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ABSTRACT 
 

With the fast development of deep learning, object detection based on vision has achieved great progress in 
recent years. Though considerable progress has been made, there still exist challenges for objects with tiny 
size. One of the main reason is that feature representatives of tiny objects become sparse and weak due to 
their tiny size in an enormous background. This makes tiny objects difficult to be detected with state-of-the-
art object detectors. This paper proposes an efficient method for detecting tiny objects in massive background. 
First, ResNest architecture is adopted as the backbone to extract features from input images. ResNest captures 
cross-channel feature correlations, while preserving independent representation in the meta structure. As a 
result, ResNest architecture achieves better speed-accuracy trade-offs than state-of-the-art deep CNN-based 
models without incurring excessive computational costs. Next, feature maps generated by the backbone are 
used to build feature pyramid following FPN network. Finally, this paper proposes an attention network in 
the detection part to solve problems of occlusion, noise, and blurring and effectively enhance the 
representations of tiny objects in complex backgrounds based on multi-dimensional attention network and 
inception module. Experiment results on the AI-TOD dataset show that the proposed method is very efficient 
in terms of the detection ability of very tiny and tiny objects. 

Keywords: Tiny Objects Detection, Convolutional Neural Network, Deep Learning, Object Detection, Split-
Attention Network 

 
1. INTRODUCTION  
 

In recent years, the fast development of 
convolutional neural networks (CNNs) has 
significantly accelerated the development of object 
detection. Basically, object detection approaches can 
be divided into two categories: one-stage approaches 
and two-stage approaches. Two-stage deep CNNs-
based object detection framework usually includes 
feature extraction subnet, proposal extraction subnet, 
and detection subnet. The feature extraction subnet 
[1], [2] applies a convolutional neural network to 
extract features from input images. The proposal 
extraction subnet [3], [4] generates regions of 
interest (ROIs), including foreground positive 
samples and background negative samples from the 
feature map. The detection subnet [4], [5] utilizes the 
pooling feature of ROIs to predict the classification 
and regression results of detected objects. 

Prior works usually feed the single scale 
features from the last convolution layer into the 
subsequent subnet to utilize feature information 
obtained from the feature extraction subnet [4], [6]. 
Although feature maps are rich in higher-level 
semantic information, they lack detailed 
information. This leads to a poor detection 
performance for small objects and occluded objects. 
To overcome this problem, some methods proposed 
network structures to predict separately on feature 
layers of different resolutions [7], [8] or to merge 
multi-resolution features at first and then to predict 
on the merged feature map [9]. Recent methods 
show that taking advantages of merge multi-
resolution features and predicting separately on 
feature layers can get more accurate results [10], 
[11]. FPN is a popular network which combines 
multi-resolution features. FPN constructs a feature 
pyramid with high-level semantics throughout and 
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Figure 1: The Structure of ResNest Block. The Input Feature Map Is First Divided into R Cardinal Groups. 
Split Attention Module Is Then Applied on Each Feature Group, and The Feature Maps of Each Cardinal 
Group Are Concatenated to Obtain The Output Feature Map; (h,w,c) Represents The Sizes of The Input 

Feature Map; (c’) Represents The Channels of Inter Forward Blocks

independently predicts at each pyramid level. It 
merges the semantically stronger feature maps from 
top-down with feature maps which are rich in detail 
localization information from the same bottom-up 
level.  

Unlike objects in proper scales, detecting 
objects of tiny scale is much more challenging due 
to the extremely small size and low signal-to-noise 
ratio in aerial image [12]. For the CNNs-based object 
detection methods such as Faster R-CNN with 
ResNet-50, input images will be down sampled 16 
times by pooling layers. Therefore, a number of tiny 
objects will be filtered out in the final feature map. 
Despite the fact that lots of methods tackled this 
problem [13], [14], [15], [16], there is still a large 
gap between current and the upper bound 
performances on tiny object detection. 

