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ABSTRACT 
 

As the Internet of Things (IoT) devices become voguish, malware detection on IoT devices is crucial today. 
In this paper, a novel approach to detect IoT malware based on dynamic analysis and deep learning is 
proposed. Our method combines an IoT-sandbox to extract system call sequences that are considered as 
sentences in natural language, then two Long Short-Term Memory (LSTM) model are used to classify. In 
our approach, a program is determined whether malware or benign by two representative values which are 
the results of LSTM models. Experiment results show that our proposed method outperforms other based-
line machine learning models using similar system call feature in terms of accuracy, F1-Weight and the length 
of system call sequence. Our method uses quite short system call sequence of 150, but the highest accuracy 
98.37 per cent and F1-Weight achieves 98.38 per cent. Therefore, the method can be used in early IoT 
malware detection solutions.  

Keywords: IoT malware, malware detection, system calls, LSTM model. 
 
1. INTRODUCTION  
 

Today, there are more and more IoT devices that 
are connected to the Internet. According to Statista 
predicted that 30.9 billion units are installed by 2025 
in the worldwide [38]. So, malware on IoT devices 
also grows accordingly every year. According to [1] 
mobile malware metamorphosis increased by 54% in 
2017 and IoT attacks increased by 600%, in which 
the Mirai malware and its variants created some of 
the most potent DDoS attacks in history. As a result, 
malware detection on IoT devices is very significant 
and is interested by researchers in recent years.  

Primarily, there are 2 types of malware analysis 
include: static analysis and dynamic analysis. While 
static analysis involves inspecting an executable 
program without execution, dynamic analysis 
involves examining behavior of the executable 
program by running it. Both methods have their 
advantages and disadvantages. The static analysis 
[3], [4], [6] relied on extracting numerous features 
from executable programs such header section, 
String, Function Length Frequency (FLF), Printable 
String Information (PSI), Operational codes 

(Opcodes), etc. If malware uses encryption and 
obfuscation techniques or complex code, it could 
break away from detection programs. Therefore, it is 
necessary to use dynamic analysis methods to solve 
this problem. Dynamic approach on [2], [7]-[10] 
used various taxonomy such as network traffic, API 
call traces, instruction traces, memory and register’s 
usage, system calls, … In dynamic analysis, n-gram 
methods have been used to extract and select features 
from system call sequences as investigated in Phu et 
al. [2] and Raymond et al. [11]. Using the 
combination of n-gram and system calls can be 
effective in the IoT malware detection. However, the 
n-gram feature selection methods only consider 
mutual connection between objects in a limited case, 
leading to an unsatisfied result. While most of the 
previously malware researches are focusing on 
traditional computing devices with the Intel 
architecture (i386), it has switched to develop 
methods to detect IoT malware, especially with the 
ARM or MIPS architecture in recent times [2].  

The MIPS processor architecture is used in many 
popular IoT devices such as routers, switches, access 
points, and IP cameras [19], [20]. If an application is 
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run on different processor architectures and 
operating systems, their behaviors are dissimilar. 
Therefore, it is necessary to researching about 
malware detection on devices that are used the 
Embedded Linux OS and MIPS processor. Many 
researchers had positive results on malware 
detection on Android applications based on system 
call behavior [12]-[16], [21], but to our knowledge, 
researches to detect malware via system call are 
limited in MIPS ELF. Phu et al. [2] proposed a 
sandbox that automatically induct the suitable 
environment to activate MIPS ELF files and using 
machine learning classifiers based on n-gram feature 
selection method. However, the n-gram method and 
feature extraction methods based on frequency of 
occurrence of the features have many limitations for 
example, it will cause difficulty and reduce 
efficiency in processing malware detection models 
with large feature sets. While some feature selection 
methods, such as compressing and reducing features, 
cannot eliminate completely interfering features and 
can cause loss of important information, other 
methods such as LSTM bring high efficiency in 
natural language processing and miss data 
prediction. In this study, a dynamic analysis 
approach is proposed base on the LSTM language 
model and system call sequences in order to make 
the MIPS malware detection result better. 

