
Journal of Theoretical and Applied Information Technology
31st August 2021. Vol.99. No 16

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4069

A NOVEL APPROACH TO DETECT IOT MALWARE BY
SYSTEM CALLS AND LONG SHORT-TERM MEMORY

MODEL

1TOAN NGUYEN NGOC, 2DUNG LUONG THE, 3PHU TRAN NGHI
1Lecturers, People’s Security Academy, and Academy of Cryptography Techniques, Hanoi, Vietnam

1PhD Student, Academy of Cryptography Techniques, Hanoi, Vietnam

2Associate Professor, Academy of Cryptography Techniques, Hanoi, Vietnam

3Lecturers, People’s Security Academy, Hanoi, Vietnam

E-mail: 1ngoctoan.hvan@gmail.com, 2thedungluong1@gmail.com, 3tnphvan@gmail.com

ABSTRACT

As the Internet of Things (IoT) devices become voguish, malware detection on IoT devices is crucial today.
In this paper, a novel approach to detect IoT malware based on dynamic analysis and deep learning is
proposed. Our method combines an IoT-sandbox to extract system call sequences that are considered as
sentences in natural language, then two Long Short-Term Memory (LSTM) model are used to classify. In
our approach, a program is determined whether malware or benign by two representative values which are
the results of LSTM models. Experiment results show that our proposed method outperforms other based-
line machine learning models using similar system call feature in terms of accuracy, F1-Weight and the length
of system call sequence. Our method uses quite short system call sequence of 150, but the highest accuracy
98.37 per cent and F1-Weight achieves 98.38 per cent. Therefore, the method can be used in early IoT
malware detection solutions.

Keywords: IoT malware, malware detection, system calls, LSTM model.

1. INTRODUCTION

Today, there are more and more IoT devices that
are connected to the Internet. According to Statista
predicted that 30.9 billion units are installed by 2025
in the worldwide [38]. So, malware on IoT devices
also grows accordingly every year. According to [1]
mobile malware metamorphosis increased by 54% in
2017 and IoT attacks increased by 600%, in which
the Mirai malware and its variants created some of
the most potent DDoS attacks in history. As a result,
malware detection on IoT devices is very significant
and is interested by researchers in recent years.

Primarily, there are 2 types of malware analysis
include: static analysis and dynamic analysis. While
static analysis involves inspecting an executable
program without execution, dynamic analysis
involves examining behavior of the executable
program by running it. Both methods have their
advantages and disadvantages. The static analysis
[3], [4], [6] relied on extracting numerous features
from executable programs such header section,
String, Function Length Frequency (FLF), Printable
String Information (PSI), Operational codes

(Opcodes), etc. If malware uses encryption and
obfuscation techniques or complex code, it could
break away from detection programs. Therefore, it is
necessary to use dynamic analysis methods to solve
this problem. Dynamic approach on [2], [7]-[10]
used various taxonomy such as network traffic, API
call traces, instruction traces, memory and register’s
usage, system calls, … In dynamic analysis, n-gram
methods have been used to extract and select features
from system call sequences as investigated in Phu et
al. [2] and Raymond et al. [11]. Using the
combination of n-gram and system calls can be
effective in the IoT malware detection. However, the
n-gram feature selection methods only consider
mutual connection between objects in a limited case,
leading to an unsatisfied result. While most of the
previously malware researches are focusing on
traditional computing devices with the Intel
architecture (i386), it has switched to develop
methods to detect IoT malware, especially with the
ARM or MIPS architecture in recent times [2].

The MIPS processor architecture is used in many
popular IoT devices such as routers, switches, access
points, and IP cameras [19], [20]. If an application is

Journal of Theoretical and Applied Information Technology
31st August 2021. Vol.99. No 16

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4070

run on different processor architectures and
operating systems, their behaviors are dissimilar.
Therefore, it is necessary to researching about
malware detection on devices that are used the
Embedded Linux OS and MIPS processor. Many
researchers had positive results on malware
detection on Android applications based on system
call behavior [12]-[16], [21], but to our knowledge,
researches to detect malware via system call are
limited in MIPS ELF. Phu et al. [2] proposed a
sandbox that automatically induct the suitable
environment to activate MIPS ELF files and using
machine learning classifiers based on n-gram feature
selection method. However, the n-gram method and
feature extraction methods based on frequency of
occurrence of the features have many limitations for
example, it will cause difficulty and reduce
efficiency in processing malware detection models
with large feature sets. While some feature selection
methods, such as compressing and reducing features,
cannot eliminate completely interfering features and
can cause loss of important information, other
methods such as LSTM bring high efficiency in
natural language processing and miss data
prediction. In this study, a dynamic analysis
approach is proposed base on the LSTM language
model and system call sequences in order to make
the MIPS malware detection result better.

System call sequences have the same structure as
sentences in natural languages. LSTM model can
extract hidden semantic information in the natural
language model, so a system call (syscall) is
considered as one word and a syscall sequence as one
sentence in the natural language model. Our research
used two different LSTM language models, which
are trained by syscall sequences from malware and
benign dataset at first, then a feasibility probability
is calculated for one sequence with a model. Based
on the probabilities, a representative value is defined
to performances the extent of the program belong to
two models. The two representative values are
compared to classify MIPS ELF programs. Our
method is evaluated from several elements,
including the maximum length of syscall sequences
and the structure of model. Experiments
demonstrated that our approach achieves elevated
efficiency and the highest accuracy 98.37% with
length of system call sequences 150, which is better
than that of n-gram methods in [2].

