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ABSTRACT 

The Traveling Salesman Problem (TSP) is a Combinatorial Optimization Problem (COP), which belongs to 

NP-hard problems and is considered a typical problem for many real-world applications. Many researchers 
used the Genetic Algorithm (GA) for solving the TSP. However, using a suitable mutation was one of the 

main obstacles for GA. This paper proposes for GA an Efficient Mutation (GA-EM) for solving TSP. The 

efficient mutation can balance between deeply searching and preventing stuck on local optima to ensure a 

better convergence rate and diversity. Therefore, in this paper, a local search method based on three 

neighborhood structure operators; namely, transpose, shift-and-insert, and swap, is proposed to produce the 

efficient mutation for GA. The performance of the proposed algorithm is validated by three TSP datasets; 

including, TSPLIB, National TSPs, and VLSI Data Set. These datasets have different graphs’ structures and 

sizes. The sizes of the datasets range from 150 to 18512 cities. For comparative evaluation, the results 

obtained from the proposed GA-EM are compared with those obtained by four relatively recent approaches 

using the same TSP instances. These approaches are the Modernised Genetic Algorithm for solving TSP 

(MGA-TSP), List-Based Simulated Annealing algorithm (LBSA), Symbiotic Organisms Search 
optimization algorithm based on Simulated Annealing (SOS-SA), and Multiagent Simulated Annealing 

algorithm with Instance-Based Sampling (MSA-IBS). The GA-EM outperformed these approaches in all 

used TSP instances in terms of accuracy. 

Keywords: Genetic Algorithm, Mutation Operator, Neighboring Operator, Simulated Annealing 

Algorithm, Traveling Salesman Problem 

1. INTRODUCTION  

Traveling Salesman Problem (TSP) is a 

combinatorial optimization problem [1–3]. It can be 

categorized as an NP-hard class problem in almost 

all of its variations [1–4]. In TSP, given a set of 

cities where each city is visited exactly once by the 

salesman and returns to the initial city with a 
minimum distance tour [1–3]. When the number of 

cities is increased, the convergence rate to solve 

TSP is normally decreased [2, 5]. TSP is normally 

considered a good problem to evaluate the 

performance of newly established algorithms. TSP 

is very useful for real-world applications employed 

in military and traffic domains. Since the exact 

methods are not efficient for solving the large-

scaled TSP due to the huge computational time 

consumed, the researchers in the optimization 

domain tend to apply the approximation approaches 
to solve TSP [2, 6, 7]. 

Metaheuristic approaches are categorized as 

approximation methods. Thus, two main types of 

algorithms belong to metaheuristic approaches, 

which are the local search-based algorithms and the 

evolutionary-based algorithms [8–10]. Local 

search-based algorithms start with a random 

solution. Then, they iteratively modify the solution 
using neighboring mechanisms until a local optimal 

solution is reached. Many local search-based 

methods are adapted for solving TSP; including, 

tabu search [11] and variable neighborhood search 

[12, 13]. Whereas, the Evolutionary-based 

Algorithms (EAs) begin with a collection of 

random solutions called the initial population. In 

each iteration, new solutions are generated using 

recombination and mutation operators. The parent 

population is normally replaced by a new offspring 

population if the newly generated solutions are 
better. This evolution process will continue until the 

stagnation point is reached. The Genetic Algorithm 
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(GA) is one of the evolutionary-based algorithms 

[14, 15]. 

In general, the GA algorithm has two drawbacks 

[16, 17]; first, it may get stuck in local optimum, 

which is not necessarily the best possible solution 

(i.e., global optima), because it searches in each 
candidate solution but without deep searching. 

Second, when it deals with a larger number of 

cities, the convergence rate will be weaker. 

Therefore, researchers employ local search-based 

algorithms due to their capabilities in local 

exploitation in solving TSP [7, 18]. 

