
Journal of Theoretical and Applied Information Technology
15th August 2021. Vol.99. No 15

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3768

SOLVING TRAVELING SALESMAN PROBLEM USING

GENETIC ALGORITHM BASED ON EFFICIENT MUTATION
OPERATOR

1AHMAD BANY DOUMI, 2BASEL A. MAHAFZAH, 3HAZEM HIARY
1,2,3Department of Computer Science, The University of Jordan, Amman 11942, Jordan

 E-mail: 1ahmad.domi.usm@gmail.com, 2b.mahafzah@ju.edu.jo, 3hazemh@ju.edu.jo

ABSTRACT

The Traveling Salesman Problem (TSP) is a Combinatorial Optimization Problem (COP), which belongs to

NP-hard problems and is considered a typical problem for many real-world applications. Many researchers
used the Genetic Algorithm (GA) for solving the TSP. However, using a suitable mutation was one of the

main obstacles for GA. This paper proposes for GA an Efficient Mutation (GA-EM) for solving TSP. The

efficient mutation can balance between deeply searching and preventing stuck on local optima to ensure a

better convergence rate and diversity. Therefore, in this paper, a local search method based on three

neighborhood structure operators; namely, transpose, shift-and-insert, and swap, is proposed to produce the

efficient mutation for GA. The performance of the proposed algorithm is validated by three TSP datasets;

including, TSPLIB, National TSPs, and VLSI Data Set. These datasets have different graphs’ structures and

sizes. The sizes of the datasets range from 150 to 18512 cities. For comparative evaluation, the results

obtained from the proposed GA-EM are compared with those obtained by four relatively recent approaches

using the same TSP instances. These approaches are the Modernised Genetic Algorithm for solving TSP

(MGA-TSP), List-Based Simulated Annealing algorithm (LBSA), Symbiotic Organisms Search
optimization algorithm based on Simulated Annealing (SOS-SA), and Multiagent Simulated Annealing

algorithm with Instance-Based Sampling (MSA-IBS). The GA-EM outperformed these approaches in all

used TSP instances in terms of accuracy.

Keywords: Genetic Algorithm, Mutation Operator, Neighboring Operator, Simulated Annealing

Algorithm, Traveling Salesman Problem

1. INTRODUCTION

Traveling Salesman Problem (TSP) is a

combinatorial optimization problem [1–3]. It can be

categorized as an NP-hard class problem in almost

all of its variations [1–4]. In TSP, given a set of

cities where each city is visited exactly once by the

salesman and returns to the initial city with a
minimum distance tour [1–3]. When the number of

cities is increased, the convergence rate to solve

TSP is normally decreased [2, 5]. TSP is normally

considered a good problem to evaluate the

performance of newly established algorithms. TSP

is very useful for real-world applications employed

in military and traffic domains. Since the exact

methods are not efficient for solving the large-

scaled TSP due to the huge computational time

consumed, the researchers in the optimization

domain tend to apply the approximation approaches
to solve TSP [2, 6, 7].

Metaheuristic approaches are categorized as

approximation methods. Thus, two main types of

algorithms belong to metaheuristic approaches,

which are the local search-based algorithms and the

evolutionary-based algorithms [8–10]. Local

search-based algorithms start with a random

solution. Then, they iteratively modify the solution
using neighboring mechanisms until a local optimal

solution is reached. Many local search-based

methods are adapted for solving TSP; including,

tabu search [11] and variable neighborhood search

[12, 13]. Whereas, the Evolutionary-based

Algorithms (EAs) begin with a collection of

random solutions called the initial population. In

each iteration, new solutions are generated using

recombination and mutation operators. The parent

population is normally replaced by a new offspring

population if the newly generated solutions are
better. This evolution process will continue until the

stagnation point is reached. The Genetic Algorithm

Journal of Theoretical and Applied Information Technology
15th August 2021. Vol.99. No 15

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3769

(GA) is one of the evolutionary-based algorithms

[14, 15].

In general, the GA algorithm has two drawbacks

[16, 17]; first, it may get stuck in local optimum,

which is not necessarily the best possible solution

(i.e., global optima), because it searches in each
candidate solution but without deep searching.

Second, when it deals with a larger number of

cities, the convergence rate will be weaker.

Therefore, researchers employ local search-based

algorithms due to their capabilities in local

exploitation in solving TSP [7, 18].

One of the main obstacles of GA is the mutation

operator. The mutation operator in GA usually

produces the worst candidate solutions, where this

problem can be eventually reflected in the whole

population and results [6]. However, when GA runs

with an efficient mutation, the convergence rate and
the diversity aspect will be better [6].

In this paper, a new mutation for GA is proposed

and is called an Efficient Mutation, which is

denoted as GA-EM. This efficient mutation can

balance between deeply searching and preventing

stuck on local optima to ensure a better

convergence rate and diversity. The new efficient

mutation operator is based on three neighborhood

structures (transpose, shift-and-insert, and swap),

where it avoids the stuck state in local optima. The

proposed mutation is called after a number of failed
tries made to enhance the solutions rather than it is

called in each GA iteration. The number of failed

tries is defined and limited by threshold values. The

new efficient mutation includes two steps; in the

first step, we will apply the transpose step on

randomly selected cities from the worst candidate

solution. This transpose step is conducted without

heuristic calculations to decide whether it will

produce a better solution or not. In the second step,

we will use the three neighborhood operators;

namely, transpose, shift-and-insert, and swap to

enhance the modified solution generated in the first
step.

The experiments are conducted using three TSP

datasets, namely TSPLIB [19, 20], National TSPs

[21], and VLSI Data Sets [22] of different structures

and sizes including 30 TSP instances. The size

range of the TSP instances from 150 to 18512

cities. For comparative evaluation, the results

obtained by the proposed GA-EM are compared

with other results obtained by four recent

metaheuristic algorithms using the same TSP

instances. These algorithms are the Modernised
Genetic Algorithm for solving TSP (MGA-TSP),

List-Based Simulated Annealing (LBSA) algorithm,

Symbiotic Organisms Search optimization

algorithm based on Simulated Annealing (SOS-

SA), and Multiagent Simulated Annealing

algorithm with Instance-Based Sampling (MSA-

IBS).

The rest of this paper is organized as follows:

Section 2 presents the definition of the TSP

problem, an overview of the genetic algorithm, an

overview of simulated annealing, and their related

work. Section 3 presents the proposed GA-EM with

its neighboring operators. Section 4 presents the

experimental results and discussions. Finally,

Section 5 presents the conclusion and future work.

2. BACKGROUND AND RELATED WORK

In this paper, TSP is modeled as an optimization

problem and solved using GA with efficient

mutation and its performance is compared with
several approaches used GA and Simulated

Annealing (SA). Therefore, in this section, a

background of TSP, GA, and SA is presented. Also,

as related work, several approaches used GA or SA

to solve TSP are briefly presented.