In summary, this research has main contributions
as follows:

 An approach based on the Long Short-Term
Memory language model and dynamic analysis to

detect IoT malware in MIPS architecture-based
devices.

 A novel criterion for detection whether a program
is malware based on its behaviors.

 Experimental results demonstrated that our
proposed model had better results than other
machine learning models using n-gram method and
can detect malware early in real analysis systems.

The rest of the paper is structured as follows.
Related works on malware detection based on
system calls are discussed in section 2. LSTM model
are introduced in section 3. Section 4 describes the
proposed malware detection paradigm. Experiments
and evaluations are introduced in section 5. Finally,
conclusion and future works are discussed.

2. RELATED WORKS

According to Helenius et al. [17], malicious code

is a program designed with the purpose of unwanted
users. Ed Skoudis et al. [5] suggest that malware
(malicious code) is a set of commands are infected
on a user's computer to control the computer to carry
out malicious actions. Similar to malware on mobile
devices and Linux malware, IoT malware is
considered as malicious code infecting IoT devices
or IoT networks. However, novel malware detection
on Embedded Linux operating system of IoT devices
is a huge challenge because of the extensive range of
application, dissimilarity of category and increasing
processing capability of IoT devices [26].

Malware analysis is a process of determining
malicious behavior of a program. Malware analysis
is often based on static and dynamic features [27].
Static features have been used such as strings [28],
bytes n-gram [29], opcode [30], [31], function call
graph [32], entropy-based [33], etc. This method
allows for detailed analysis of programs and supply
activation capability information of malware.
However, static analysis is ineffective in malware
detection using complex techniques such as code
encryption, obfuscation, polymorphic, ... The
effectiveness of static analysis depends heavily on
decompilation and disassembler tools.

On the other hand, to be able to analyze complex
malicious codes, dynamic feature-based analysis is
recommended. In malware analysis, common
dynamic features include memory usage [34],
instruction traces [8], network traffic [36], API call
trace [10], [37]. The effectiveness of dynamic
analysis is highly dependent on malware execution

Journal of Theoretical and Applied Information Technology
31st August 2021. Vol.99. No 16

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4071

environment. One of the most popular methods
nowadays is using machine learning and deep
learning to collect relevant data during malware
execution. In dynamic feature collection, an
adequate sandbox is required to monitor behaviors
of executable programs. Collected behavior data
plays an essential role in the accuracy of malware
detection, so sandbox is a suitable environment for
collecting malicious behaviors. There have been
many proposed sandboxes for collecting
application’s behavior on the IoT devices, but the
most popular are the IoT devices running Android
OS [25]. There are some popular sandboxes for IoT
devices such as IoTBox, IoTPOT [23], Linux
Sandbox LiSa [24], V-Sandbox [25], F-Sandbox [2],
Detux1. IoTBox which is a sandbox to collect
network behaviors of IoT malware program,
supports eight processor architectures such as ARM,
MIPS, PowerPC, etc. IoTBOX has only focused on
collecting network behaviors, not collecting other
malware analysis high-meaning behaviors such as
system behaviors. Detux is based on QEMU. It
supports collecting traffic behaviors in five CPU
architectures include x86, x64, ARM, MIPS, and
MIPSEL. However, Detux sandbox did not
virtualize network peripheral and consider the
interaction with the OS. F-Sandbox collected diverse
behaviors of ELF file on IoT devices, including both
system calls and network association behaviors. In
addition to that, adaptive environments are
automatically configured for activating ELF files.
So, F-sandbox is a suitable sandbox to collect system
call sequences on IoT platforms.

A syscall is one mechanism for an application to
request one service from underlying OS’s kernel
[14]. Malicious programs and benign programs have
different behaviors, such as the malware request
more internal connection or access sensitive
resources more frequently. Each single individual
system call cannot describe a program’s behavior.
Therefore, several syscalls sequentially should be
considered to determine a program’s code-level
behavior characterize the program. Grasping the
dependencies between the system calls is helpful for
classifying the normal and malicious behavior of a
program. System call sequence logs can be collected
and analyzed with different tools. The use of the
system call feature has brought about a lot of
efficiency in detecting and classifying malware.
Therefore, we use F-Sandbox [2] to extract system

1 https://github.com/detuxsandbox/detux

call sequences for malicious code detection on MIPS
architectural platform.

Using system call feature has brought a lot of
efficiency in detecting malware in general and IoT
malware in particular. There are quite many studies
in this aspect, such as Phu et al. [2] used machine
learning algorithms to determine system call
sequences generated by malware in a sandbox. Their
experimental results have shown good results for
system call-based IoT malware detection. Canzanese
Raymond et al. [11] used the n-gram method to
detect system calls of malicious processes. Marko
Dimjašević et al. [14] used machine learning and
system calls to classify malware on the Android
platform. The research shown that system-call based
techniques are viable to be used in practice to detect
malware in Android applications. Nikolopoulos et
al. [18] used a graphical model based on system calls
to detect malicious code. Their model can detect
malware with true positives over 94% but false
positives 13.1%.