One of the main obstacles of GA is the mutation 

operator. The mutation operator in GA usually 

produces the worst candidate solutions, where this 

problem can be eventually reflected in the whole 

population and results [6]. However, when GA runs 

with an efficient mutation, the convergence rate and 
the diversity aspect will be better [6]. 

In this paper, a new mutation for GA is proposed 

and is called an Efficient Mutation, which is 

denoted as GA-EM. This efficient mutation can 

balance between deeply searching and preventing 

stuck on local optima to ensure a better 

convergence rate and diversity. The new efficient 

mutation operator is based on three neighborhood 

structures (transpose, shift-and-insert, and swap), 

where it avoids the stuck state in local optima. The 

proposed mutation is called after a number of failed 
tries made to enhance the solutions rather than it is 

called in each GA iteration. The number of failed 

tries is defined and limited by threshold values. The 

new efficient mutation includes two steps; in the 

first step, we will apply the transpose step on 

randomly selected cities from the worst candidate 

solution. This transpose step is conducted without 

heuristic calculations to decide whether it will 

produce a better solution or not. In the second step, 

we will use the three neighborhood operators; 

namely, transpose, shift-and-insert, and swap to 

enhance the modified solution generated in the first 
step.  

The experiments are conducted using three TSP 

datasets, namely TSPLIB [19, 20], National TSPs 

[21], and VLSI Data Sets [22] of different structures 

and sizes including 30 TSP instances. The size 

range of the TSP instances from 150 to 18512 

cities. For comparative evaluation, the results 

obtained by the proposed GA-EM are compared 

with other results obtained by four recent 

metaheuristic algorithms using the same TSP 

instances. These algorithms are the Modernised 
Genetic Algorithm for solving TSP (MGA-TSP), 

List-Based Simulated Annealing (LBSA) algorithm, 

Symbiotic Organisms Search optimization 

algorithm based on Simulated Annealing (SOS-

SA), and Multiagent Simulated Annealing 

algorithm with Instance-Based Sampling (MSA-

IBS). 

The rest of this paper is organized as follows: 

Section 2 presents the definition of the TSP 

problem, an overview of the genetic algorithm, an 

overview of simulated annealing, and their related 

work. Section 3 presents the proposed GA-EM with 

its neighboring operators. Section 4 presents the 

experimental results and discussions. Finally, 

Section 5 presents the conclusion and future work. 

2. BACKGROUND AND RELATED WORK 

In this paper, TSP is modeled as an optimization 

problem and solved using GA with efficient 

mutation and its performance is compared with 
several approaches used GA and Simulated 

Annealing (SA). Therefore, in this section, a 

background of TSP, GA, and SA is presented. Also, 

as related work, several approaches used GA or SA 

to solve TSP are briefly presented.  

2.1 Traveling Salesman Problem 

TSP is considered one of the popular NP-Hard 

problems [1–4]. However, the goal of optimization 

algorithms is to find the shortest tour between a 

number of cities, but each city must be visited only 

once [1–3]. TSP can be expressed as a bi-directed 
graph G = (C, A), where C is a set of cities, and A is 

a set of arcs (i.e., the edge between cities). Also, a 

cost matrix D of size │C│×│C│ is used to store the 

distance between all pairs of cities, where the 

distance procedure calculates the distance between 

the two cities ci and ci+1. In general, cost matrices 

can be divided into two types symmetric or 

asymmetric. In the symmetric type, distance (i, j) 
equals distance (j, i), whereas distance (i, j) does 

not equal distance (j, i) in the asymmetric type, 

where the distance between cities is dependent on 

the direction of traversing the arcs. Mathematically, 

the objective function of the TSP can be formulated 

as shown in Eq. (1) [7], where Td is the total closed 

tour length and the distance procedure (dis) is the 

distance between the two cities ci and ci+1. 