To obtain better performance on tiny object 
detection, this paper proposes an efficient method 

for detecting tiny objects in massive background. In 
the proposed framework, ResNest architecture is 
first adopted as the backbone to extract features from 
input images. In addition, this paper proposes an 
attention network to solve problems of occlusion, 
noise, and blurring and effectively enhance the 
representations of tiny objects in complex 
backgrounds based on multi-dimensional attention 
network and inception module. According to the 
numerical results, the detection performance of the 
proposed approach is significantly better than that of 
state-of-the-art methods in terms of the detection 
ability of very tiny and tiny objects. 
 
2. METHODOLOGY 
 

This section presents the details of the proposed 
deep CNN-based framework for tiny object 
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Figure 2: The Structure of Split Attention Module

detection in massive background. The proposed 
framework is based on the Faster R-CNN with FPN 
backbone. 
 
2.1 Backbone 

Since AlexNet [17], deep convolutional neural 
networks have become dominant in image 
classification, object detection segmentation. 
ResNet [2] introduced an identity skip connection 
which alleviates the difficulty of vanishing gradient 
in deep neural network and allows network to learn 
improved feature representations. ResNet has 
become one of the most successful CNN 
architectures which has been adopted in various 
computer vision applications. ResNest [18] 
proposed a simple architecture which combines the 
channel-wise attention strategy with multipath 
network layout. ResNest captured cross-channel 
feature correlations, while preserving independent 
representation in the meta structure. As a result, 
ResNest achieves better speed-accuracy trade-offs 
than state-of-the-art CNN models without incurring 
excessive computational costs. Inspired by the above 
networks, this paper adopts ResNest as the backbone 
network of the model. In the following parts of this 
section, this paper will introduce the structure of 
ResNest network in detail. 

 
 

2.1.1 ResNest Block 
Figure 1 shows the structure of ResNest block. 

In ResNest block, the feature map input into the 
ResNest block can be divided into several groups, 
and the number of feature groups K is a 
hyperparameter. The resulting feature groups are 
regarded as cardinal groups. ResNest introduced a 
new radix hyperparameter R that indicates the 
number of splits within a cardinal group, thus the 
total number of feature groups is G = KR. This paper 
sets K=2, R=2 as in the origin ResNest model. In 
each individual group, a series of transformations 
{𝐹ଵ, 𝐹ଶ, … 𝐹 } is applied and the intermediate 
representation of each group 𝑈௜ = 𝐹௜(𝑋) is received. 
𝐹௜ is a 1×1 convolution layer followed by a 3×3 
convolution layer. Split attention modules, which is 
explained in the following section, are assigned to 
fuse feature maps in each split groups. The output 
feature maps from each cardinal group are then 
concatenated along the channel dimension as follow: 

 
𝑉 = 𝐶𝑜𝑛𝑐𝑎𝑡{𝑉ଵ, 𝑉ଶ, … 𝑉௄}   (1) 
 
If the input and output feature map share the 

same shape, the final output feature map of the 
ResNest block is obtained by using a shortcut 
connection as follow: 

 
𝑌 = 𝑉 + 𝑋     (2) 
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Figure 3: The Structure of The Proposed Attention Network 

 

 
Figure 4: Architecture of The Inception Module
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For blocks with a stride, an appropriate 
transformation Ѱ is applied to the shortcut 
connection to align the output shapes, the final 
output feature map is produced as follow: 

 
𝑌 = 𝑉 + Ѱ(𝑋)     (3) 

 
where Ѱ can be strided convolution or 

combined convolution-with-pooling. 
 
Split Attention Module 
 In ResNest block, split attention module is 
designed to enables feature map attention across 
different feature map groups. Figure 2 illustrates the 
structure of the split attention module. As shown in 
Figure 2, the feature maps of each split group are 
first fused via element-wise summation across 
multiple splits. The feature map for 𝑘௧௛ cardinal 
group after fusing operation Ũ௞ is calculated as 
follow: 
 

Ũ௞ = ∑ Ũ௝
ோ௞
௝ୀோ(௞ିଵ)ାଵ      (4) 

 
where Ũ௞ ∊ ℝு×ௐ×஼/௄ for 𝑘 ∊ 1,2, … 𝐾, and 
(H,W,C) represents the block output feature map 
sizes. 
The fused feature maps are then fed into a global 
average pooling across spatial dimensions 𝑠௞ ∊
ℝ஼/௄ to effectively collect global context 
information with embedded channel-wise statistics. 
Here the 𝑐௧௛  component is calculated as follow: 
 