2.1 Traveling Salesman Problem

TSP is considered one of the popular NP-Hard

problems [1–4]. However, the goal of optimization

algorithms is to find the shortest tour between a

number of cities, but each city must be visited only

once [1–3]. TSP can be expressed as a bi-directed
graph G = (C, A), where C is a set of cities, and A is

a set of arcs (i.e., the edge between cities). Also, a

cost matrix D of size │C│×│C│ is used to store the

distance between all pairs of cities, where the

distance procedure calculates the distance between

the two cities ci and ci+1. In general, cost matrices

can be divided into two types symmetric or

asymmetric. In the symmetric type, distance (i, j)
equals distance (j, i), whereas distance (i, j) does

not equal distance (j, i) in the asymmetric type,

where the distance between cities is dependent on

the direction of traversing the arcs. Mathematically,

the objective function of the TSP can be formulated

as shown in Eq. (1) [7], where Td is the total closed

tour length and the distance procedure (dis) is the

distance between the two cities ci and ci+1.

 Td = min(dis(cn-1, c1) +

1

1

n

i

dis(ci, ci+1) (1)

2.2 Genetic Algorithm

The Genetic Algorithm (GA) is based on a

known principle called the survival of the fittest [1,

14, 23, 24]. Initially, GA starts with a set of

Journal of Theoretical and Applied Information Technology
15th August 2021. Vol.99. No 15

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3770

solutions called population. Each solution

represents a vector of decision variables and each

decision variable has a specific range of values [14,

25]. In this analogy, each solution is a chromosome,

each decision variable is a gene, and each value of

the decision variable is an allele [7, 14]. GA has a
set of parameters including the size of the

population, the number of iterations, also a set of

operations including the selection, the crossover,

and the mutation. Therefore, these solutions have to

be manipulated by crossover and mutation

operations through iterations. Algorithm 1 shows

the main steps of GA, which initiates with an initial

population X represented by random candidate

solutions. Each candidate solution is evaluated and

ranked based on the objective function as shown in

Eq. (1). The main loop of GA (Line 3 to Line 9)

strives to enhance the population by repeating Line
4 to Line 8 while a termination criterion is not met

or an optimal solution is not reached.

Algorithm 1 Genetic Algorithm (GA)

1 X← Generate_Initital_Population

2 Evaluate(X)

3 while (Stopping criterion is not met or

optimal solution is not reached) do

4 Y ← Selection(X)

5 W ← Crossover(Y)

6 Z ← Mutation(W)

7 Evaluate(Z)

8 X← Replacement(Z, X)

9 end while

2.3 Simulated Annealing Algorithm

The Simulated Annealing (SA) algorithm is a

generic probabilistic meta-algorithm that can be

used to find an approximate solution to global

optimization problems such as TSP. It is based on

the idea of the cooling process of molten metal [1,

26, 27]. SA uses the temperature as a parameter to

decide whether the solution will be updated or not.
The temperature is decreased until the local best

solution is reached. Thus, each step modifies the

solution and decreases the probability to update the

best solution. If the temperature is set to a high

value, SA can allow some random moves. When

the temperature cools or has a low value, the

probability of a random move is reduced. A

detailed algorithm with some of its variants is

available in [27–30].

2.4 Related Work

Many metaheuristic approaches are used to solve
various optimization problems including the TSP.

Examples of these approaches are genetic

algorithm, simulated annealing, swarm simulated

annealing, discrete spider monkey optimization,

harmony search, variable neighborhood search, and

grey wolf optimizer [12, 27–39].

The TSP is a good problem to evaluate the
performance of several algorithms [1, 2], there are

many related works in solving TSP; specifically,

those which used approximation algorithm with a

mutation to find the shortest distance of traveling

salesman through a set of cities based on TSP

constraints.

The authors in [35] presented a Multi-Offspring

Genetic Algorithm (MO-GA) based on biological

evolutionary and mathematical ecological theory

for solving TSP. In this approach, the number of

children is significantly increased as compared to

the basic genetic algorithm. It can increase the
probability of generating an optimal solution since

it was based on producing more offsprings in each

iteration.

In [30], the authors proposed an adaptive hybrid

metaheuristic approach that combines simulated

annealing and tabu search algorithms with a

dynamic neighborhood mutation for solving TSP.

This approach achieved improved accuracy as

compared to simulated annealing and tabu search

algorithms. It can overcome the disadvantages of

simulated annealing and tabu search. The hybrid
approach provided a clear convergence process and

a fast decrease rate. The dynamic neighborhood

improved solution quality in comparison with the

classical 2-opt neighborhood.

A Multiagent and Simulated Annealing with

Instance-Based Sampling (MSA-IBS) was

proposed by Wang et al. [29] for solving the TSP.

The hybrid process exploited the learning ability of

the instance-based search algorithm to enhance the

simulated annealing to solve TSP. But the error rate

was very high for datasets that are larger than 500

cities.

Zhan et al. [27] proposed a List-Based Simulated

Annealing (LBSA) approach to solve the TSP. This

approach used the parameter sensitivity and

effectiveness of the list-based cooling schedule to

determine temperature reduction in the simulated

annealing algorithm, which is used as acceptance

criteria for choosing a candidate solution. The

results of the LBSA show that it performs fairly

well compared to some other state-of-the-art

algorithms; such as MSA-IBS. This approach

achieved an error rate less than MSA-IBS, but the
error rate is still high.

Journal of Theoretical and Applied Information Technology
15th August 2021. Vol.99. No 15

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3771

Ezugwu et al. [28] presented a hybrid approach

of Symbiotic Organisms Search (SOS) with

Simulated Annealing (SA) to solve the TSPs. The

framework of SOS-SA incorporated the SA local

search capability into the problem search space of

the SOS algorithm. The empirical assessment
results showed that the performance of the

algorithm and its convergence rate in some cases

produced better results than the best-known TSP

benchmarked results. However, the high error rate

for a large number of cities is the main challenge

for this approach.

Mohsen [36] presented a hybridized algorithm,

which is called an annealing elitist ant system. This

algorithm combined Ant Colony Optimization

(ACO), Simulated Annealing (SA), mutation

operator, and local search procedure to solve TSP.

The algorithm exploited the mutation operator to
increase the ants’ population diversity from time to

time, and the local search exploits the current

search area efficiently. The comparative

experiments showed that this algorithm

outperformed some well-known algorithms but the

error rate is high when the number of cities

increased.

The GA is considered one of the most successful

evolutionary algorithms used for TSP [7]. Many

researchers developed a new GA. Nagata et al.

(2013) [33] developed Edge Assembly Crossover
(EAX) for GA to solve TSP. In addition to that,

Tsai et al. [37], proposed an effective algorithm to

reduce the error rate. Also, in [38], the authors

proposed another improved GA to solve TSP using

new combination crossover operators. In [39], the

authors surveyed GAs to solve TSP.

Al-Khatib et al. [7] proposed a Modernised

Genetic Algorithm for solving TSP (MGA-TSP).

MGA-TSP utilized an efficient crossover operator

called EAX to enhance its convergence. It should

be noted that this algorithm did not use an efficient

mutation to enhance the solution by terminating the
stuck state in local optima. MGA-TSP achieved the

best results compared to some other state-of-the-art

algorithms; such as LBSA, EAX, and SOS in terms

of error rate.