 Td = min(dis(cn-1, c1) +




1

1

n

i

dis(ci, ci+1)             (1) 

2.2 Genetic Algorithm 

The Genetic Algorithm (GA) is based on a 

known principle called the survival of the fittest [1, 

14, 23, 24]. Initially, GA starts with a set of 
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solutions called population. Each solution 

represents a vector of decision variables and each 

decision variable has a specific range of values [14, 

25]. In this analogy, each solution is a chromosome, 

each decision variable is a gene, and each value of 

the decision variable is an allele [7, 14]. GA has a 
set of parameters including the size of the 

population, the number of iterations, also a set of 

operations including the selection, the crossover, 

and the mutation. Therefore, these solutions have to 

be manipulated by crossover and mutation 

operations through iterations. Algorithm 1 shows 

the main steps of GA, which initiates with an initial 

population X represented by random candidate 

solutions.  Each candidate solution is evaluated and 

ranked based on the objective function as shown in 

Eq. (1). The main loop of GA (Line 3 to Line 9) 

strives to enhance the population by repeating Line 
4 to Line 8 while a termination criterion is not met 

or an optimal solution is not reached. 

 

Algorithm 1  Genetic Algorithm (GA) 

1 X← Generate_Initital_Population 

2 Evaluate(X) 

3 while (Stopping criterion is not met or 

optimal solution is not reached) do 

4            Y ← Selection(X) 

5            W ← Crossover(Y) 

6            Z ← Mutation(W) 

7            Evaluate(Z) 

8            X← Replacement(Z, X) 

9 end while 

 

2.3 Simulated Annealing Algorithm 

The Simulated Annealing (SA) algorithm is a 

generic probabilistic meta-algorithm that can be 

used to find an approximate solution to global 

optimization problems such as TSP. It is based on 

the idea of the cooling process of molten metal [1, 

26, 27]. SA uses the temperature as a parameter to 

decide whether the solution will be updated or not. 
The temperature is decreased until the local best 

solution is reached. Thus, each step modifies the 

solution and decreases the probability to update the 

best solution. If the temperature is set to a high 

value, SA can allow some random moves. When 

the temperature cools or has a low value, the 

probability of a random move is reduced. A 

detailed algorithm with some of its variants is 

available in [27–30]. 

2.4 Related Work 

Many metaheuristic approaches are used to solve 
various optimization problems including the TSP. 

Examples of these approaches are genetic 

algorithm, simulated annealing, swarm simulated 

annealing, discrete spider monkey optimization, 

harmony search, variable neighborhood search, and 

grey wolf optimizer [12, 27–39]. 

The TSP is a good problem to evaluate the 
performance of several algorithms [1, 2], there are 

many related works in solving TSP; specifically, 

those which used approximation algorithm with a 

mutation to find the shortest distance of traveling 

salesman through a set of cities based on TSP 

constraints. 

The authors in [35] presented a Multi-Offspring 

Genetic Algorithm (MO-GA) based on biological 

evolutionary and mathematical ecological theory 

for solving TSP. In this approach, the number of 

children is significantly increased as compared to 

the basic genetic algorithm. It can increase the 
probability of generating an optimal solution since 

it was based on producing more offsprings in each 

iteration.  

In [30], the authors proposed an adaptive hybrid 

metaheuristic approach that combines simulated 

annealing and tabu search algorithms with a 

dynamic neighborhood mutation for solving TSP. 

This approach achieved improved accuracy as 

compared to simulated annealing and tabu search 

algorithms. It can overcome the disadvantages of 

simulated annealing and tabu search. The hybrid 
approach provided a clear convergence process and 

a fast decrease rate. The dynamic neighborhood 

improved solution quality in comparison with the 

classical 2-opt neighborhood. 

A Multiagent and Simulated Annealing with 

Instance-Based Sampling (MSA-IBS) was 

proposed by Wang et al. [29] for solving the TSP. 

The hybrid process exploited the learning ability of 

the instance-based search algorithm to enhance the 

simulated annealing to solve TSP. But the error rate 

was very high for datasets that are larger than 500 

cities. 