𝑠௖
௞ =

ଵ

ு×ௐ
∑ ∑ Ũ௖

௞(𝑖, 𝑗)ௐ
௝ୀଵ

ு
௜ୀଵ    (5) 

 
Two fully connected layers with BN and ReLU 
activation are used to generate each feature map 
channel as a weighted combination over splits. The 
𝑐௧௛ channel 𝑉௖

௞ is calculated as follow: 
 

𝑉௖
௞ = ∑ 𝑎௜

௞(𝑐)𝑈ோ(௞ିଵ)ା௜
ோ
௜ୀଵ     (6) 

 
 

𝑎௜
௞(𝑐) = ൞

ୣ୶୮ (ɸ೔
೎(௦ೖ))

∑ ୣ୶୮ (ɸ೔
೎(௦ೖ))ೃ

ೕసభ

   𝑖𝑓 𝑅 > 1,

ଵ

ଵାୣ୶୮ (ିɸ೔
೎(௦ೖ))

     𝑖𝑓 𝑅 = 1,
  (7) 

 
where 𝑎௜

௞(𝑐) denotes assignment weight, and ɸ௜
௖ 

determines the weight of each split for the 𝑐௧௛ 
channel based on the global context representation 
𝑠௞. 
 
 
 

2.1.2 ResNest Network 
 ResNest architecture is based on the ResNet-D 
model [19] and ResNest block as described in 
previous section. In addition to replace Residual 
block with ResNest block, ResNest model also 
adopts two effective modifications: 
- The first 7×7 convolutional layer is replaced with 
three consecutive 3×3 convolutional layers, which 
have the same receptive field size with a similar 
computation cost as the original design. 
 - A 2×2 average pooling layer is added to the 
shortcut connection prior to the 1×1 convolutional 
layer for the transitioning blocks with stride of two. 
In addition, instead of using strided convolution at 
the transitioning block, ResNest architecture uses an 
average pooling layer with a kernel size of 3×3. 
ResNest model captures cross-channel feature 
correlations, while preserving independent 
representation in the meta structure. ResNest block 
performs a set of transformations on low 
dimensional embeddings and concatenates their 
outputs as in a multi-path network. Each 
transformation incorporates channel-wise attention 
strategy to capture interdependencies of the feature 
map. 
Due to the use of the pooling layer, small and tiny 
object lose most of their feature information in deep 
layers. It is a fact that low-level feature maps 
preserve location information of small and tiny 
objects, while high-level feature maps contain 
higher-level semantic information. Feature pyramid 
networks (FPN) [10] is a common feature fusion 
method that involves the combination of both high 
and low-level feature maps generated by the 
backbone network. Based on FPN, this paper also 
constructs the FPN with levels P2 through P5 to 
further fuse the feature maps generated by ResNest 
backbone. 
 
2.2 Attention Network 

In real scenarios, object proposals generated by 
the RPN may contain a large amount of noise 
information due to the complexity of environment. 
Uncontrolled noise information can overwhelm 
object information and blur the boundaries between 
the objects and backgrounds. These problems lead to 
missed detection and increasing false alarms. 
Therefore, it is necessary to enhance the object 
representations and weaken the background 
representations. This paper proposes an attention 
network to solve problems of occlusion, noise, and 
blurring and effectively enhance the representations 
of small objects in complex backgrounds based on 
multi-dimensional attention network [20]. Figure 3 
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illustrates the structure of the proposed attention 
network. In the pixel attention branch, each feature 

 
Figure 5: The Structure of The Proposed Model for Tiny Object Detection

map generated by the FPN backbone is fed into an 
inception module to expand the receptive field and 
increase semantic information. The inception 
module, which is illustrated in Figure 4, contains a 
variety of ratio convolution kernels to capture the 
diversity of object shapes. The two-channel saliency 
map generated by the inception module contains the 
scores of the foreground objects and background. 
Softmax operation is then applied on the two-
channel saliency map to rescale the value of the 
saliency map between [0, 1]. This operation can 
reduce the noise and relatively enhance the object 
information, especially for small and tiny objects. In 
the channel attention branch, SENet [21] is used to 
squeeze global spatial information into a channel 
descriptor. In this network, global average pooling is 
adopted to generate channel-wise statistics. Finally, 
fused feature map is generated by multiplying 
different input feature maps, including the saliency 
map, input feature map and feature map generated 
by the channel attention network. 
 