In this paper, a new efficient mutation based on

three neighborhood operators; namely, transpose,

shift-and-insert, and swap, is exploited to enhance

the best solution in terms of accuracy (or error rate)

by preventing stuck on local optima. The efficient

mutation interferes after a changed number of failed

trials to enhance the solutions in the population.
The proposed mutation has a small change on the

shortest distance of the target solution since a small

number of edges in the graph of the target solution

will be replaced randomly; therefore, the efficient

mutation can cause a small change on the whole

population in terms of shortest distance in trying to

allow for GA-EM to continue in searching deeply
toward an optimal solution.

3. GA-EM APPROACH

In this section, the proposed GA-EM approach is

discussed and presented in Algorithm 2. This paper

focuses on the proposed efficient mutation in terms

of how and when it works. In general, the solutions

that are exposed to the classical mutation, often

become worse than they were before. The proposed

efficient mutation takes to account this issue by

using the proposed mutation after a specific time

defined by a threshold. This threshold takes into

consideration the deep search in the proposed
approach as well as the proposed efficient mutation

performs an operation that can be described as a

precise mutation for the candidate solution and then

an improvement process for the generated solution.

Briefly, the proposed mutation picks one of the

solutions randomly after failed tries to improve the

population, then it modifies the picked solution.

This mutation is based on three neighboring

operators; namely, transpose, shift-and-insert, and

swap discussed in the following sections. The main

motivation of the efficient mutation is to terminate
the stuck state in local optima. The proposed GA-

EM is initiated with an initial population of

candidate solutions that are generated randomly and

then improved by a 2-opt neighboring algorithm

which is shown in Algorithm 3. The GA-EM uses

random selection, EAX crossover, and the proposed

efficient mutation operators to enhance the

population. Thus, GA-EM is terminated after

checking that there is no possible improvement in

the population. However, each step of the proposed

GA-EM, as shown in Algorithm 2, is discussed in

the following sections.

3.1 TSP Initialization

In TSP, each candidate solution for GA is

represented by all cities of TSP as H = (c1, c2, ...,

cN) of N cities, where each city should appear one

time only. Each candidate solution is evaluated by

the fitness function formulated in Eq. (1). The

fitness values are used to rank the candidate

solutions in the population from best to worst

solutions.

3.2 Improving the Initial Population

The 2-opt neighboring algorithm, which is
presented in Algorithm 3, is widely used to enhance

Journal of Theoretical and Applied Information Technology
15th August 2021. Vol.99. No 15

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3772

the initial population in the approximation

algorithms, such as GA in [18, 33, 40]. In

Algorithm 3, the Neighbour[c][0] and

Neighbour[c][1] represent the cities that precede

and follow city c, respectively, in the candidate

solution, near[c][j] array indicates the jth nearest
city-to-city c, d represents the distance value

between the two cities and H is a set of cities of the

candidate solution. In general, the 2-opt algorithm

works as in the following instance: the edge E1,2 =

(c1, c2) and the edge E3,4 = (c3, c4) will be changed

to the edge E1,3 = (c1, c3) and the edge E2,4 = (c2, c4)

based on the heuristic equation which is shown in

Line 10 of Algorithm 3. The heuristic equation can

simply decide whether the two edges, that are

connected between the cities in the current graph to

be replaced, have a fitness value in terms of the

shortest distance worse than the fitness value of the
two edges to be added or not. Thus, the 2-opt is a

local search and improvement mechanism for

neighboring cities in TSP [18, 40].

Algorithm 2 Efficient Mutation for GA (GA-

EM)

1 X← Generate_Initital_Population by 2-opt

neighboring algorithm // See Algorithm 3.

2 Evaluate(X)

3 while (Stopping criterion is checking that

the algorithm has no possible improvement

on population) do // Number of iterations of

GA-EM is denoted by ItrGA-EM

4 Y ← Random_Selection(X)

5 W ← EAX_Crossover(Y)

6 Z ← Efficient_Mutation(W)

 // See Algorithm 4

7 Evaluate(Z)

8 X ← Replacement(Z, X)

9 end while

3.3 Selection Operator

In the Selection procedure, for all candidate
solutions in the population, every two solutions will

be randomly selected to produce the next solutions.

The generated solutions will formulate the new

population in each generation.

3.4 Edge Assembly Crossover Operator

The Edge Assembly Crossover (EAX) is an

efficient crossover operator used by GA-based TSP

[33]. EAX merges two candidate solutions from the

population according to the selection operator in

one graph G. The redundant edges of graph G will

be modified by the AB-cycles method [33]. Further,
one edge (say a) is taken from first parent (say A);

and another edge (say b) is taken from the second

parent (say B) alternatively and continually (a-b-a-

b-a-...-a-b). Each graph G can be divided into a set

of AB-cycles. There is an E-set for AB-cycles which

represents the number of generated AB-cycles. E-

set is exploited to cut one candidate solution into

sub-cycles. Then, the sub-cycles are merged using
greedy criteria based on the Hamiltonian cycle

approach, where the cycle of the shorter number of

edges and not in both parents (A and B) will be

exploited. EAX is presented in more detail in [33].

Algorithm 3 2-opt Neighboring Algorithm

1 Randomly generate a solution H = {1, ...,

N};

2 repeat

3 Randomly select c1 ∈ H;

4 for i = 0 to 1 do

5 c2 = Neighbour[c1][i];

6 for j = 1 to ConstNum do

7 c3 = near[c1][j]; // { ConstNum < N}

8 if (–d(c1, c2) + d(c1, c3)) ≥ 0 then

break;

9 c4 = Neighbour[c3][(i + 1) mod 2];

10

 if ((−d(c1, c2) − d(c3, c4) + d(c1, c3) +

d(c2, c4)) < 0)

 then

11 Update the candidate solution and

H. Go to Line 3;

12 end if

13 end for

14 end for

15 until H becomes empty

3.5 Efficient Mutation Operator
The mutation operator usually follows the

crossover operator to avoid stuck on local optima.

In general, this operator will increase the possibility

for GA to find the optimal solution. Thus,

Algorithm 4 shows the efficient mutation operator.

In the efficient mutation operator, the positions of

two cities are selected randomly and the positions

of cities which are located between these selected

two cities will be transposed as shown in Line 7 of

Algorithm 4. Then, the three neighboring operators

will try to improve the modified solution as shown

in Lines 9–14 of Algorithm 4. Finally, the
improved solution will be submitted to the current

population. Normally, the proposed mutation will

run after enough failed tries to improve the

population as shown in Line 1 of Algorithm 4. The

following steps describe the efficient mutation

operator, as shown in Algorithm 4:

Step 1: Efficient mutation operator initiates when

GA fails in improving the population during a

Journal of Theoretical and Applied Information Technology
15th August 2021. Vol.99. No 15

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3773

specific number of trials. The specific number of

trials is bounded by minimum and maximum

threshold values; initially, the specific number of

trials is defined by the maximum threshold value

and decreased after each entry. When the minimum

threshold value is reached, the value is redefined to
the maximum threshold value. Thus, the best

distance of the solution within the previous

population computed by Eq. (1) will be used to be

compared with the best distance of the solution

within the current population.