System call sequences have the same structure as 
sentences in natural languages. LSTM model can 
extract hidden semantic information in the natural 
language model, so a system call (syscall) is 
considered as one word and a syscall sequence as one 
sentence in the natural language model. Our research 
used two different LSTM language models, which 
are trained by syscall sequences from malware and 
benign dataset at first, then a feasibility probability 
is calculated for one sequence with a model. Based 
on the probabilities, a representative value is defined 
to performances the extent of the program belong to 
two models.  The two representative values are 
compared to classify MIPS ELF programs. Our 
method is evaluated from several elements, 
including the maximum length of syscall sequences 
and the structure of model. Experiments 
demonstrated that our approach achieves elevated 
efficiency and the highest accuracy 98.37% with 
length of system call sequences 150, which is better 
than that of n-gram methods in [2].  

In summary, this research has main contributions 
as follows: 

 An approach based on the Long Short-Term 
Memory language model and dynamic analysis to 

detect IoT malware in MIPS architecture-based 
devices.  

 A novel criterion for detection whether a program 
is malware based on its behaviors.  

 Experimental results demonstrated that our 
proposed model had better results than other 
machine learning models using n-gram method and 
can detect malware early in real analysis systems. 

The rest of the paper is structured as follows. 
Related works on malware detection based on 
system calls are discussed in section 2. LSTM model 
are introduced in section 3. Section 4 describes the 
proposed malware detection paradigm. Experiments 
and evaluations are introduced in section 5. Finally, 
conclusion and future works are discussed. 

 
2. RELATED WORKS 

 
According to Helenius et al. [17], malicious code 

is a program designed with the purpose of unwanted 
users. Ed Skoudis et al. [5] suggest that malware 
(malicious code) is a set of commands are infected 
on a user's computer to control the computer to carry 
out malicious actions. Similar to malware on mobile 
devices and Linux malware, IoT malware is 
considered as malicious code infecting IoT devices 
or IoT networks. However, novel malware detection 
on Embedded Linux operating system of IoT devices 
is a huge challenge because of the extensive range of 
application, dissimilarity of category and increasing 
processing capability of IoT devices [26]. 

Malware analysis is a process of determining 
malicious behavior of a program. Malware analysis 
is often based on static and dynamic features [27]. 
Static features have been used such as strings [28], 
bytes n-gram [29], opcode [30], [31], function call 
graph [32], entropy-based [33], etc. This method 
allows for detailed analysis of programs and supply 
activation capability information of malware. 
However, static analysis is ineffective in malware 
detection using complex techniques such as code 
encryption, obfuscation, polymorphic, ... The 
effectiveness of static analysis depends heavily on 
decompilation and disassembler tools. 

On the other hand, to be able to analyze complex 
malicious codes, dynamic feature-based analysis is 
recommended. In malware analysis, common 
dynamic features include memory usage [34], 
instruction traces [8], network traffic [36], API call 
trace [10], [37]. The effectiveness of dynamic 
analysis is highly dependent on malware execution 
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environment. One of the most popular methods 
nowadays is using machine learning and deep 
learning to collect relevant data during malware 
execution. In dynamic feature collection, an 
adequate sandbox is required to monitor behaviors 
of executable programs. Collected behavior data 
plays an essential role in the accuracy of malware 
detection, so sandbox is a suitable environment for 
collecting malicious behaviors. There have been 
many proposed sandboxes for collecting 
application’s behavior on the IoT devices, but the 
most popular are the IoT devices running Android 
OS [25]. There are some popular sandboxes for IoT 
devices such as IoTBox, IoTPOT [23], Linux 
Sandbox LiSa [24], V-Sandbox [25], F-Sandbox [2], 
Detux1. IoTBox which is a sandbox to collect 
network behaviors of IoT malware program, 
supports eight processor architectures such as ARM, 
MIPS, PowerPC, etc. IoTBOX has only focused on 
collecting network behaviors, not collecting other 
malware analysis high-meaning behaviors such as 
system behaviors. Detux is based on QEMU. It 
supports collecting traffic behaviors in five CPU 
architectures include x86, x64, ARM, MIPS, and 
MIPSEL. However, Detux sandbox did not 
virtualize network peripheral and consider the 
interaction with the OS. F-Sandbox collected diverse 
behaviors of ELF file on IoT devices, including both 
system calls and network association behaviors. In 
addition to that, adaptive environments are 
automatically configured for activating ELF files. 
So, F-sandbox is a suitable sandbox to collect system 
call sequences on IoT platforms. 