Zhan et al. [27] proposed a List-Based Simulated 

Annealing (LBSA) approach to solve the TSP. This 

approach used the parameter sensitivity and 

effectiveness of the list-based cooling schedule to 

determine temperature reduction in the simulated 

annealing algorithm, which is used as acceptance 

criteria for choosing a candidate solution. The 

results of the LBSA show that it performs fairly 

well compared to some other state-of-the-art 

algorithms; such as MSA-IBS. This approach 

achieved an error rate less than MSA-IBS, but the 
error rate is still high. 
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Ezugwu et al. [28] presented a hybrid approach 

of Symbiotic Organisms Search (SOS) with 

Simulated Annealing (SA) to solve the TSPs. The 

framework of SOS-SA incorporated the SA local 

search capability into the problem search space of 

the SOS algorithm. The empirical assessment 
results showed that the performance of the 

algorithm and its convergence rate in some cases 

produced better results than the best-known TSP 

benchmarked results. However, the high error rate 

for a large number of cities is the main challenge 

for this approach. 

Mohsen [36] presented a hybridized algorithm, 

which is called an annealing elitist ant system. This 

algorithm combined Ant Colony Optimization 

(ACO), Simulated Annealing (SA), mutation 

operator, and local search procedure to solve TSP. 

The algorithm exploited the mutation operator to 
increase the ants’ population diversity from time to 

time, and the local search exploits the current 

search area efficiently. The comparative 

experiments showed that this algorithm 

outperformed some well-known algorithms but the 

error rate is high when the number of cities 

increased. 

The GA is considered one of the most successful 

evolutionary algorithms used for TSP [7]. Many 

researchers developed a new GA. Nagata et al. 

(2013) [33] developed Edge Assembly Crossover 
(EAX) for GA to solve TSP. In addition to that, 

Tsai et al. [37], proposed an effective algorithm to 

reduce the error rate. Also, in [38], the authors 

proposed another improved GA to solve TSP using 

new combination crossover operators. In [39], the 

authors surveyed GAs to solve TSP. 

Al-Khatib et al. [7] proposed a Modernised 

Genetic Algorithm for solving TSP (MGA-TSP). 

MGA-TSP utilized an efficient crossover operator 

called EAX to enhance its convergence. It should 

be noted that this algorithm did not use an efficient 

mutation to enhance the solution by terminating the 
stuck state in local optima. MGA-TSP achieved the 

best results compared to some other state-of-the-art 

algorithms; such as LBSA, EAX, and SOS in terms 

of error rate.  

In this paper, a new efficient mutation based on 

three neighborhood operators; namely, transpose, 

shift-and-insert, and swap, is exploited to enhance 

the best solution in terms of accuracy (or error rate) 

by preventing stuck on local optima. The efficient 

mutation interferes after a changed number of failed 

trials to enhance the solutions in the population. 
The proposed mutation has a small change on the 

shortest distance of the target solution since a small 

number of edges in the graph of the target solution 

will be replaced randomly; therefore, the efficient 

mutation can cause a small change on the whole 

population in terms of shortest distance in trying to 

allow for GA-EM to continue in searching deeply 
toward an optimal solution. 

3. GA-EM APPROACH 

In this section, the proposed GA-EM approach is 

discussed and presented in Algorithm 2. This paper 

focuses on the proposed efficient mutation in terms 

of how and when it works. In general, the solutions 

that are exposed to the classical mutation, often 

become worse than they were before. The proposed 

efficient mutation takes to account this issue by 

using the proposed mutation after a specific time 

defined by a threshold. This threshold takes into 

consideration the deep search in the proposed 
approach as well as the proposed efficient mutation 

performs an operation that can be described as a 

precise mutation for the candidate solution and then 

an improvement process for the generated solution. 

Briefly, the proposed mutation picks one of the 

solutions randomly after failed tries to improve the 

population, then it modifies the picked solution. 