Algorithm 4 Efficient Mutation Operator

1
Define minimum_threshold and

maximum_threshold values

2
Store the value of maximum_threshold in

initial_value;

3 number_of_trials = maximum_threshold;

4

if previous_best_distance =

current_best_distance after

number_of_trials then

5 A ← get_worst_candidate_solution;

6 for j = 0 to ItrTRANSPOSE do

7
 B ← transpose(A); // Select two cities

randomly (without heuristic calculation)

8 end for

9 for i = 0 to ItrSM do

10 C ← transpose(B);

11 D ← shift-and-insert(C);

12 E ← swap(D);

13 A ← short_tour(B, C, D, E);

14 end for

15
 maximum_threshold =

maximum_threshold – 1;

16
 if maximum_threshold =
minimum_threshold then

17
 maximum_threshold =

initial_value;

18 end if

19 end if

Step 2: Getting the worst solution, A, from the

current population in terms of worst distance based

on Eq. (1).

Step 3: Manipulating the worst solution A by

selecting two cities randomly, then applying the

transpose procedure without heuristic calculations

to come up with solution B. This step can be

repeated a small number of times.

Step 4: The improvement loop of efficient mutation
(Lines 9 to 14 of Algorithm 4), tries to enhance

solution B by repeating the neighboring operators

(transpose, shift-and-insert, and swap) based on

heuristic calculations while a termination criterion

is not met.

Step 5: Identifying a new value for the number of

failed trials.

The transpose procedure (C_Sol; i, j) transposes

the cities between location i and location j from the
candidate solution C_Sol. The proposed GA-EM

works on a deep search where it strives to reach an

optimal solution. In general, the mutation operator

prevents access to the optimal solution [6]. So, the

proposed efficient mutation operator will consider

this conflict. The efficient mutation is based on

applying the transpose operator on cities selected

randomly as the initial step and then three operators

(transpose, shift-and-insert, and swap) are executed

to enhance the modified solution using heuristic

equations. Thus, Algorithm 4 shows the efficient

mutation process. Then the modified solution will
be added to the current population as a new

candidate solution. The transpose operation is the

best choice to be the initial step in Algorithm 4

since the transpose operation replaces only two

edges in the graph in each transpose step.

Furthermore, the transpose operation causes a small

change on the candidate solution compared to swap

and shift-and-insert operations. The transpose

operator is shown in Algorithm 5, where C_Sol

represents a candidate solution, ci indicates to the

city i in C_Sol, cj indicates to city j in C_Sol, and d
represents the distance value between the two cities

ci and cj. In Algorithm 5, initially, the next cities

ci+1 and cj+1 are selected, which are neighbors to ci

and cj respectively in the candidate solution, from ci

and cj to be used in the heuristic equation shown in

Line 3, which is based on distance values between

the cities to decide whether new edges can be added

between (ci and cj) and (ci+1 and cj+1) or not after

removing the current edges between (ci, ci+1) and

(cj, cj+1) from the candidate solution.

The swap procedure (C_Sol; i, j) swaps the two

cities in location i and location j from the candidate
solution C_Sol. This operator can change four

edges. Algorithm 6 shows how the swap operator

works. In Algorithm 6, initially, the cities ci+1,

cj+1, ci+2, and cj-1 are selected from ci and cj in the

candidate solution to be used in the heuristic

equation shown in Line 5, which is based on

distance values between the cities to decide whether

new four edges can be added between the

corresponding cities or not after removing the

current edges. The heuristic condition decides

whether replacing the current edges in the graph of
the candidate solution (ci, ci+1), (ci+1, ci+2), (cj-1,

cj) and (cj, cj+1) with new four edges between (ci,

Journal of Theoretical and Applied Information Technology
15th August 2021. Vol.99. No 15

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3774

cj), (cj, ci+2), (cj-1, ci+1) and (ci+1, cj+1) increases

the fitness value in terms of shortest distance or not.

The shift-and-insert procedure (C_Sol; i, j) shifts

the city in location j to location i consecutively

from the candidate solution C_Sol. This operator

can change three edges. Algorithm 7 shows how the
shift-and-insert operator works. In Algorithm 7,

initially, the cities ci+1, cj+1, and cj-1 are selected

from ci and cj in the candidate solution to be used in

the heuristic equation shown in Line 4, which is

based on distance values between the cities to

decide whether new three edges can be added after

removing the current edges between the

corresponding cities or not. The heuristic condition

decides whether replacing the current edges in the

graph of the candidate solution (ci, ci+1), (cj-1, cj)

and (cj, cj+1) with new three edges between (ci, cj),

(cj, ci+1), and (cj-1, cj+1) increases the fitness value
in terms of shortest distance or not.

Algorithm 5 Transpose(C_Sol, ci, cj)

1
ci+1 ← store the city which is after ci in

C_Sol

2
cj+1 ← store the city which is after cj in

C_Sol

3
if ((d(ci , cj) + d(ci+1, cj+1)) < (d(ci, ci+1) +

d(cj, cj+1)))

4 if (ci+1 < cj)

5 temp = ci+1

6 ci+1 = cj

7 cj = temp

8 while (ci+1 > cj)

9 temp = C_Sol[ci+1]

10 C_Sol[ci+1] = C_Sol[cj]

11 C_Sol[cj] = temp

12 cj = cj +1

13 ci+1 = ci+1 -1

14 end while

15 end if

16 end if

3.6 Evaluation Operator

The proposed GA-EM algorithm calls the

objective function for each candidate solution to

calculate the fitness value. Then, if the child

solutions are fittest, will replace the parent

solutions in the population. Since TSP aims to find

the shortest path (or shortest distance) and GA is

based on the survival of the fittest, GA-EM uses an

objective function based on Eq. (1) to find the
fitness values for candidate solutions of the

population in each iteration of GA.

3.7 Termination Condition

There are different criteria to terminate the GA

algorithm such as the number of iterations, reaching

an optimal solution, or other criteria. The

termination condition for the proposed GA-EM

algorithm is checking that the algorithm has no
possible improvement in the population. Therefore,

GA-EM computes the termination criterion by

calculating the average distance of all solutions in

the population and then comparing the average

distance with the distance of the best solution in the

population. If the result equals or less than a

threshold value, then the termination criterion is

met. The final result of the proposed algorithm will

be the fittest solution. The fittest solution means the

solution with the highest objective function value

compared to the rest of the solutions.

Algorithm 6 Swap(C_Sol, ci, cj)

1
ci+1 ← store the city which is after ci in

C_Sol

2
ci+2 ← store the city which is after ci+1 in

C_Sol

3
cj+1 ← store the city which is after cj in

C_Sol

4
cj-1 ← store the city which is before cj in
C_Sol

5

if (((d(ci, cj) + d(cj, ci+2) + d(cj-1, ci+1) +

d(ci+1, cj+1)) < (d(ci, ci+1) + d(ci+1, ci+2) +

d(cj-1, cj) + d(cj, cj+1))) AND (ci+2 < > cj))

6 temp1 = C_Sol[ci+1]

7 temp2 = C_Sol[cj]

8 C_Sol[ci+1] = temp2

9 C_Sol[cj] = temp1

10 end if

4. EXPERIMENTAL ENVIRONMENT AND

RESULTS

In this section, the experimental environment and

the obtained results by GA-EM, MGA-TSP, SOS-

SA, LBSA, and MSA-IBS are presented. The

datasets of 30 instances are used to test the proposed

GA-EM algorithm and the other mentioned four

metaheuristic algorithms, where these 30 instances
are carefully selected from TSP datasets: TSPLIB

[19, 20], National TSPs [21], and VLSI data sets

[22]. These datasets have different numbers of cities

and graph structures as shown in Table 1.