A syscall is one mechanism for an application to 
request one service from underlying OS’s kernel 
[14]. Malicious programs and benign programs have 
different behaviors, such as the malware request 
more internal connection or access sensitive 
resources more frequently. Each single individual 
system call cannot describe a program’s behavior. 
Therefore, several syscalls sequentially should be 
considered to determine a program’s code-level 
behavior characterize the program. Grasping the 
dependencies between the system calls is helpful for 
classifying the normal and malicious behavior of a 
program. System call sequence logs can be collected 
and analyzed with different tools. The use of the 
system call feature has brought about a lot of 
efficiency in detecting and classifying malware. 
Therefore, we use F-Sandbox [2] to extract system 

                                                 
1 https://github.com/detuxsandbox/detux 
 

call sequences for malicious code detection on MIPS 
architectural platform. 

Using system call feature has brought a lot of 
efficiency in detecting malware in general and IoT 
malware in particular. There are quite many studies 
in this aspect, such as Phu et al. [2] used machine 
learning algorithms to determine system call 
sequences generated by malware in a sandbox. Their 
experimental results have shown good results for 
system call-based IoT malware detection. Canzanese 
Raymond et al. [11] used the n-gram method to 
detect system calls of malicious processes. Marko 
Dimjašević et al. [14] used machine learning and 
system calls to classify malware on the Android 
platform. The research shown that system-call based 
techniques are viable to be used in practice to detect 
malware in Android applications. Nikolopoulos et 
al. [18] used a graphical model based on system calls 
to detect malicious code. Their model can detect 
malware with true positives over 94% but false 
positives 13.1%.  

On the one hand, abnormality detection often uses 
machine learning (ML) and deep learning (DL) on 
data mining for malware detection. Moreover, 
machine learning and deep learning methods are 
effective in predicting novel and metamorphic 
malware that have never appeared before. 

On the other hand, the forecast problem in 
sequential data could be resolved by establishing a 
statistical language model. Basically, the models 
based on n -gram method cannot predict a program’s 
pattern which do not appear in the training dataset 
because of the limitation of dimensions. If n value is 
too small such as 1-gram, the frequency of single 
system call occurrences is shown, so it is difficult to 
be effective in creating malware detection models. 
Contrarily, if n value is huge, the quantity of the 
features is very big. Hence, some neural probabilistic 
language models are used to improve effective of n-
gram method since they can analysis longer context. 
A neural network is a kind of mathematical model 
consisting of many layers of neurons. Recurrent 
neural network is a distinctive structure of neural 
network, and it can retain state information of 
previously hidden layer based on a special memory 
unit. Recurrent neural network (RNN) is used in 
various fields such as malware detection, speech 
recognition, and natural language processing. 
However, it is difficult for standard RNN to learning 
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long-term dependencies by the stochastic gradient 
going down. A special type of RNN is Long Short-
Term Memory (LSTM) [22] that can significantly 
reduce the disappearing and detonating gradient 
problems. The LSTM structure includes a set of 
recurrently connected subnets (memory blocks). 
These connected subnets are considered as a 
distinguishable category of memory chips in one 
computer. The LSTM network can be used to resolve 
model text sequences forecasting problems. 