This mutation is based on three neighboring 

operators; namely, transpose, shift-and-insert, and 

swap discussed in the following sections. The main 

motivation of the efficient mutation is to terminate 
the stuck state in local optima. The proposed GA-

EM is initiated with an initial population of 

candidate solutions that are generated randomly and 

then improved by a 2-opt neighboring algorithm 

which is shown in Algorithm 3. The GA-EM uses 

random selection, EAX crossover, and the proposed 

efficient mutation operators to enhance the 

population. Thus, GA-EM is terminated after 

checking that there is no possible improvement in 

the population. However, each step of the proposed 

GA-EM, as shown in Algorithm 2, is discussed in 

the following sections. 

3.1 TSP Initialization 

In TSP, each candidate solution for GA is 

represented by all cities of TSP as H = (c1, c2, ..., 

cN) of N cities, where each city should appear one 

time only. Each candidate solution is evaluated by 

the fitness function formulated in Eq. (1). The 

fitness values are used to rank the candidate 

solutions in the population from best to worst 

solutions. 

3.2 Improving the Initial Population 

The 2-opt neighboring algorithm, which is 
presented in Algorithm 3, is widely used to enhance 
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the initial population in the approximation 

algorithms, such as GA in [18, 33, 40]. In 

Algorithm 3, the Neighbour[c][0] and 

Neighbour[c][1] represent the cities that precede 

and follow city c, respectively, in the candidate 

solution, near[c][j] array indicates the jth nearest 
city-to-city c, d represents the distance value 

between the two cities and H is a set of cities of the 

candidate solution. In general, the 2-opt algorithm 

works as in the following instance: the edge E1,2 = 

(c1, c2) and the edge E3,4 = (c3, c4) will be changed 

to the edge E1,3 = (c1, c3) and the edge E2,4 = (c2, c4) 

based on the heuristic equation which is shown in 

Line 10 of Algorithm 3. The heuristic equation can 

simply decide whether the two edges, that are 

connected between the cities in the current graph to 

be replaced, have a fitness value in terms of the 

shortest distance worse than the fitness value of the 
two edges to be added or not. Thus, the 2-opt is a 

local search and improvement mechanism for 

neighboring cities in TSP [18, 40]. 

 

Algorithm 2  Efficient Mutation for GA (GA-

EM) 

1 X← Generate_Initital_Population by 2-opt 

neighboring algorithm // See Algorithm 3. 

2 Evaluate(X) 

3 while (Stopping criterion is checking that 

the algorithm has no possible improvement 

on population) do // Number of iterations of 

GA-EM is denoted by ItrGA-EM 

4            Y ← Random_Selection(X) 

5            W ← EAX_Crossover(Y) 

6            Z ← Efficient_Mutation(W)  

           // See Algorithm 4 

7            Evaluate(Z) 

8            X ← Replacement(Z, X) 

9 end while 

 

3.3 Selection Operator 

In the Selection procedure, for all candidate 
solutions in the population, every two solutions will 

be randomly selected to produce the next solutions. 

The generated solutions will formulate the new 

population in each generation. 

3.4 Edge Assembly Crossover Operator 

The Edge Assembly Crossover (EAX) is an 

efficient crossover operator used by GA-based TSP 

[33]. EAX merges two candidate solutions from the 

population according to the selection operator in 

one graph G. The redundant edges of graph G will 

be modified by the AB-cycles method [33]. Further, 
one edge (say a) is taken from first parent (say A); 

and another edge (say b) is taken from the second 

parent (say B) alternatively and continually (a-b-a-

b-a-...-a-b). Each graph G can be divided into a set 

of AB-cycles. There is an E-set for AB-cycles which 

represents the number of generated AB-cycles. E-

set is exploited to cut one candidate solution into 

sub-cycles. Then, the sub-cycles are merged using 
greedy criteria based on the Hamiltonian cycle 

approach, where the cycle of the shorter number of 

edges and not in both parents (A and B) will be 

exploited. EAX is presented in more detail in [33]. 