To evaluate the performance of the proposed GA-

EM algorithm, the obtained results of the GA-EM

are compared with the other four metaheuristic

algorithms. Some of these algorithms showed the

best-known results for the used TSP instances. Thus,

Journal of Theoretical and Applied Information Technology
15th August 2021. Vol.99. No 15

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3775

one of these algorithms used GA as a primary

algorithm for solving TSP and others used hybrid

algorithms such as simulated annealing with other

algorithms designed for TSP specifically. For

evaluation purposes, the experimental testing

platform for the proposed GA-EM algorithm was
conducted on a 2.53 GHz CPU Desktop with 3GB

RAM, while the programming language is C#

console on Microsoft Visual Studio 2010.

Algorithm 7 Shift-and-Insert(C_Sol, ci, cj)

1
ci+1 ← store the city which is after ci in

C_Sol

2
cj+1 ← store the city which is after cj in

C_Sol

3
cj-1 ← store the city which is before cj in

C_Sol

4
if ((d(ci, cj) + d(cj, ci+1) + d(cj-1, cj+1)) <

(d(ci, ci+1) + d(cj-1, cj) + d(cj, cj+1)))

5 temp = C_Sol[cj]

6 if (cj < ci+1)

7 for (i = cj +1; i <= ci+1; i++)

8 C_Sol[i-1] = C_Sol [i]

9 end for

10 end if

11 if (cj >= ci+1)

12 for (i =cj; i > ci+1; i--)

13 C_Sol [i] = C_Sol [i-1]

14 end for

15 end if

16 C_Sol [ci+1] = temp

17 end if

The parameter values have a significant influence

on the solution’s quality of each algorithm, all these

algorithms shared the same population size which

equals 100 candidate solutions except MSA-IBS

where it is not defined [29]. The mean results of 20
runs are calculated for each of the 9 TSP instances,

as shown in Tables 2 and 3.

As mentioned previously, efficient mutation

involves two phases. The first phase is the random

mutation step "without heuristic calculation" as

shown in Line 7 of Algorithm 4 and the second

phase is the enhancement step "with heuristic

calculation" for a solution as shown in Lines 9–14

of Algorithm 4.

Table 2 shows the results of GA-EM using

transpose, shift-and-insert, and swap operators
where each operator has one random mutation

"without heuristic calculation". Therefore, the

second phase of the efficient mutation "with

heuristic calculation" is not applied. The number of

steps of transpose, shift-and-insert, and swap

operators in each GA iteration is one step. The OPT-

BKS column is the Optimal Best-Known Solution

results for each TSP instance.

Table 2 shows the results of GA-EM using the

classical mutation in each GA iteration. According

to the results shown in Table 2, the transpose
operator is better to use the random mutation in

finding the shortest distance. So that, the efficient

mutation employs the transpose operator in the first

phase.

Since the proposed GA-EM does not execute the

efficient mutation in each iteration, the threshold

values used to enter the efficient mutation must be

selected, which is, as a minimum threshold value

equals 1 and as a maximum threshold value equals

10. Thus, using a threshold value larger than 10 can

lead to vanishing the mutation role. However, the

number of initial transpose steps executed on cities
that are selected randomly and without heuristic

calculations is validated in terms of mean accuracy

as shown in Table 3.

As borne out by the results shown in Table 3,

almost all the best results are obtained when the

number of transpose steps equals 2, this means the

first phase of efficient mutation operation replaces 4

edges in the candidate solution in each entry for

efficient mutation operation. The results show a

small number of mutations after a specific number

of failed tries can produce more efficient
enhancement than executing a large number of

mutations since the GA-EM searches deeply toward

the best solution.

Table 4 presents the abbreviations of the four

comparative algorithms. However, Table 5 shows

the mean accuracy results. These results are

obtained by the proposed GA-EM algorithm and the

other four metaheuristic algorithms, namely MGA-

TSP, SOS-SA, LBSA, and MSA-IBS. Also, Table 5

shows the mean results of 20 runs by each algorithm

for all TSP instances. In Table 5, the best results in

terms of accuracy are highlighted in bold font.

According to Table 5, the proposed GA-EM

algorithm achieved better accuracy than the other

four comparative algorithms in 11 datasets. Also,

GA-EM achieved the best-known optimal solutions

in 19 datasets, as well as the other four algorithms,

where they have obtained the same best results in

terms of mean accuracy. The proposed algorithm

has achieved these results since it can ensure a

diversity aspect in the population during the GA-EM

running process. Thus, the population with a diverse

aspect can achieve better results, where the
candidate solutions selected to crossover can

Journal of Theoretical and Applied Information Technology
15th August 2021. Vol.99. No 15

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3776

produce new child has more capabilities to reach

optimal results. However, the MGA-TSP algorithm

achieved the second rank. The results show that

preserving diversity aspects in the population during

the execution of an algorithm used to solve TSP

such as in the proposed GA-EM, can achieve better

results than others such as MGA-TSP which

offering the diversity aspect in the initial population

step only. In summary, the proposed GA-EM has

achieved better results in terms of accuracy since

GA-EM can ensure a diversity aspect in the

population until the termination condition is met.

Table 1: Datasets of TSP Instances.

Instance

Number

Instance

Name

Optimal

Solution
General Description Name

1 Ch150 6,528 150 city problem (Churritz)

2 U159 42,080 Drilling problem (Reinelt)

3 Rat195 2,323 Rattled grid (Pulleyblank)

4 Kroa200 29,368 200 city problem A (Krolak/Felts/Nelson)

5 Ts225 126,643 225 city problem (Juenger)

6 Gil262 2,378 262 city problem (Gillet/Johnson)

7 Pr299 48,191 299 city problem (Padberg/Rinaldi)

8 Lin318 42,029 318 city problem (Lin/Kernighan)

9 Rd400 15,281 400 city random TSP(Reinelt)

10 Fl417 11,861 Drilling problem (Reinelt)

11 Pr439 107,217 439 city problem (Padberg/Rinaldi)

12 U574 36,905 Drilling problem (Reinelt)

13 Rat575 6,773 Rattled grid (Pulleyblank)

14 U724 41,910 Drilling problem (Reinelt)

15 Rat783 8,806 Rattled grid (Pulleyblank)

16 Pr1002 259,045 1,002 city problem (Padberg/Rinaldi)

17 Pcb1173 56,892 Drilling problem (Juenger/Reinelt)

18 D1291 50,801 Drilling problem (Reinelt)

19 Rl1323 270,199 1,323 city TSP (Reinelt)

20 Fl1400 20,127 Drilling problem (Reinelt)

21 D1655 62,128 Drilling problem (Reinelt)

22 Vm1748 336,556 1,784 city problem (Reinelt)

23 U2319 234,256 Drilling problem (Reinelt)

24 Pcb3038 137,694 Drilling problem (Junger/Reinelt)

25 Fnl4461 182,566 Die 5 neuen Laender Deutschlands (ExDDR)

(Bachem/Wottawa)

26 Rl5934 556,045 5,934 city TSP (Reinelt)

27 Pla7397 23,260,728 Programmed logic array (Johnson)

28 Usa13509 19,982,859 Cities with pop. at least 500 in the continental
US

29 Brd14051 469,385 BR Deutschland in den Grenzen von 1989

(Bachem/Wottawa)

30 D18512 645,238 Bundesrepublik Deutschland (Bachem)

Journal of Theoretical and Applied Information Technology
15th August 2021. Vol.99. No 15

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3777

Table 2: Mean Accuracy of GA-EM Using Three Variations of Mutation for 9 TSP Instances.