On the one hand, abnormality detection often uses
machine learning (ML) and deep learning (DL) on
data mining for malware detection. Moreover,
machine learning and deep learning methods are
effective in predicting novel and metamorphic
malware that have never appeared before.

On the other hand, the forecast problem in
sequential data could be resolved by establishing a
statistical language model. Basically, the models
based on n -gram method cannot predict a program’s
pattern which do not appear in the training dataset
because of the limitation of dimensions. If n value is
too small such as 1-gram, the frequency of single
system call occurrences is shown, so it is difficult to
be effective in creating malware detection models.
Contrarily, if n value is huge, the quantity of the
features is very big. Hence, some neural probabilistic
language models are used to improve effective of n-
gram method since they can analysis longer context.
A neural network is a kind of mathematical model
consisting of many layers of neurons. Recurrent
neural network is a distinctive structure of neural
network, and it can retain state information of
previously hidden layer based on a special memory
unit. Recurrent neural network (RNN) is used in
various fields such as malware detection, speech
recognition, and natural language processing.
However, it is difficult for standard RNN to learning

Journal of Theoretical and Applied Information Technology
31st August 2021. Vol.99. No 16

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4072

long-term dependencies by the stochastic gradient
going down. A special type of RNN is Long Short-
Term Memory (LSTM) [22] that can significantly
reduce the disappearing and detonating gradient
problems. The LSTM structure includes a set of
recurrently connected subnets (memory blocks).
These connected subnets are considered as a
distinguishable category of memory chips in one
computer. The LSTM network can be used to resolve
model text sequences forecasting problems.

3. BACKGROUND

The LSTM model contains a series of gates. Each
LSTM cell has one structure of longer-term memory
in the structure of one cell state that is updated into
and out of time. A forget gate considered at the
hidden state and new input. It also decides
information which can be safely forgotten. Then, the
input gate determines what information from the
new input will be put on the cell state to remember.
Finally, the output gate takes information from the
input, cell state, and hidden state to create the output
for the present step.

The key of LSTM is cell state. The cell state runs
straight down the whole sequence and with only
some inconsiderable linear interchanges. Therefore,
information to just flow along it does not change.
The information about cell state can be added or
removed by structures called gates. The gates are
made up of one layer of sigmoid neural network and
a pointwise multiplication operation, which are ways
to optionally let information through optional ways
for information to pass through. The sigmoid neural
network layer returns numbers between [0,1],
expressing how much of each element should be let
through. A value of zero means “let nothing
through,” while a value of one means “let everything
through”. Three of these gates are created to secure
and dominate the cell state.

𝑓௧ = σ (W
௙
. [ht-1 , xt] + b௙) (1)

Next, new information which will be stored in the
cell state is decided, include two section. A sigmoid
layer decides which values will be updated called the
“input gate layer”. A vector is created with new
candidate values by a tanh layer. The tanh function
can be calculated as follows:

g(x) =
eೣ ି eషೣ

eೣ ା eషೣ
 (2)

where value g(x) in [-1,1].

In the following step, these two are incorporated
to create an upgrade to the state.

𝑖௧= σ (W
௜
 . [ht-1 , xt] + b௜) (3)

Ct
෱ = tanh(WC . [ht-1 , xt] + bC) (4)

Thereafter, a new cell state 𝐶௧ is upgraded from
𝐶௧ିଵ while old state is multiplied by 𝑓௧, forgetting the
things are decided to forget earlier. Then,
൫𝑖t*Ct

෱ ൯ value is added. The new candidate values are
scaled by how much to upgrade each state value.

Ct= 𝑓௧ * Ct-1 + 𝑖t * Ct
ෲ (5)

Finally, an output is based on the cell state that be
a filtered version. A layer of sigmoid neural network
is given to decide what parts of the cell state that will
be output. Thereafter, the cell state is moved through
tanh value [-1,1], then it is multiplied by the output
of the sigmoid gate.

ot= σ (Wo . [ht-1 , 𝑥t] + bo) (6)

ht= ot * tanh (Ct) (7)

LSTM language model can be used to foretell the
next word in one sentence. A traditional neural
network unit i incorporate an input activation 𝑎௜ and
an output activation 𝑏௜ which is related when a tanh
activation function is used by formula:

𝑏௜ = tanh (𝑎௜) (8)

The LSTM unit adds several intermediate steps:
After executing the activation function to 𝑎௜, the
result is multiplied by factor 𝑏௜. Then, the inner
activation value of the previous step is multiplied by
the quantity 𝑏஦ that is added due to the repeated self-
connection. Ultimately, the result is scaled by 𝑏ன
and is moved fed to another activation function to
yielding 𝑏௜. The factors 𝑏௜, 𝑏ఝ, 𝑏ఠ ∈ (0, 1) are
controlled by additional units called input, output,
and forget gate. While the inner of the LSTM unit is
activated, the gate units are aggregated from the
activations of the previously hidden layer and the
activations of the current layer from the previous
step. The result value is squashed by a logistic
sigmoid function which is set to 𝑏௜, 𝑏஦, or 𝑏ன,
respectively.