2.3 Proposed Network 

Figure 5 shows the overall structure of the 
proposed model. Following FPN, ResNest model is 
used as the backbone network, and feature maps 
{C2, C3, C4, C5} generated by the backbone are 
adopted to generate feature pyramid {P2, P3, P4, 
P5}. The attention network is then applied to all 
different scale levels {P2, P3, P4, P5} generated by 
the feature pyramid to generate corresponding fused 
feature layers. These fused feature maps are then fed 
into the RPN to generate object proposals. As in 
FPN, this paper also assigns anchors of a single scale 
and multiple aspect ratios at each level of the fused 
feature maps. To be more specific, this paper defines 
the anchors to have areas of {32×32, 64×64, 128×28, 
256×256} pixels and box ratios of {1:1, 1:2, 2:1}. 

Thus, there are total 12 anchors over the feature 
pyramid. Since there are many ROIs heavily 
overlapping with each other, non-maximum 
suppression (NMS) algorithm is adopted to filter the 
number of ROIs before feeding them into the ROI 
align layer. This paper sets the intersection-over-
union (IoU) threshold at 0.5 for NMS. Then, this 
paper assigns anchors training labels based on their 
IoU ratios with ground truth bounding boxes. To be 
more specific, if the anchor has IoU over 0.5 with 
any ground truth box, it will be set as positive 
anchor. In addition, anchors which have the highest 
IoU for each ground truth box will also be assigned 
as positive anchor. Otherwise, if anchors have IoU 
less than 0.3 with all ground truth boxes, they will be 
set as negative anchor. The parameters of the RPN 
are shared across all fused feature levels. The fused 
feature maps are also fed into the ROI align layer to 
generate fixed-size proposals. Fixed-size proposals 
are finally fed into the R-CNN subnet for final 
prediction. 
 
3. RESULTS AND DISCUSSION 
 
3.1 Dataset and Evaluation Metrics 

This paper conducts all experiments on the AI-
TOD dataset [22]. AI-TOD is a dataset for tiny 
object detection in aerial images. There are 700,621 
annotated object instances of eight categories across 
28,036 aerial images with sizes of 800x800 pixels in 
this dataset, including airplane, bridge, storage tank, 
ship, swimming-pool, vehicle, person, and windmill. 
Objects in AI-TOD appear in various sizes. The 
largest object in AI-TOD is smaller than 64 pixels, 
and 86% of objects are smaller than 16 pixels as 
shown in Figure 6. Objects are classified based on 
their size. Objects in the range 2 to 8 pixels are 
considered as very tiny, 8 to 16 pixels as tiny, 16 to 
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32 as small, 32 to 64 as medium, and no large 
objects. The percentages of very tiny, tiny, small and 

medium objects in AI-TOD are 13:3%, 72:3%, 
12:3% and 2:1%, respectively. For dataset splits, 2/5, 

 
Figure 6: Example Images in the AI-TOD Dataset 

 
Table 1: Number of Object Instances in the AI-TOD Dataset 

Dataset Train Set Validation Set Test Set 

vehicle 248042 59904 306665 

person 14126 3841 15443 

ship 13539 3791 17633 

storage-tank 5269 2477 5860 

bridge 512 140 689 

airplane 623 170 745 

swimming-pool 293 34 292 

windmill 176 67 290 

Total 282580 70424 347617 

1/10 and 1/2 of the images are used to form training 
set, validation set and test set. For each object 
category and image set, the number of object 
instances is illustrated in Table 1. 

 For evaluation metrics, this paper 
employs the Average Precision (AP) metric, which 
has been widely used to assess various detection 
algorithms. In addition, APvt, APt, APs, APm denote 
APs for very tiny, tiny, small, medium scales, 
respectively as in [22]. 
 