S/N
Instance

Name
OPT-BKS

Transpose

Operator

Shift-and-Insert

Operator

Swap

Operator

1 Ch150 6,528 6,533 6,537 6,538

2 Lin318 42,029 42,037 42,042 42,045

3 Pr1002 259,045 259,055 259,064 259,069

4 D1655 62,128 62,149 62,156 62,162

5 U2319 234,256 234,371 234,378 234,390

6 Pcb3038 137,694 137,743 137,764 137,783

7 Fnl4461 182,566 182,609 182,654 182,675

8 Rl5934 556,045 556,121 556,142 556,174

9 Pla7397 23,260,728 23,261,816 23,261,853 23,261,877

Table 3: Mean Accuracy of GA-EM Using Three Variations of Number of Transpose Steps for 9 TSP Instances.

S/N
Instance

Name
OPT-BKS

Number of Transpose Steps

= 2 = 5 = 10

1 Ch150 6,528 6,528 6,528 6,528

2 Lin318 42,029 42,029 42,040 42,077

3 Pr1002 259,045 259,045 259,062 259,089

4 D1655 62,128 62,134 62,145 62,159

5 U2319 234,256 234,350 234,372 234,382

6 Pcb3038 137,694 137,695 137,711 137,720

7 Fnl4461 182,566 182,570 182,588 182,595

8 Rl5934 556,045 556,054 556,074 556,092

9 Pla7397 23,260,728 23,261,749 23,261,782 23,261,796

Table 4: The Abbreviations of the Four Comparative
Algorithms.

Abbreviation Algorithm Name Reference

MGA-TSP

Modernised
genetic algorithm

for the travelling
salesman problem

[7]

SOS-SA

Simulated

annealing based
symbiotic

organisms search
optimization

algorithm

[28]

LBSA

List-based

simulated
annealing

algorithm

[27]

MSA-IBS

Multiagent

simulated
annealing

algorithm with
instance-based

sampling

[29]

5. CONCLUSION AND FUTURE WORK

In this paper, an efficient mutation for a genetic

algorithm is presented and used to solve TSP. The

efficient mutation is based on three operators

(transpose, shift-and-insert, and swap) to avoid

getting stuck on local optima and allow for deep

search. The proposed efficient mutation is called

after a specific number of failed tries to improve the

population of candidate solutions. The specific

number of trials is bounded by minimum and

maximum threshold values. Thus, initially, the

specific number of trials is defined by the

maximum threshold value and decreased after each
entry. When the minimum threshold value is

reached, the value is redefined to the maximum

threshold value. The proposed GA-EM is applied

for a small number of tries to mutate the population

which led to reduce the number of failed tries to

enhance the population during the enhancement

process. The initial step of efficient mutation is

based on selecting two cities randomly from the

selected solution, then applying the transpose

Journal of Theoretical and Applied Information Technology
15th August 2021. Vol.99. No 15

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3778

procedure without heuristic calculations, this step is

repeated a specific number of times, and then

applying heuristic steps by the three operators

(transpose, shift-and-insert, and swap). The results

obtained from the proposed GA-EM were

compared with those obtained by four relatively
recent efficient algorithms; namely, MGA-TSP,

SOS-SA, LBSA, and MSA-IBS using the same

TSP instances. The proposed algorithm can

outperform these algorithms in all tested TSP

instances in terms of accuracy.

In general, solving TSP for complex and large

TSP datasets requires a lot of running time on

sequential computers. Therefore, improving the

running time can be accomplished using a parallel

approach as shown in [41, 42]. So, improving the

running time of the proposed GA-EM can be

achieved using a parallel approach, which is

considered as future work. Parallel approaches can

be achieved on various parallel architectures and

interconnection networks. Examples of these
architectures and interconnection networks are

OTIS hyper hexa-cell [43–45], OTIS-Hypercube

[46], chained-cubic tree interconnection network

[47, 48], optical chained-cubic tree [49], OTIS-

Mesh interconnection network [46, 50], and hyper

hexa-cell interconnection network [51, 52].

Accordingly, as future work, other complex and

larger TSP datasets can be solved to further ensure

the validity of the GA-EM algorithm.

Table 5: The Mean Accuracy Results of the GA-EM in Comparison to the Other Four Metaheuristic Algorithms.

S/N

Instance

Name

Mean Accuracy

OPT-BKS
MGA-TSP

(2019) [7]

SOS-SA

(2017) [28]

LBSA

(2016) [27]

MSA-IBS

(2015) [29]
GA-EM

1 Ch150 6,528 6,528 6,530 6,530 6,529 6,528

2 U159 42,080 42,080 42,081 42,080 42,080 42,080

3 Rat195 2,323 2,323 2,327 2,328 2,330 2,323

4 Kroa200 29,368 29,368 29,371 29,374 29,378 29,368

5 Ts225 126,643 126,643 126,701 126,643 126,643 126,643

6 Gil262 2,378 2,378 2,382 2,379 2,379 2,378

7 Pr299 48,191 48,191 48,228 48,221 48,226 48,191

8 Lin318 42,029 42,029 42,180 42,196 42,184 42,029

9 Rd400 15,281 15,281 15,452 15,350 15,430 15,281

10 Fl417 11,861 11,861 11,878 11,868 11,876 11,861

11 Pr439 107,217 107,217 107,561 107,465 107,407 107,217

12 U574 36,905 36,905 37,164 37,165 37,156 36,905

13 Rat575 6,773 6,773 6,840 6,837 6,840 6,773

14 U724 41,910 41,910 42,262 42,252 42,212 41,910

15 Rat783 8,806 8,806 8,900 8,888 8,893 8,806

16 Pr1002 259,045 259,045 261,802 261,805 261,482 259,045

17 Pcb1173 56,892 56,892 57,570 57,432 57,562 56,892

18 D1291 50,801 50,801 51,291 51,199 51,344 50,801

19 Rl1323 270,199 270,199 271,711 271,714 271,818 270,199

20 Fl1400 20,127 20,132 20,231 20,249 20,375 20,130

21 D1655 62,128 62,134 64,112 63,001 62,893 62,134

22 Vm1748 336,556 336,558 336,719 339,711 339,618 336,557

23 U2319 234,256 234,356 235,338 235,975 235,236 234,350

24 Pcb3038 137,694 137,696 139,702 139,635 139,706 137,695

25 Fnl4461 182,566 182,571 185,546 185,509 185,535 182,570

26 Rl5934 556,045 556,056 566,212 566,053 566,167 556,054

27 Pla7397 23,260,728 23,261,751 23,800,000 23,800,000 23,800,000 23,261,749

28 Usa13509 19,982,859 19,984,989 21,400,000 20,400,000 20,400,000 19,984,987

29 Brd14051 469,385 469,396 478,099 478,010 478,610 469,394

30 D18512 645,238 645,463 659,457 657,457 658,149 645,460

Journal of Theoretical and Applied Information Technology
15th August 2021. Vol.99. No 15

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3779

REFERENCES:

[1] Y. Deng, J. Xiong, Q. Wang, "A Hybrid

Cellular Genetic Algorithm for the Traveling

Salesman Problem", Mathematical Problems

in Engineering, Vol. 2021, (2021).