Journal of Theoretical and Applied Information Technology
31st August 2021. Vol.99. No 16

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4073

4. PROPOSED MODEL

Firstly, system call sequences of MIPS ELF files

are collected by executing them in F-Sandbox [2].
Each system call can be considered a word in the
natural language. A syscall sequence is considered
as one sentence in the natural language. The dataset
of system call sequences of benign files is train to
build Benign model (BM), and the system call
sequences from malware ELF files to build Malware
model (MM), a LSTM classifier model is approved
to classify the syscall sequences. Finally, system call
that is extracted from the malicious file can be
identified according to the classification results. Our
paradigm method is elucidated in Figure 1. The
process consists two parts include system call
sequences collection, and LSTM classifier.

Figure 1: Paradigm of our work

4.1. System call sequences collection

To get the most complete system call sequences,
feature vectors are constructed by all the system calls
on the MIPS architecture Linux OS with 345
different syscalls. However, they are not used
entirely in ELF file data sets. F-Sandbox is used to
extracting system call logs of MIPS ELF files. F-
Sandbox uses Kprobe to collect the system calls
generated from the running program and its child
processes. The samples are executed in the F-
Sandbox with same configuration, simulating the
network environment for an equal amount of time.

After extracting system call logs of the samples,
the system call logs of the samples that executable
failed or too short are removed. A sample can create
multiple processes and one process will generate a
system call log, so the system call logs generated
from a sample are concatenated. Therefore, each
ELF file in the dataset will collect a corresponding
system call log file. As the result of this process, two
datasets are collected include Mal-SysCallLog
dataset which is system call sequences of malware
ELF files and Beg-SysCallLog dataset which is

system call sequences of benign ELF files.

4.2. LSTM classifier

Unlike n-gram method, the LSTM language
model uses strength of all system calls before current
call in a system call sequence to forecast the next
syscall. More context information is picked up from
the syscall sequences than some other language
model such as language model using n-gram
method. Thus, an LSTM language model classifier
is designed by our research. The classifier includes
two models: A model is used to train malware
system call sequences while the other model is used
to train benign system call sequences from the ELF
file. Both models use the same LSTM neural
network architecture, but parameters are different.

The LSTM network includes three parts: input
layer, output layer, and hidden layers. The input gate
is a vector encoded by (1-k) coding and the output
gate is a vector of the likelihood distribution. In the
LSTM classifier, one syscall is treated as a word in
the language model. A syscall chain is taken as a
sentence in the language model. For a syscall
sequence, each next syscall is predicted according to
all the preceding system calls in the chain. The
likelihood of the syscall sequences can be calculated
as follows:

Figure 2: Memory block construction

The likelihood of syscall sequence 𝑆ଵ
ே is calculated

as follows:

p(𝑆ଵ
ே) = ∏ 𝑝(𝑆𝑚 | 𝑆1

𝑚−1)𝑁
𝑚=2 (9)

where, 𝑆ଵ
ே is one syscall sequence with the length of

N, in which 𝑆௠ is the 𝑚௧௛ syscall. 𝑆ଵ
௠ିଵ is

subsequence from 𝑆ଵ to 𝑆ଵ
௠ିଵ.

For each system call sequence of benign and
malware dataset, we train two models which are thus
call the Benign Model (BM) and the Malware Model
(MM) are trained. Then, two representative values

Journal of Theoretical and Applied Information Technology
31st August 2021. Vol.99. No 16

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4074

are calculated based on two models. Then, two
representative values used to classify an application
by comparing them.

In training phare, two LSTM networks are used to
train. As a matter of fact, the LSTM networks are
trained at first. Syscalls encoded as vectors are fed
into the LSTM network. After feeding one vector
into the LSTM network, an output vector is created
based on probability distribution 𝑉௣ [6]. A
multiplicative input gate protects memory contents
stored from perturbation by irrelevant inputs. A
multiplicative output gate protects other units from
perturbation by currently irrelevant memory
contents stored. A multiplicative forget gate protects
other units from perturbation by previous irrelevant
memory contents. Finally, next syscall is predicted
by the formula:

Predicted_syscall=(si|vi= max൫Vp൯ ,1≤i≤n) (10)

where: 𝑣௜ represents 𝑖௧௛ element in 𝑉௣, which is equal
to p(𝑠௜ |subsequence_before_𝑠௜). n value is the
number of different syscalls or length of 𝑉௣

In testing phase, a representative value is defined
to depict representative degree between detected
application and corresponding file category. The
representative value in our method is defined as

Representative _value = exp (log 𝑝௜) (11)

in which, 𝑝௜ is probability of 𝑖௧௛ syscall sequence.

Finally, system call sequences are classified based
on representative values. If representative value of
an application from Malware model is greater than
representative value of Benign model, application is
determined as malware. Otherwise, application is
determined as benign.

5. EXPERIMENTS AND EVULUATIONS

In our experiments, malware detection framework
is based on Tensorflow framework2 and used GPU
on Google Colaboratory3 to speed up.

5.1. Data collection

An IoT dataset used for testing includes 1,224

MIPS ELF samples (928 malware and 296 benign).
The malware dataset is collected by Phu et al. [2]
from different sources on the Internet and available
programs on Embedded Linux. In addition, our

2 https://www.tensorflow.org/

dataset has added utility programs on MIPS
platforms from vendors.

Then, system call sequence logs are collected
from MIPS ELF samples based on F-Sandbox [2].
Each sample is executed on the sandbox in 30
seconds. The average length of the system call
sequences in the two datasets is similar. The system
call logs result collected are shown in Table 1.