 

Algorithm 3  2-opt Neighboring Algorithm 

1  Randomly generate a solution H = {1, ..., 

N};  

2  repeat  

3     Randomly select c1 ∈ H;  

4     for i = 0 to 1 do  

5        c2 = Neighbour[c1][i];  

6        for j = 1 to ConstNum do  

7           c3 = near[c1][j]; // { ConstNum < N}  

8           if (–d(c1, c2) + d(c1, c3)) ≥ 0 then 

break;  

9           c4 = Neighbour[c3][(i + 1) mod 2];  

10 

 

          if ((−d(c1, c2) − d(c3, c4) + d(c1, c3) + 

d(c2, c4)) < 0)  

          then  

11              Update the candidate solution and 

H. Go to Line 3;  

12           end if  

13        end for  

14     end for  

15  until H becomes empty 

 

3.5 Efficient Mutation Operator 
The mutation operator usually follows the 

crossover operator to avoid stuck on local optima. 

In general, this operator will increase the possibility 

for GA to find the optimal solution. Thus, 

Algorithm 4 shows the efficient mutation operator. 

In the efficient mutation operator, the positions of 

two cities are selected randomly and the positions 

of cities which are located between these selected 

two cities will be transposed as shown in Line 7 of 

Algorithm 4. Then, the three neighboring operators 

will try to improve the modified solution as shown 

in Lines 9–14 of Algorithm 4. Finally, the 
improved solution will be submitted to the current 

population. Normally, the proposed mutation will 

run after enough failed tries to improve the 

population as shown in Line 1 of Algorithm 4. The 

following steps describe the efficient mutation 

operator, as shown in Algorithm 4: 

Step 1: Efficient mutation operator initiates when 

GA fails in improving the population during a 
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specific number of trials. The specific number of 

trials is bounded by minimum and maximum 

threshold values; initially, the specific number of 

trials is defined by the maximum threshold value 

and decreased after each entry. When the minimum 

threshold value is reached, the value is redefined to 
the maximum threshold value. Thus, the best 

distance of the solution within the previous 

population computed by Eq. (1) will be used to be 

compared with the best distance of the solution 

within the current population. 

 

Algorithm 4  Efficient Mutation Operator 

1 
Define minimum_threshold and 

maximum_threshold values  

2 
Store the value of maximum_threshold in 

initial_value; 

3 number_of_trials = maximum_threshold; 

4 

if previous_best_distance = 

current_best_distance after 

number_of_trials then  

5     A ← get_worst_candidate_solution; 

6     for j = 0 to ItrTRANSPOSE do  

7 
        B ← transpose(A); // Select two cities 

randomly (without heuristic calculation) 

8     end for 

9     for i = 0 to ItrSM do  

10         C ← transpose(B); 

11         D ← shift-and-insert(C); 

12         E ← swap(D); 

13         A ← short_tour(B, C, D, E); 

14     end for 

15 
    maximum_threshold = 

maximum_threshold – 1;  

16 
    if maximum_threshold = 
minimum_threshold then 

17 
              maximum_threshold = 

initial_value; 

18     end if 

19 end if  

 

Step 2: Getting the worst solution, A, from the 

current population in terms of worst distance based 

on Eq. (1).  

Step 3: Manipulating the worst solution A by 

selecting two cities randomly, then applying the 

transpose procedure without heuristic calculations 

to come up with solution B. This step can be 

repeated a small number of times. 

Step 4: The improvement loop of efficient mutation 
(Lines 9 to 14 of Algorithm 4), tries to enhance 

solution B by repeating the neighboring operators 

(transpose, shift-and-insert, and swap) based on 

heuristic calculations while a termination criterion 

is not met. 

Step 5: Identifying a new value for the number of 

failed trials. 