 
3. BACKGROUND 
 

The LSTM model contains a series of gates. Each 
LSTM cell has one structure of longer-term memory 
in the structure of one cell state that is updated into 
and out of time. A forget gate considered at the 
hidden state and new input. It also decides 
information which can be safely forgotten. Then, the 
input gate determines what information from the 
new input will be put on the cell state to remember. 
Finally, the output gate takes information from the 
input, cell state, and hidden state to create the output 
for the present step.  

The key of LSTM is cell state. The cell state runs 
straight down the whole sequence and with only 
some inconsiderable linear interchanges. Therefore, 
information to just flow along it does not change. 
The information about cell state can be added or 
removed by structures called gates. The gates are 
made up of one layer of sigmoid neural network and 
a pointwise multiplication operation, which are ways 
to optionally let information through optional ways 
for information to pass through. The sigmoid neural 
network layer returns numbers between [0,1], 
expressing how much of each element should be let 
through. A value of zero means “let nothing 
through,” while a value of one means “let everything 
through”. Three of these gates are created to secure 
and dominate the cell state. 

𝑓௧  = σ (W
௙
. [ht-1 , xt] + b௙)            (1) 

Next, new information which will be stored in the 
cell state is decided, include two section. A sigmoid 
layer decides which values will be updated called the 
“input gate layer”. A vector is created with new 
candidate values by a tanh layer. The tanh function 
can be calculated as follows: 

g(x) = 
eೣ ି  eషೣ

eೣ ା  eషೣ
                          (2) 

where value g(x) in [-1,1]. 

In the following step, these two are incorporated 
to create an upgrade to the state. 

𝑖௧= σ (W
௜
 . [ht-1 , xt] + b௜)                (3) 

Ct
෱  = tanh(WC . [ht-1 , xt] + bC)          (4) 

Thereafter, a new cell state 𝐶௧ is upgraded from 
𝐶௧ିଵ while old state is multiplied by 𝑓௧, forgetting the 
things are decided to forget earlier. Then, 
൫𝑖t*Ct

෱ ൯ value is added. The new candidate values are 
scaled by how much to upgrade each state value. 

Ct= 𝑓௧  * Ct-1 +  𝑖t * Ct
ෲ              (5) 

Finally, an output is based on the cell state that be 
a filtered version. A layer of sigmoid neural network 
is given to decide what parts of the cell state that will 
be output. Thereafter, the cell state is moved through 
tanh value [-1,1], then it is multiplied by the output 
of the sigmoid gate. 

ot= σ (Wo . [ht-1 , 𝑥t] + bo)              (6) 

ht= ot * tanh (Ct)           (7) 

LSTM language model can be used to foretell the 
next word in one sentence. A traditional neural 
network unit i incorporate an input activation 𝑎௜ and 
an output activation 𝑏௜ which is related when a tanh 
activation function is used by formula: 

𝑏௜  = tanh (𝑎௜)                       (8) 

The LSTM unit adds several intermediate steps: 
After executing the activation function to 𝑎௜, the 
result is multiplied by factor 𝑏௜. Then, the inner 
activation value of the previous step is multiplied by 
the quantity 𝑏஦ that is added due to the repeated self-
connection. Ultimately, the result is scaled by 𝑏ன 
and is moved fed to another activation function to 
yielding 𝑏௜. The factors 𝑏௜, 𝑏ఝ, 𝑏ఠ ∈ (0, 1) are 
controlled by additional units called input, output, 
and forget gate. While the inner of the LSTM unit is 
activated, the gate units are aggregated from the 
activations of the previously hidden layer and the 
activations of the current layer from the previous 
step. The result value is squashed by a logistic 
sigmoid function which is set to 𝑏௜, 𝑏஦, or 𝑏ன, 
respectively. 
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4. PROPOSED MODEL 
 