Table 1: System call logs results are collected by F-

Sandbox

Label Malware Begin

Number of samples 928 296

Average length of
system call logs

327 305

After that, system call sequences that is shorter

than 50 will be removed. Besides, concatenates
system calls are generated by an application into a
system call sequence that representing this
application. After this processing, the system call
dataset results are shown in Table 2.

Table 2: Syscall dataset results

Min
(Length)

50 100 200 300 400 500 1000

Number
of

malware
samples

928 904 858 844 63 61 43

Number
of benign
samples

296 268 149 128 110 95 74

Analyzing collected system call logs, the malware

only uses 136 system calls, the benign uses 127
system calls, most of the system calls of two
episodes overlap, and there are 160 system calls
appear in both sets. The rate of most appeared system
calls on two datasets is shown Figure 3.

Figure 3: The rate of most appeared system calls

3 https://colab.research.google.com/

Journal of Theoretical and Applied Information Technology
31st August 2021. Vol.99. No 16

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4075

Figure 3 indicates that the system calls that appear
most on both the Mal_SystemCallLog and
Beg_SystemCallLog datasets are relatively similar,
especially two system calls “read” and “recvfrom”
appeared most in the both datasets. So, it is not
feasible to use each system call feature for
classification in this case.

5.2. Evaluation metric

In our paper, several evaluation standards are used

to evaluate the effectiveness of approach in terms of
mainly three metrics included F1-Micro, F1-
Weight, and accuracy.

The F1-score is the harmonic average of the recall
and precision of one class.

Precision =
TP

TP + FP
 (12)

where True Positive (TP) indicates that the number
of malware samples identified correctly; False
Positive (FP) is the number of trusted programs is
detected as malware.

Recall is fraction of system call sequence in
ground truth that is correctly classified:

Recall =
TP

TP + FN
 (13)

where False Negative (FN) is the number of malware
samples is taken as trusted programs.

F1-Macro: Average of the F1-scores of classes,
characterizing classifier performance on small
classes.

F1-Weight: Weighted average of the F1 scores of
classes, with weight proportional to their support in
the ground truth.

Accuracy can be described as:

Accuracy =
TP + TN

TP + NP + TN + FN
 (14)

In the above formula, True Negative (TN) is
number of trusted applications identified correctly.

Performance of proposed model is investigated by
length of syscall sequences, the number of hidden
layers and the number of hidden units in each layer.

5.3. Effectiveness of system call sequence length

Both sentence and syscall sequence can be treated

as sequences. However, sentence length is always
shorter than syscall sequence length. According to C.
Raymond [35], the system call log must be collected
within a fixed time and the minimum length of the
system call log is 1,500. If a system call sequence of
program not enough long, it does not distinguish
malicious behavior or normal behavior. In our
experiments, the length of system call log less than
50 are generated by error samples such as lack of
libraries, insufficient parameters to operate, errors
initialize, etc.

In addition to that, there are many different words
in natural language, but it has only 345 different
system calls are available in MIPS architecture. In
our syscall dataset, there are 160 syscalls that appear
in both malware and benign sets while the number of
different words is 10.000. Maximum length of
sentence is about 100 in typical natural language
dataset.

In our LSTM classifier, network is constructed
with 4 hidden layers and 1000 units in each layer.
Then, the classifier is used to detect under different
maximum length of system call sequences, i.e., 50,
100, 150, 200, 250, 300, 350, 400, 450, 500. Results
are shown in Table 3 and Figure 3.

Table 3: Results under different length of system call

sequences

Length 50 100 150 200 300 400 500

Accuracy 97.83 96.47 98.37 89.67 88.59 85.87 85.59

F1-
Macro 96.94 95.37 97.81 86.23 81.06 75.1 75.07

F1-
Weight 97.79 96.53 98.38 89.79 87.22 83.56 83.31

Figure 3 and Table 3 indicate that when length is

150, the classifier can achieve high accuracy of
98.37% with F1-Macro of 97.81% and F1-Weight of
98.38 %. The network is unable to memorize more
information and it is disturbed by additional noises
when the sequence is very long, such as maximum
length of sequences is 400 or 500. Figure 4 indicates
that our classifier can discriminate malware from
benign programs and achieve favorable accuracy.

Journal of Theoretical and Applied Information Technology
31st August 2021. Vol.99. No 16

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4076

Figure 4: Accuracy, F1-Macro, F1-Weight under
different syscall sequence length

5.4. Effectiveness of the number of hidden layers
and the number of hidden units in each layer

Performance of LSTM classifier are analyzed

under numbers of hidden layers in network from 1 to
6. Each layer of all networks has 1000 hidden units,
and maximum length of system call sequence is 150.
Results are shown in Table 4.

Table 4: Metrics under the number of hidden layers

Number
of hidden

layers
1 2 3 4 5 6

Accuracy 90.49 96.2 93.75 98.37 96.47 95.92

F1-
Macro

88.44 94.73 91.81 97.81 95.2 94.74

F1-
Weight

90.95 96.17 93.87 98.38 96.47 96.03

The table shows that the highest Accuracy of

98.37% with F1-Weight of 98.38% are achieved
when there are 4 hidden layers. When the number of
hidden layers is one, the neural network cannot catch
enough useful information from the sequence.
Whereas the number of hidden layers is greater than
4, network is overfitting. Thus, network with 4 layers
is appropriate for our work.