[2] D. Applegate, R. Bixby, V. Chvátal, W.J.

Cook, "The Traveling Salesman Problem: A

Computational Study", Princeton University

Press, 2007.

[3] K. Yang, X. M. You, S. Liu, H. Pan, "A novel

ant colony optimization based on game for

traveling salesman problem", Applied

Intelligence 50 (12), (2020), 4529–4542.

[4] M.R. Garey, D.S. Johnson, "Computers and

Intractability: A Guide to the Theory of NP-

Completeness", Series of Books in the

Mathematical Sciences, first ed., W. H.

Freeman & Co., New York, 1979. ISBN: 978-

0-7167-1045-5.

[5] K. Helsgaun, "An effective implementation of

the Lin–Kernighan traveling salesman
heuristic", European Journal of Operational

Research 126 (1), (2000), 106–130.

https://doi.org/10.1016/S0377-2217(99)00284-2

[6] M. Albayrak, N. Allahverdi, "Development a

new mutation operator to solve the traveling

salesman problem by aid of genetic

algorithms", Expert Systems with Applications

38 (3), (2011), 1313–1320.

https://doi.org/10.1016/j.eswa.2010.07.006

[7] R.E.M. Al-Khatib, M.A. Al-Betar, M.A.

Awadallah, K.M. Nahar, M.M.A. Shquier,

A.M. Manasrah, A.B. Doumi, "MGA-TSP:
Modernised genetic algorithm for the

travelling salesman problem", International

Journal of Reasoning-Based Intelligent

Systems 11 (3), (2019), 215–226.

https://doi.org/10.1504/IJRIS.2019.10019776

[8] A.A. Heidari, S. Mirjalili, H. Faris, I. Aljarah,

M. Mafarja, H. Chen, "Harris hawks

optimization: Algorithm and applications",
Future Generation Computer Systems 97,

(2019), 849–872.

https://doi.org/10.1016/j.future.2019.02.028

[9] S.M. Chen, C.Y. Chien, "Solving the traveling

salesman problem based on the genetic

simulated annealing ant colony system with

particle swarm optimization techniques",

Expert Systems with Applications 38 (12),

(2011), 14439–14450.

https://doi.org/10.1016/j.eswa.2011.04.163

[10] S. Ahmed, K. K. Ghosh, L. Garcia-
Hernandez, A. Abraham, R. Sarkar"

Improved coral reefs optimization with

adaptive b-hill climbing for feature selection",
Neural Computing and Applications, (2020),

pp. 1-20.

[11] M. Gendreau, G. Laporte, F. Semet, "A tabu

search heuristic for the undirected selective

travelling salesman problem", European

Journal of Operational Research 106 (2-3),

(1998), 539–545.

https://doi.org/10.1016/S0377-

2217(97)00289-0

[12] S. Hore, A. Chatterjee, A. Dewanji,

"Improving variable neighborhood search to

solve the traveling salesman problem",
Applied Soft Computing 68, (2018), 83–91.

https://doi.org/10.1016/j.asoc.2018.03.048

[13] N. Mladenović, R. Todosijević, D. Urošević,

"An efficient general variable neighborhood
search for large travelling salesman problem

with time windows", Yugoslav Journal of

Operations Research 23 (1), (2013), 19–30.

https://doi.org/10.2298/YJOR120530015M

[14] M. Mitchell, "An Introduction to Genetic

Algorithms", The MIT Press, 1996. ISBN:

9780262631853.

[15] C. Changdar, G.S. Mahapatra, R.K. Pal, "An

efficient genetic algorithm for multi-objective

solid travelling salesman problem under

fuzziness", Swarm and Evolutionary

Computation 15, (2014), 27–37.

https://doi.org/10.1016/j.swevo.2013.11.001

[16] M. Yousefikhoshbakht, "Solving the

Traveling Salesman Problem: A Modified

Metaheuristic Algorithm", Complexity, Vol.

2021. (2021).

[17] G. Vahdati, S.Y. Ghouchani, M. Yaghoobi,

"A hybrid search algorithm with Hopfield

neural network and genetic algorithm for

solving traveling salesman problem",

Proceedings of 2010 The 2nd International

Conference on Computer and Automation

Engineering (ICCAE), Singapore, Vol. 1,

February 2010, pp. 435–439.

https://doi.org/10.1109/ICCAE.2010.5451917

[18] D.S. Johnson, L.A. McGeoch, "The traveling

salesman problem: A case study in local

optimization", E.H.L. Aarts, J.K. Lenstra

(Eds.), Local Search in Combinatorial
Optimization, John Wiley and Sons, London,

1997, pp. 215–310.

[19] G. Reinelt, "TSPLIB – A traveling salesman

problem library", ORSA Journal on
Computing 3 (4), (1991), 376–384.

https://doi.org/10.1287/ijoc.3.4.376

Journal of Theoretical and Applied Information Technology
15th August 2021. Vol.99. No 15

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3780

[dataset] [20] G. Reinelt, "TSPLIB".

http://comopt.ifi.uni-

heidelberg.de/software/TSPLIB95/

[dataset] [21] "National TSPs".

http://www.math.uwaterloo.ca/tsp/world/countries.

html

[dataset] [22] R. Andri, "VLSI Data Sets".

http://www.math.uwaterloo.ca/tsp/vlsi/index.html

[23] J.H. Holland, "Adaptation in Natural and

Artificial Systems: An Introductory Analysis

with Applications to Biology, Control, and

Artificial Intelligence", MIT Press, 1992.

ISBN-10: 0262581116.

[24] O. Belghazi, M. Cherkaoui, "Pitch angle

control for variable speed wind turbines using

genetic algorithm controller", Journal of

Theoretical and Applied Information

Technology 39 (1), (2012), 6-10.

[25] D.E. Goldberg, "Genetic Algorithms in

Search, Optimization and Machine Learning",

Addison-Wesley Longman Publishing Co.,

Boston, 1989. ISBN: 978-0-201-15767-3.

[26] M. Alssager, Z.A. Othman, "Simulated

Annealing Algorithm Using Iterative

Component Scheduling Approach for Chip

Shooter Machines", Journal of Theoretical &

Applied Information Technology 65 (2),

(2014), 480-490.