Firstly, system call sequences of MIPS ELF files 

are collected by executing them in F-Sandbox [2]. 
Each system call can be considered a word in the 
natural language. A syscall sequence is considered 
as one sentence in the natural language. The dataset 
of system call sequences of benign files is train to 
build Benign model (BM), and the system call 
sequences from malware ELF files to build Malware 
model (MM), a LSTM classifier model is approved 
to classify the syscall sequences. Finally, system call 
that is extracted from the malicious file can be 
identified according to the classification results. Our 
paradigm method is elucidated in Figure 1. The 
process consists two parts include system call 
sequences collection, and LSTM classifier. 

 

Figure 1: Paradigm of our work 

4.1. System call sequences collection 
 

To get the most complete system call sequences, 
feature vectors are constructed by all the system calls 
on the MIPS architecture Linux OS with 345 
different syscalls. However, they are not used 
entirely in ELF file data sets. F-Sandbox is used to 
extracting system call logs of MIPS ELF files. F-
Sandbox uses Kprobe to collect the system calls 
generated from the running program and its child 
processes. The samples are executed in the F-
Sandbox with same configuration, simulating the 
network environment for an equal amount of time. 

After extracting system call logs of the samples, 
the system call logs of the samples that executable 
failed or too short are removed. A sample can create 
multiple processes and one process will generate a 
system call log, so the system call logs generated 
from a sample are concatenated. Therefore, each 
ELF file in the dataset will collect a corresponding 
system call log file. As the result of this process, two 
datasets are collected include Mal-SysCallLog 
dataset which is system call sequences of malware 
ELF files and Beg-SysCallLog dataset which is 

system call sequences of benign ELF files. 
 
4.2. LSTM classifier 
 

Unlike n-gram method, the LSTM language 
model uses strength of all system calls before current 
call in a system call sequence to forecast the next 
syscall. More context information is picked up from 
the syscall sequences than some other language 
model such as language model using n-gram 
method. Thus, an LSTM language model classifier 
is designed by our research. The classifier includes 
two models: A model is used to train malware 
system call sequences while the other model is used 
to train benign system call sequences from the ELF 
file. Both models use the same LSTM neural 
network architecture, but parameters are different. 

The LSTM network includes three parts: input 
layer, output layer, and hidden layers. The input gate 
is a vector encoded by (1-k) coding and the output 
gate is a vector of the likelihood distribution. In the 
LSTM classifier, one syscall is treated as a word in 
the language model. A syscall chain is taken as a 
sentence in the language model. For a syscall 
sequence, each next syscall is predicted according to 
all the preceding system calls in the chain. The 
likelihood of the syscall sequences can be calculated 
as follows: 

 

Figure 2: Memory block construction 

The likelihood of syscall sequence 𝑆ଵ
ே is calculated 

as follows: 

p(𝑆ଵ
ே) = ∏ 𝑝(𝑆𝑚 | 𝑆1

𝑚−1)𝑁
𝑚=2        (9) 

where, 𝑆ଵ
ே is one syscall sequence with the length of 

N, in which 𝑆௠ is the 𝑚௧௛ syscall. 𝑆ଵ
௠ିଵ is 

subsequence from 𝑆ଵ to 𝑆ଵ
௠ିଵ. 

For each system call sequence of benign and 
malware dataset, we train two models which are thus 
call the Benign Model (BM) and the Malware Model 
(MM) are trained. Then, two representative values 
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are calculated based on two models. Then, two 
representative values used to classify an application 
by comparing them. 