Beside the number of hidden layers, relationship
between the number of hidden units in each layer and
detection performance in the LSTM classifier should
be considered. The number of hidden layers in
network is set as 4, maximum length of 150, and
change the number of hidden units in each layer.
Results are shown as Table 5.

Table 5: Metrics under the number of hidden units in
each layer

Number
of hidden

units
600 800 1000 1200 1400

Accuracy 95.92 92.12 98.37 95.02 96.20

F1-Macro 94.73 90.20 97.81 94.03 95.03

F1-Weight 96.03 92.44 98.38 95.13 96.27

Table 5 shows that when the number of hidden

units is 1000 in each layer our method has the highest
accuracy of 98.37% and the highest F1-Weight of
98.38%. The reason is that when the number of
hidden units is less than 1000, model is underfitting.
When number is more than 1000, model is
overfitting.

5.5. Comparison with machine learning approach

using n-gram feature selection method

In order to make a comparison, three machine

learning models, which use n-gram feature selection
method, are typical detection methods using system
call sequences. They are conducted with the same
dataset as ours. Results are shown in Table 6.

From the Table 6, when the length of the system
call sequence is 500, n-gram method [2] has the
highest F1-Macro of 92.11% and F1-Weight of
97.09%, while LSTM classifier reach the highest F1-
Macro of 97.81% and F1-Weight of 98.38% with
length of system call sequence of 150. It can be
obviously seen from table that our LSTM model is
better than that of the machine learning models using
n-gram method.

Figure 5: Comparison between our LSTM classifier, RF,
SVM, and NB

Figure 5 indicates that LSTM classifier uses
shortest system call sequence length of 150 with the
highest F1-Weight of 98.38%. Therefore, the LSTM
classifier model can be used to detect early and
accurately malware in real analysis system.

Journal of Theoretical and Applied Information Technology
31st August 2021. Vol.99. No 16

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4077

6. CONCLUSIONS AND FUTURE WORKS
In summary, system call sequence of program has

been employed to detect malware. In our classifier,
there are two models is built based on LSTM
language model to detect IoT malware on MIPS
architecture with system call sequences. When a new
sequence comes, two representative values are
calculated from the two LSTM networks to classify
the corresponding programs. The representative
values demonstrate efficiency in classify programs
based on system call sequence. Our experiments
have been done to test the performance of our new
classifier. The results show that our method can
achieve the highest accuracy of 98.37% and the
highest F1-Weight of 98.38%. Moreover, the
comparison with the n-gram method and machine
learning approach was conducted to show that our
classifier is better than the approach base on n-gram
feature selection method. In term of the length of
system call sequence, our proposed method uses
quite shorter system call sequence compare to other
methods but still archive better result for IoT
malware detection. Thus, the method can obviously
be used to early detecting IoT malware in real
systems.

In the future, we plan to evaluate our approach
against larger and broader datasets, and other
sequence analysis techniques can be extended to
solve more complicated malware detection problems
such as using the static features or combining
dynamic features and static features. Deep learning
methods combined with more other features could
also be considered to detect exactly malware and
early detection.

ACKNOWLEDGMENT

This research is fractionally funded by Ministry of
Science and Technology of Vietnam, grant number
ĐTĐLCN.46/20-C

REFERENCES

[1] D. Gibert, C. Mateu, and J. Planes, “The rise of

machine learning for detection and
classification of malware: Research
developments, trends and challenges”, Journal
of Network and Computer Applications,
153(January), 102526, 2020,
https://doi.org/10.1016/j.jnca.2019.102526.

[2] Tran Nghi Phu, Hoang Dang Kien, Ngo Quoc
Dung, Nguyen Dai Tho, “A Novel Framework
to Classify Malware in MIPS Architecture-

Based IoT Devices”, Hindawi Security and
Communication Networks Volume 2019, Article
ID 4073940, 13 pages, 2019,
https://doi.org/10.1155/2019/4073940.

[3] A. Kapoor and S. Dhavale, “Control flow graph
based multiclass malware detection using Bi-
normal separation”, Defence Science Journal,
vol. 66, no. 2, 2016, pp. 138–145,
https://doi.org/ 10.14429/dsj.66.9701.

[4] Mohannad Alhanahnah, Qicheng Lin, Qiben
Yan, Ning Zhang, and Zhenxiang Chen,
“Efficient signature generation for classifying
cross-architecture IoT malware”, Proceedings
of the IEEE Conference on Communications
and Network Security (CNS), pp. 1–9, Beijing,
China, 2018,
https://doi.org/10.1109/CNS.2018.8433203

[5] Ed Skoudis, Lenny Zeltser, “Malware: fighting
malicious code”, Prentice Hall, 2004,
https://www.researchgate.net/publication/2401
05009_Malware_Fighting_Malicious_Code

[6] Graves A, “Supervised Sequence Labelling with
Recurrent Neural Networks”, Studies in
Computational Intelligence, 2012,
https://doi.org /10.1007/978-3-642-24797-2.

[7] Baysa, Donabelle & Low, Richard & Stamp,
“MarkStructural entropy and metamorphic
malware”, Journal of Computer Virology and
Hacking Techniques, 2013,
https://doi.org/10.1007/s11416-013-0185-4.