3.2 Main Results on AI-TOD Dataset 
This paper compares the proposed method with 

state-of-the-art object detectors, including Faster R-
CNN [4], Cascade R-CNN [23], YOLOv3 [24], 
RetinaNet [25], SSD-512 [8], FCOS [26], and Grid 
R-CNN [27]. Faster R-CNN and Cascade R-CNN 
represent the anchor-based two-stage detectors. 
YOLOv3, RetinaNet, and SSD-512 represent the 
anchor-based one-stage detectors. FCOS represents 
the anchor-free center-based detectors. The 
detection results are shown in Table 2. The AP 



Journal of Theoretical and Applied Information Technology 
15th September 2021. Vol.99. No 17 

© 2021 Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
4414 

 

obtained by the proposed model is 15.2, and the 
APvt, APt, APs, and APm are 5.5, 16.4, 24.8, and 24.1, 
respectively. Compared with other state-of-the-art 

 
Figure 7: Examples of Detection Results of The Proposed Method on the AI-TOD Dataset

models and generic object detectors, the accuracy of 
the proposed model has been significantly improved, 
and the AP, APvt, and APt obtained by the proposed 
model are also the highest compared to other state-
of-the-art models. The results show that the 
proposed method is very efficient in terms of the 
detection ability of very tiny and tiny objects. In 
terms of the detection ability of small and medium 
objects, Cascade R-CNN achieves the best detection 
accuracy, at 25.5 and 26.6, respectively. Since 
Cascade R-CNN introduced a multi-stage extension 

of the R-CNN, where detector stages deeper into the 
cascade are sequentially more selective against close 
false positives to avoid the problems of overfitting at 
training and quality mismatch at inference, it 
enhances the detection performance of large objects 
in massive background. However, the proposed 
method achieves significant improvements on very 
tiny and tiny objects compared to Cascade R-CNN. 
In addition, most of the detectors in the benchmark 
can just obtain performance less than 3% for APvt, 
which actually cannot be applied in the real scenario 
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applications. The visualization of detection results of 
the proposed is shown in Figure 7. As can be seen 
from Figure 7, the proposed method can effectively 

detect very tiny and tiny objects in massive 
background.  
 

Table 2: Detection Results of Different Methods on the AI-TOD Dataset 

Method Backbone AP APvt APt APs APm 

Faster R-CNN ResNet-50-FPN 11.4 0.0 8.3 23.1 24.5 

Cascade R-CNN ResNet-50-FPN 13.8 0.0 10.6 25.5 26.6 

YOLOv3 DarkNet-53 4.5 2.1 4.6 5.9 6.2 

RetinaNet ResNet-50-FPN 4.7 2.0 5.4 6.3 7.6 

SSD-512 VGG-16 7.0 1.0 4.7 11.5 13.5 

FCOS ResNet-50-FPN 9.8 1.4 8.0 15.1 17.4 

Grid R-CNN ResNet-50-FPN 12.2 0.2 10.3 22.6 23.3 

Proposed 
method 

ResNest 15.2 5.5 16.4 24.8 24.1 

 
4. CONCLUSIONS 
 

Tiny object detection in aerial images remains a 
very challenging problem since tiny objects contain 
a small number of pixels and are easily confused 
with massive background. An efficient method for 
detecting tiny objects in massive background is 
proposed in this paper. In the proposed framework, 
ResNest architecture is first adopted as the backbone 
to extract features from input images. ResNest is a 
simple architecture which combines the channel-
wise attention strategy with multipath network 
layout. ResNest captured cross-channel feature 
correlations, while preserving independent 
representation in the meta structure. As a result, 
ResNest achieves better speed-accuracy trade-offs 
than state-of-the-art CNN models without incurring 
excessive computational costs. In addition, this 
paper proposes an attention network to solve 
problems of occlusion, noise, and blurring and 
effectively enhance the representations of tiny 
objects in complex backgrounds based on multi-
dimensional attention network and inception 
module. According to the numerical results, the 
detection performance of the proposed approach is 
significantly better than that of state-of-the-art 
methods in terms of the detection ability of very tiny 
and tiny objects. 
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