In training phare, two LSTM networks are used to 
train. As a matter of fact, the LSTM networks are 
trained at first. Syscalls encoded as vectors are fed 
into the LSTM network. After feeding one vector 
into the LSTM network, an output vector is created 
based on probability distribution 𝑉௣ [6]. A 
multiplicative input gate protects memory contents 
stored from perturbation by irrelevant inputs. A 
multiplicative output gate protects other units from 
perturbation by currently irrelevant memory 
contents stored. A multiplicative forget gate protects 
other units from perturbation by previous irrelevant 
memory contents. Finally, next syscall is predicted 
by the formula: 

Predicted_syscall=(si|vi= max൫Vp൯ ,1≤i≤n)    (10) 

where: 𝑣௜ represents 𝑖௧௛ element in 𝑉௣, which is equal 
to p(𝑠௜ |subsequence_before_𝑠௜). n value is the 
number of different syscalls or length of 𝑉௣ 

In testing phase, a representative value is defined 
to depict representative degree between detected 
application and corresponding file category. The 
representative value in our method is defined as 

Representative _value = exp (log 𝑝௜)       (11) 

in which, 𝑝௜  is probability of 𝑖௧௛ syscall sequence.  

Finally, system call sequences are classified based 
on representative values. If representative value of 
an application from Malware model is greater than 
representative value of Benign model, application is 
determined as malware. Otherwise, application is 
determined as benign. 
 
5. EXPERIMENTS AND EVULUATIONS 
 

In our experiments, malware detection framework 
is based on Tensorflow framework2 and used GPU 
on Google Colaboratory3 to speed up. 

 
5.1. Data collection 

 
An IoT dataset used for testing includes 1,224 

MIPS ELF samples (928 malware and 296 benign). 
The malware dataset is collected by Phu et al. [2] 
from different sources on the Internet and available 
programs on Embedded Linux. In addition, our 

                                                 
2 https://www.tensorflow.org/ 

dataset has added utility programs on MIPS 
platforms from vendors.  

Then, system call sequence logs are collected 
from MIPS ELF samples based on F-Sandbox [2]. 
Each sample is executed on the sandbox in 30 
seconds. The average length of the system call 
sequences in the two datasets is similar. The system 
call logs result collected are shown in Table 1. 

 
Table 1: System call logs results are collected by F-

Sandbox 

Label Malware Begin 

Number of samples 928 296 

Average length of 
system call logs 

327 305 

 
After that, system call sequences that is shorter 

than 50 will be removed. Besides, concatenates 
system calls are generated by an application into a 
system call sequence that representing this 
application. After this processing, the system call 
dataset results are shown in Table 2. 

Table 2: Syscall dataset results 

Min 
(Length) 

50 100 200 300 400 500 1000 

Number 
of 

malware 
samples 

928 904 858 844 63 61 43 

Number 
of benign 
samples 

296 268 149 128 110 95 74 

 
Analyzing collected system call logs, the malware 

only uses 136 system calls, the benign uses 127 
system calls, most of the system calls of two 
episodes overlap, and there are 160 system calls 
appear in both sets. The rate of most appeared system 
calls on two datasets is shown Figure 3. 

 

Figure 3: The rate of most appeared system calls 

3 https://colab.research.google.com/ 
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Figure 3 indicates that the system calls that appear 
most on both the Mal_SystemCallLog and 
Beg_SystemCallLog datasets are relatively similar, 
especially two system calls “read” and “recvfrom” 
appeared most in the both datasets. So, it is not 
feasible to use each system call feature for 
classification in this case. 

 
5.2. Evaluation metric 

 
In our paper, several evaluation standards are used 

to evaluate the effectiveness of approach in terms of 
mainly three metrics included F1-Micro, F1- 
Weight, and accuracy.  

The F1-score is the harmonic average of the recall 
and precision of one class. 

Precision = 
TP

TP + FP
                        (12) 

where True Positive (TP) indicates that the number 
of malware samples identified correctly; False 
Positive (FP) is the number of trusted programs is 
detected as malware.  

Recall is fraction of system call sequence in 
ground truth that is correctly classified: 

Recall = 
TP

TP + FN
     (13) 

where False Negative (FN) is the number of malware 
samples is taken as trusted programs.  