[8] D. Carlin, A. Cowan, P. O’Kane, S. Sezer, “The
effects of traditional anti-virus labels on
malware detection using dynamic runtime
opcodes”, IEEE Access 5, 2017, pp. 17742–
17752,
https://doi.org/10.1109/ACCESS.2017.274953
8.

[9] D. Bekerman, B. Shapira, L. Rokach and A. Bar,
“Unknown malware detection using network
traffic classification”, IEEE Conference on
Communications and Network Security (CNS),
Florence, 2015, pp. 134-142,
https://doi.org/10.1109/CNS.2015.7346821.

[10] Yuxin Ding, Xuebing Yuan, Ke Tang, Xiao
Xiao, Yibin Zhang, “A fast malware detection
algorithm based on objective-oriented
association mining”, Computers & Security,
Volume 39, Part B, Pages 315-324, ISSN 0167-
4048, 2013,
https://doi.org/10.1016/j.cose.2013.08.008

[11] R. Canzanese, S. Mancoridis, and M. Kam,
“System Call-based Detection of Malicious
Processes”, 2015, pp 119–124.
https://doi.org/10.1109/QRS.2015.26.

Journal of Theoretical and Applied Information Technology
31st August 2021. Vol.99. No 16

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4078

[12] S. Hou, A. Saas, and L. Chen,
“Deep4MalDroid: A Deep Learning Framework
for Android Malware Detection Based on Linux
Kernel System Call Graphs”, 2016, pp. 104–
111. https://doi.org/10.1109/WIW.2016.15

[13] X. Xiao, S. Zhang, and F. Mercaldo, “Android
malware detection based on system call
sequences and LSTM”, 2017,
https://doi.org/10.1007/s11042-017-5104-0.

[14] Marko Dimjašević, Simone Atzeni, Ivo Ugrina,
and Zvonimir Rakamaric, “Evaluation of
Android Malware Detection Based on System
Calls”, In Proceedings of the 2016 ACM on
International Workshop on Security and
Privacy Analytics (IWSPA '16). Association for
Computing Machinery, New York, NY, USA,
2016, pp.1–8,
https://doi.org/10.1145/2875475.2875487

[15] Dimjaˇ, M., Atzeni, S., Ugrina, I., Rakamari, Z.,
& Dimjaˇ, M., “Evaluation of Android Malware
Detection Based on System Calls”, 2015,
https://doi.org/10.1145/2875475.2875487.

[16] Gerardo Canfora, Eric Medvet, Francesco
Mercaldo, and Corrado Aaron Visaggio,
“Detecting Android malware using sequences
of system calls”. In Proceedings of the 3rd
International Workshop on Software
Development Lifecycle for Mobile (DeMobile
2015). Association for Computing Machinery,
New York, NY, USA, 2015, pp. 13–20,
https://doi.org/10.1145/2804345.2804349.

[17] Helenius, Marko, “A system to support the
analysis of antivirus products’ virus detection
capabilities”, Tampere University Press, 2002,
https://www.researchgate.net/publication/3570
4262_A_system_to_support_the_analysis_of_a
ntivirus_products%27_virus_detection_capabil
ities

[18] Nikolopoulos, Stavros & Polenakis, Iosif, “A
graph-based model for malicious code detection
exploiting dependencies of system-call groups”,
2015, pp. 228-235,
https://doi.org/10.1145/2812428.2812432.

[19] A. Costin, Z. Jonas, A. Francillon, and D.
Balzarotti, “A large- scale analysis of the
security of embedded firmwares”, in
Proceedings of the 23rd USENIX Security
Symposium, 2014, pp. 95–110,
https://www.usenix.org/conference/usenixsecur
ity14/techincal-sessions/presentation/costin.

[20] D. D. Chen, M. Egele, M. Woo, and D.
Brumley, “Towards Automated Dynamic
Analysis for Linux-Based Embedded
Firmware”, Carnegie Mellon University,

Pittsburgh, PA, USA, 2015,
https://doi.org/10.14722/ndss.2016.23415.

[21] S. Chaba, R. Kumar, R. Pant, and M. Dave,
“Malware detection approach for android
systems using system call logs”, 2017,
https://arxiv.org/abs/1709.08805.

[22] M. Sundermeyer, R. Schl, and H. Ney, “LSTM
Neural Networks for Language Modeling”,
2012, pp.194–197,
https://www.researchgate.net/publication/2660
30628_LSTM_Neural_Networks_for_Languag
e_Modelin.

[23] Pa, Yin & Suzuki, Shogo & Yoshioka,
Katsunari & Matsumoto, Tsutomu & Kasama,
Takahiro & Rossow, Christian, “IoTPOT: A
novel honeypot for revealing current IoT
threats”, J. Inf. Process, vol. 24, no. 3, 2016, pp.
522-533, https://doi.org /10.2197/ipsjjip.24.522

[24] D. Uhrıcek, LiSa, (2020), “Multiplatform Linux
Sandbox for Analyzing IoT Malware”. [online]
Available:
http://excel.fit.vutbr.cz/submissions/2019/058/
58.pdf.

[25] Le Hai Viet and Ngo Quoc Dung, “V-Sandbox
for Dynamic Analysis IoT Botnet”. in IEEE
Access, vol. 8, pp. 145768-145786, 2020,
https://doi.org/10.1109/ACCESS.2020.301489
1.

