factors Influencing
Microservice Performance," 2018 IEEE
International Conference on Cloud
Engineering (IC2E), Orlando, FL, 2018, pp.
159-169, doi: 10.1109/IC2E.2018.00039.

[16] W. Hasselbring and G. Steinacker,
“Microservice architectures for scalability,
agility and reliability in e-commerce,” Proc. -
2017 IEEE Int. Conf. Softw. Archit. Work.
ICSAW 2017 Side Track Proc., pp. 243–246,
2017.

[17] N. Kratzke, “About Microservices, Containers
and their Underestimated Impact on Network
Performance.”

[18] P. Tennage, S. Perera, M. Jayasinghe, and
S. Jayasena, “An analysis of holistic tail
latency behaviors of java microservices,”
Proc. - 21st IEEE Int. Conf. High Perform.
Comput. Commun. 17th IEEE Int. Conf. Smart
City 5th IEEE Int. Conf. Data Sci. Syst.
HPCC/SmartCity/DSS 2019, pp. 697–705,
2019.

[19] F. H. L. Buzato, A. Goldman, and D. Batista,
“Efficient resources utilization by different
microservices deployment models,” NCA
2018 - 2018 IEEE 17th Int. Symp. Netw.
Comput. Appl., no. i, pp. 1–4, 2018.

[20] S. Mohammed, J. Fiaidhi, and M. Tang,
“Towards using Microservices for
Transportation Management : The New TMS
Development Trend,” Proc. 10th Int. Conf.
Logist. Informatics Serv. Sci., p. 472, 2020.

[21] M. Alam, J. Rufino, J. Ferreira, S. H. Ahmed,
N. Shah, and Y. Chen, “Orchestration of
Microservices for IoT Using Docker and Edge
Computing,” IEEE Commun. Mag., vol. 56,
no. 9, pp. 118–123, 2018.

[22] A. Krylovskiy, M. Jahn, and E. Patti,
“Designing a Smart City Internet of Things
Platform with Microservice Architecture,”
Proc. - 2015 Int. Conf. Futur. Internet Things
Cloud, FiCloud 2015 2015 Int. Conf. Open
Big Data, OBD 2015, pp. 25–30, 2015.

[23] Sun Y., Meng L., Liu P., Zhang Y., Chan H.
(2018) Automatic Performance Simulation for
Microservice Based Applications. In: Li L.,
Hasegawa K., Tanaka S. (eds) Methods and
Applications for Modeling and Simulation of
Complex Systems. AsiaSim 2018.
Communications in Computer and
Information Science, vol 946. Springer,
Singapore. https://doi.org/10.1007/978-981-
13-2853-4_7

[24] S. Barakat, “Monitoring and Analysis of
Microservices Performance.,” J. Comput. Sci.
Control Syst., vol. 10, no. 1, pp. 19–22, 2017.

[25] F. Dai, Q. Mo, Z. Qiang, B. Huang, W. Kou,
and H. Yang, “A Choreography Analysis
Approach for Microservice Composition in
Cyber-Physical-Social Systems,” IEEE
Access, vol. 8, pp. 53215–53222, 2020, doi:
10.1109/ACCESS.2020.2980891.

[26] Akbulut, A., & Perros, H. G. (2019).
Performance Analysis of Microservice Design
Patterns. IEEE Internet Computing, 23(6), 19–
27.
https://doi.org/10.1109/MIC.2019.2951094

[27] S. Lehrig, R. Sanders, G. Brataas, M.
Cecowski, S. Ivanšek, and J. Polutnik,
“CloudStore — towards scalability, elasticity,
and efficiency benchmarking and analysis in
Cloud computing,” Futur. Gener. Comput.
Syst., vol. 78, pp. 115–126, 2018.

http://www.jatit.org/
https://doi.org/10.1007/978-981-13-2853-4_7
https://doi.org/10.1007/978-981-13-2853-4_7

	1HANDI KRISTIANTO, 2AMALIA ZAHRA
	5. RESEARCH METHODOLOGY
	6. EXPERIMENTAL DESIGN
	7. EXPERIMENTAL RESULT
	2
	3
	4
	5
	6
	6.1 Response Time
	6.2 Throughput
	6.3 CPU Utilization
	6.4 Changes of Process Sequence

	8. CONCLUSION AND FUTURE WORK