F1-Macro: Average of the F1-scores of classes, 
characterizing classifier performance on small 
classes.  

F1-Weight: Weighted average of the F1 scores of 
classes, with weight proportional to their support in 
the ground truth. 

Accuracy can be described as: 

Accuracy = 
TP + TN

TP + NP + TN + FN
      (14) 

In the above formula, True Negative (TN) is 
number of trusted applications identified correctly. 

Performance of proposed model is investigated by 
length of syscall sequences, the number of hidden 
layers and the number of hidden units in each layer. 

 

 

5.3. Effectiveness of system call sequence length 

 
Both sentence and syscall sequence can be treated 

as sequences. However, sentence length is always 
shorter than syscall sequence length. According to C. 
Raymond [35], the system call log must be collected 
within a fixed time and the minimum length of the 
system call log is 1,500. If a system call sequence of 
program not enough long, it does not distinguish 
malicious behavior or normal behavior. In our 
experiments, the length of system call log less than 
50 are generated by error samples such as lack of 
libraries, insufficient parameters to operate, errors 
initialize, etc.  

In addition to that, there are many different words 
in natural language, but it has only 345 different 
system calls are available in MIPS architecture. In 
our syscall dataset, there are 160 syscalls that appear 
in both malware and benign sets while the number of 
different words is 10.000. Maximum length of 
sentence is about 100 in typical natural language 
dataset. 

In our LSTM classifier, network is constructed 
with 4 hidden layers and 1000 units in each layer. 
Then, the classifier is used to detect under different 
maximum length of system call sequences, i.e., 50, 
100, 150, 200, 250, 300, 350, 400, 450, 500. Results 
are shown in Table 3 and Figure 3. 

 
Table 3: Results under different length of system call 

sequences 

Length 50 100 150 200 300 400 500 

Accuracy 97.83 96.47 98.37 89.67 88.59 85.87 85.59 

F1-
Macro 96.94 95.37 97.81 86.23 81.06 75.1 75.07 

F1-
Weight 97.79 96.53 98.38 89.79 87.22 83.56 83.31 

 
Figure 3 and Table 3 indicate that when length is 

150, the classifier can achieve high accuracy of  
98.37% with F1-Macro of 97.81% and F1-Weight of 
98.38 %. The network is unable to memorize more 
information and it is disturbed by additional noises 
when the sequence is very long, such as maximum 
length of sequences is  400 or 500. Figure 4 indicates 
that our classifier can discriminate malware from 
benign programs and achieve favorable accuracy. 
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Figure 4: Accuracy, F1-Macro, F1-Weight under 
different syscall sequence length 

 

5.4. Effectiveness of the number of hidden layers 
and the number of hidden units in each layer 

 
Performance of LSTM classifier are analyzed 

under numbers of hidden layers in network from 1 to 
6. Each layer of all networks has 1000 hidden units, 
and maximum length of system call sequence is 150. 
Results are shown in Table 4.  

Table 4: Metrics under the number of hidden layers 

Number 
of hidden 

layers 
1 2 3 4 5 6 

Accuracy 90.49 96.2 93.75 98.37 96.47 95.92 

F1-
Macro 

88.44 94.73 91.81 97.81 95.2 94.74 

F1-
Weight 

90.95 96.17 93.87 98.38 96.47 96.03 

 
The table shows that the highest Accuracy of 

98.37% with F1-Weight of 98.38% are achieved 
when there are 4 hidden layers. When the number of 
hidden layers is one, the neural network cannot catch 
enough useful information from the sequence. 
Whereas the number of hidden layers is greater than 
4, network is overfitting. Thus, network with 4 layers 
is appropriate for our work. 

Beside the number of hidden layers, relationship 
between the number of hidden units in each layer and 
detection performance in the LSTM classifier should 
be considered. The number of hidden layers in 
network is set as 4, maximum length of 150, and 
change the number of hidden units in each layer. 
Results are shown as Table 5. 