[26] Tran Nghi Phu, Le Huy Hoang, Nguyen Ngoc
Toan, Nguyen Dai Tho, and Nguyen Ngoc Binh,
“CFDVex: A Novel Feature Extraction Method
for Detecting Cross-Architecture IoT Malware.
In Proceedings of the Tenth International
Symposium on Information and
Communication Technology (SoICT 2019)”,
Association for Computing Machinery, New
York, NY, USA, 2019, pp. 248–254,
https://doi.org/10.1145/3368926.3369702.

[27] S. D. Nikolopoulos, and I. Polenakis, “A graph-
based model for malware detection and
classification using system-call groups”,
Journal of Computer Virology and Hacking
Techniques, 2016,
https://doi.org/10.1007/s11416-016-0267-1

[28] Y. Ye, D. Wang, T. Li, D. Ye, and Q. Jiang, “An
intelligent pe-malware detection system based
on association mining”, J. Comput. Virol. 4 (4),
2008, pp. 323–334,
https://doi.org/10.1007/s11416-_008-_0082-
_4.

[29] Z. Fuyong, Z. Tiezhu, “Malware detection and
classification based on n-grams attribute
similarity”, in: 2017 IEEE International
Conference on Computational Science and

Journal of Theoretical and Applied Information Technology
31st August 2021. Vol.99. No 16

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4079

Engineering (CSE) and IEEE International
Conference on Embedded and Ubiquitous
Computing (EUC), vol. 1, 2017, pp. 793–796,
https://doi.org/10.1109/CSE-EUC.2017.157.

[30] D. Yuxin, Z. Siyi, “Malware detection based on
deep learning algorithm”, Neural Comput,
Appl. 31 (2), 2019, pp. 461–472,
https://doi.org/10.1007/s00521-_017-_ 3077-
_6.

[31] I. Santos, F. Brezo, X. Ugarte-Pedrero, P.G.
Bringas, “Opcode sequences as representation
of executables for data-mining-based unknown
malware detection”, Inf. Sci. 231, 64–82 data
Mining for Information Security, 2013,
https://doi.org/10.1016/j.ins.2011.08.020.

[32] M. Ahmadi, D. Ulyanov, S. Semenov, M.
Trofimov, and G. Giacinto, “Novel feature
extraction, selection and fusion for effective
malware family classification”, CODASPY 16.
In: Proceedings of the Sixth ACM Conference
on Data and Application Security and Privacy,
ACM, New York, NY, USA, 2016, pp. 183–
194, https://doi.org/10. 1145/2857705.2857713.

[33] D. Gibert, C. Mateu, J. Planes, R. Vicens,
“Classification of malware by using structural
entropy on convolutional neural networks”, In:
IAAI Conference on Artificial Intelligence,
2018, pp. 7759–7764.
https://www.aaai.org/ocs/index.php/AAAI/AA
I18/paper/view/16133.

[34] M. Ghiasi, A. Sami, Z. Salehi, “Dynamic vsa: a
framework for malware detection based on
register contents”. Eng. Appl. Artif. Intell. 44,
2015, pp. 111–122,
https://doi.org/10.1016/j.engappai.2015.05.008

[35] C. Raymond, “Detection and classification of
malicious processes using system call analysis”.
Drexel University, Philadelphia, PA, USA,
2015,
https://www.researchgate.net/publication/3367
37030_Detection_and_Classification_of_Malic
ious_Processes_Using_System_Call_Analysis.

[36] G. Zhao, K. Xu, L. Xu, B. Wu, “Detecting apt
malware infections based on malicious dns and
traffic analysis”, IEEE Access 3, 2015, pp.
1132–1142,
https://doi.org/10.1109/ACCESS.2015.245858
1

[37] Z. Salehi, A. Sami, M. Ghiasi, “Maar: robust
features to detect malicious activity based on api
calls, their arguments and return values”, Eng.
Appl. Artif. Intell. 59, 2017, pp. 93–102.
http://www.sciencedirect.com/science/article/pi
i/S0952197616302512

[38] Internet of Things (IoT) active device
connections installed base worldwide from
2015 to 2025:
https://www.statista.com/statistics/1101442/iot
-number-of-connected-devices-
worldwide/(Accessed: 2021-03-06).

Journal of Theoretical and Applied Information Technology
31st August 2021. Vol.99. No 16

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4080

Table 6: Comparison between LSTM classifier and n-gram methods

Len
F1-Macro F1-Weight

RF SVM NB
LSTM

classifier
RF SVM NB

LSTM
classifier

50 85.03 79.81 67.21 96.94 91.48 89.13 66.56 97.79

100 85.6 84.65 69.01 95.37 91.73 90.82 67.35 96.53

150 84.95 82.67 70.19 97.81 92.29 90.83 68.76 98.38

200 85.48 82.54 77.79 86.23 92.45 91.02 83.38 89.79

250 85.18 82.43 77.89 82.02 92.48 91.04 83.38 87.74

300 85.13 80.88 77.81 81.06 92.61 90.73 83.51 87.22

400 91.82 88.09 78.84 75.1 97.04 95.61 93 83.56

500 92.11 90.64 79.49 75.07 97.09 96.34 93.46 83.31