[27] S.H. Zhan, J. Lin, Z.J. Zhang, Y.W. Zhong,

"List-based simulated annealing algorithm for

traveling salesman problem", Computational

Intelligence and Neuroscience 2016, (2016),

1712630.

https://doi.org/10.1155/2016/1712630

[28] A.E.S. Ezugwu, A.O. Adewumi, M.E. Frîncu,

"Simulated annealing based symbiotic

organisms search optimization algorithm for
traveling salesman problem", Expert Systems

with Applications 77, (2017), 189–210.

https://doi.org/10.1016/j.eswa.2017.01.053

[29] C. Wang, M. Lin, Y. Zhong, H. Zhang,

"Solving travelling salesman problem using

multiagent simulated annealing algorithm

with instance-based sampling", International
Journal of Computing Science and

Mathematics 6 (4), (2015), 336–353.

https://doi.org/10.1504/IJCSM.2015.071818

[30] Y. Lin, Z. Bian, X. Liu, "Developing a
dynamic neighborhood structure for an

adaptive hybrid simulated annealing – tabu

search algorithm to solve the symmetrical

traveling salesman problem", Applied Soft

Computing 49, (2016), 937–952.

https://doi.org/10.1016/j.asoc.2016.08.036

[31] M.A.H. Akhand, S.I. Ayon, S.A. Shahriyar,

N. Siddique, H. Adeli, "Discrete spider

monkey optimization for travelling salesman

problem", Applied Soft Computing 86, (2020),

105887.

https://doi.org/10.1016/j.asoc.2019.105887

[32] M. M. J. Jurjee, H. M. Sarim, N. H. A. Al-

Dabbagh, & E. B. Nababan, "A multi-

population harmony search algorithm for the

dynamic travelling salesman problem with

traffic factors", Journal of Theoretical and

Applied Information Technology 95 (2),

(2017), 265.

[33] Y. Nagata, S. Kobayashi, "A powerful genetic

algorithm using edge assembly crossover for

the traveling salesman problem", INFORMS
Journal on Computing 25 (2), (2013), 346–

363. https://doi.org/10.1287/ijoc.1120.0506

[34] H. Faris, I. Aljarah, M.A. Al-Betar, S.
Mirjalili, "Grey wolf optimizer: A review of

recent variants and applications", Neural

Computing and Applications 30 (2), (2018),

413–435. https://doi.org/10.1007/s00521-017-

3272-5

[35] J. Wang, O.K. Ersoy, M. He, F. Wang,

"Multi-offspring genetic algorithm and its

application to the traveling salesman

problem", Applied Soft Computing 43, (2016),

415–

423.https://doi.org/10.1016/j.asoc.2016.02.02

1

[36] A.M. Mohsen, "Annealing ant colony

optimization with mutation operator for

solving TSP", Computational Intelligence and

Neuroscience 2016, (2016), 8932896.

https://doi.org/10.1155/2016/8932896

[37] C.W. Tsai, S.P. Tseng, M.C. Chiang, C.S.

Yang, T.P. Hong, "A high-performance

genetic algorithm: Using traveling salesman

problem as a case", The Scientific World

Journal 2014, (2014), 178621.

[38] P.D. Thanh, H.T.T. Binh, B.T. Lam, "New

mechanism of combination crossover

operators in genetic algorithm for solving the

traveling salesman problem", V.H. Nguyen,

A.C. Le, V.N. Huynh (Eds.), Knowledge and

Systems Engineering, Advances in Intelligent

Systems and Computing, Springer, Champ.

Vol. 326, 2015, pp. 367–379.

https://doi.org/10.1007/978-3-319-11680-8_29

Journal of Theoretical and Applied Information Technology
15th August 2021. Vol.99. No 15

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3781

[39] V. Dwivedi, T. Chauhan, S. Saxena, P.

Agrawal, "Travelling salesman problem using

genetic algorithm", National Conference on

Development of Reliable Information Systems,

Techniques and Related Issues (DRISTI

2012), Proceedings published in International
Journal of Computer Applications, 2012, pp.

25–30.

[40] G.A. Croes, "A method for solving traveling

salesman problems", Operations Research 6,

(1958), 791–812.

https://doi.org/10.1287/opre.6.6.791

[41] Y. Zhou, F. He, Y. Qiu, "Dynamic strategy

based parallel ant colony optimization on

GPUs for TSPs", Science China Information

Sciences 60 (6), (2017), 068102.

https://doi.org/10.1007/s11432-015-0594-2

[42] Y. Zhou, F. He, Y. Qiu, "Optimization of

parallel iterated local search algorithms on

graphics processing unit", The Journal of

Supercomputing 72 (6), (2016), 2394–2416.

https://doi.org/10.1007/s11227-016-1738-3

[43] B.A. Mahafzah, A. Sleit, N.A. Hamad, E.F.

Ahmad, T.M. Abu-Kabeer, "The OTIS hyper

hexa-cell optoelectronic architecture",

Computing 94 (5), (2012), 411–432.

https://doi.org/10.1007/s00607-011-0177-5

[44] A. Al-Adwan, A. Sharieh, B.A. Mahafzah,

"Parallel heuristic local search algorithm on

OTIS hyper hexa-cell and OTIS mesh of trees

optoelectronic architectures", Applied

Intelligence 49 (2), (2019), 661–688.

https://doi.org/10.1007/s10489-018-1283-2

[45] A. Al-Adwan, R. Zaghloul, B.A. Mahafzah,

A. Sharieh, "Parallel quicksort algorithm on

OTIS hyper hexa-cell optoelectronic

architecture", Journal of Parallel and

Distributed Computing 141 (2020), 61–73.

https://doi.org/10.1016/j.jpdc.2020.03.015

[46] A. Al-Adwan, B.A. Mahafzah, A. Sharieh,

"Solving traveling salesman problem using

parallel repetitive nearest neighbor algorithm

on OTIS-Hypercube and OTIS-Mesh

optoelectronic architectures", The Journal of

Supercomputing 74 (1), (2018), 1–36.

https://doi.org/10.1007/s11227-017-2102-y

[47] M. Abdullah, E. Abuelrub, B.A. Mahafzah,

"The chained-cubic tree interconnection

network", International Arab Journal of

Information Technology 8 (3), (2011), 334–

343.

[48] S.W. Al-Haj Baddar, B.A. Mahafzah,

"Bitonic sort on a chained-cubic tree

interconnection network", Journal of Parallel

and Distributed Computing 74 (1), (2014),

1744–1761.

https://doi.org/10.1016/j.jpdc.2013.09.008

[49] B.A. Mahafzah, M. Alshraideh, T.M. Abu-

Kabeer, E.F. Ahmad, N.A. Hamad, "The

optical chained-cubic tree interconnection

network: Topological structure and

properties", Computers & Electrical

Engineering 38 (2), (2012), 330–345.

https://doi.org/10.1016/j.compeleceng.2011.1

1.023

[50] B.A. Mahafzah, R.Y. Tahboub, O.Y.

Tahboub, "Performance evaluation of

broadcast and global combine operations in

all-port wormhole-routed OTIS-Mesh
interconnection networks", Cluster

Computing 13 (1), (2010), 87–110.

https://doi.org/10.1007/s10586-009-0117-8

[51] B.A. Mahafzah, I.O. Al-Zoubi, "Broadcast

communication operations for hyper hexa-cell

interconnection network", Telecommunication

Systems 67 (1), (2018), 73–93.

https://doi.org/10.1007/s11235-017-0322-3

[52] A. Al-Adwan, B.A. Mahafzah, A. Aladwan,

"Load balancing problem on hyper hexa cell

interconnection network", International
Journal of Advanced Computer Science and

Applications 11 (10), (2020), 373–379.