 

 

Table 5: Metrics under the number of hidden units in 
each layer 

Number 
of hidden 

units 
600 800 1000 1200 1400 

Accuracy 95.92 92.12 98.37 95.02 96.20 

F1-Macro 94.73 90.20 97.81 94.03 95.03 

F1-Weight 96.03 92.44 98.38 95.13 96.27 

 
Table 5 shows that when the number of hidden 

units is 1000 in each layer our method has the highest 
accuracy of 98.37% and the highest F1-Weight of 
98.38%. The reason is that when the number of 
hidden units is less than 1000, model is underfitting. 
When number is more than 1000, model is 
overfitting. 

 
5.5. Comparison with machine learning approach 

using n-gram feature selection method 
 
In order to make a comparison, three machine 

learning models, which use n-gram feature selection 
method, are typical detection methods using system 
call sequences. They are conducted with the same 
dataset as ours. Results are shown in Table 6. 

From the Table 6, when the length of the system 
call sequence is 500, n-gram method [2] has the 
highest F1-Macro of 92.11% and F1-Weight of 
97.09%, while LSTM classifier reach the highest F1-
Macro of 97.81% and F1-Weight of 98.38% with 
length of system call sequence of 150. It can be 
obviously seen from table that our LSTM model is 
better than that of the machine learning models using 
n-gram method. 

 

Figure 5: Comparison between our LSTM classifier, RF, 
SVM, and NB 

Figure 5 indicates that LSTM classifier uses 
shortest system call sequence length of 150 with the 
highest F1-Weight of 98.38%. Therefore, the LSTM 
classifier model can be used to detect early and 
accurately malware in real analysis system. 
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6. CONCLUSIONS AND FUTURE WORKS 
In summary, system call sequence of program has 

been employed to detect malware. In our classifier, 
there are two models is built based on LSTM 
language model to detect IoT malware on MIPS 
architecture with system call sequences. When a new 
sequence comes, two representative values are 
calculated from the two LSTM networks to classify 
the corresponding programs. The representative 
values demonstrate efficiency in classify programs 
based on system call sequence. Our experiments 
have been done to test the performance of our new 
classifier. The results show that our method can 
achieve the highest accuracy of 98.37% and the 
highest F1-Weight of 98.38%. Moreover, the 
comparison with the n-gram method and machine 
learning approach was conducted to show that our 
classifier is better than the approach base on n-gram 
feature selection method. In term of the length of 
system call sequence, our proposed method uses 
quite shorter system call sequence compare to other 
methods but still archive better result for IoT 
malware detection. Thus, the method can obviously 
be used to early detecting IoT malware in real 
systems. 

In the future, we plan to evaluate our approach 
against larger and broader datasets, and other 
sequence analysis techniques can be extended to 
solve more complicated malware detection problems 
such as using the static features or combining 
dynamic features and static features. Deep learning 
methods combined with more other features could 
also be considered to detect exactly malware and 
early detection.  
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Table 6: Comparison between LSTM classifier and n-gram methods 

Len 
F1-Macro F1-Weight 

RF SVM NB 
LSTM 

classifier 
RF SVM NB 

LSTM 
classifier 

50 85.03 79.81 67.21 96.94 91.48 89.13 66.56 97.79 

100 85.6 84.65 69.01 95.37 91.73 90.82 67.35 96.53 

150 84.95 82.67 70.19 97.81 92.29 90.83 68.76 98.38 

200 85.48 82.54 77.79 86.23 92.45 91.02 83.38 89.79 

250 85.18 82.43 77.89 82.02 92.48 91.04 83.38 87.74 

300 85.13 80.88 77.81 81.06 92.61 90.73 83.51 87.22 

400 91.82 88.09 78.84 75.1 97.04 95.61 93 83.56 

500 92.11 90.64 79.49 75.07 97.09 96.34 93.46 83.31 

 