The transpose procedure (C_Sol; i, j) transposes 

the cities between location i and location j from the 
candidate solution C_Sol. The proposed GA-EM 

works on a deep search where it strives to reach an 

optimal solution. In general, the mutation operator 

prevents access to the optimal solution [6]. So, the 

proposed efficient mutation operator will consider 

this conflict. The efficient mutation is based on 

applying the transpose operator on cities selected 

randomly as the initial step and then three operators 

(transpose, shift-and-insert, and swap) are executed 

to enhance the modified solution using heuristic 

equations. Thus, Algorithm 4 shows the efficient 

mutation process. Then the modified solution will 
be added to the current population as a new 

candidate solution. The transpose operation is the 

best choice to be the initial step in Algorithm 4 

since the transpose operation replaces only two 

edges in the graph in each transpose step. 

Furthermore, the transpose operation causes a small 

change on the candidate solution compared to swap 

and shift-and-insert operations. The transpose 

operator is shown in Algorithm 5, where C_Sol 

represents a candidate solution, ci indicates to the 

city i in C_Sol, cj indicates to city j in C_Sol, and d 
represents the distance value between the two cities 

ci and cj. In Algorithm 5, initially, the next cities 

ci+1 and cj+1 are selected, which are neighbors to ci 

and cj respectively in the candidate solution, from ci 

and cj to be used in the heuristic equation shown in 

Line 3, which is based on distance values between 

the cities to decide whether new edges can be added 

between (ci and cj) and (ci+1 and cj+1) or not after 

removing the current edges between (ci, ci+1) and 

(cj, cj+1) from the candidate solution. 

The swap procedure (C_Sol; i, j) swaps the two 

cities in location i and location j from the candidate 
solution C_Sol. This operator can change four 

edges. Algorithm 6 shows how the swap operator 

works. In Algorithm 6, initially, the cities ci+1, 

cj+1, ci+2, and cj-1 are selected from ci and cj in the 

candidate solution to be used in the heuristic 

equation shown in Line 5, which is based on 

distance values between the cities to decide whether 

new four edges can be added between the 

corresponding cities or not after removing the 

current edges. The heuristic condition decides 

whether replacing the current edges in the graph of 
the candidate solution (ci, ci+1), (ci+1, ci+2), (cj-1, 

cj) and (cj, cj+1) with new four edges between (ci, 
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cj), (cj, ci+2), (cj-1, ci+1) and (ci+1, cj+1) increases 

the fitness value in terms of shortest distance or not. 

The shift-and-insert procedure (C_Sol; i, j) shifts 

the city in location j to location i consecutively 

from the candidate solution C_Sol. This operator 

can change three edges. Algorithm 7 shows how the 
shift-and-insert operator works. In Algorithm 7, 

initially, the cities ci+1, cj+1, and cj-1 are selected 

from ci and cj in the candidate solution to be used in 

the heuristic equation shown in Line 4, which is 

based on distance values between the cities to 

decide whether new three edges can be added after 

removing the current edges between the 

corresponding cities or not. The heuristic condition 

decides whether replacing the current edges in the 

graph of the candidate solution (ci, ci+1), (cj-1, cj) 

and (cj, cj+1) with new three edges between (ci, cj), 

(cj, ci+1), and (cj-1, cj+1) increases the fitness value 
in terms of shortest distance or not. 

 

Algorithm 5  Transpose(C_Sol, ci, cj) 

1 
ci+1 ← store the city which is after ci in 

C_Sol 

2 
cj+1 ← store the city which is after cj in 

C_Sol 

3 
if ((d(ci , cj) + d(ci+1, cj+1)) < (d(ci, ci+1) + 

d(cj, cj+1)))       

4      if (ci+1  < cj) 

5           temp = ci+1 

6           ci+1 = cj 

7 cj = temp     

8      while (ci+1  > cj) 

9           temp = C_Sol[ci+1] 

10           C_Sol[ci+1] = C_Sol[cj] 

11           C_Sol[cj] = temp   

12           cj  =  cj +1 

13           ci+1  =  ci+1 -1  

14      end while 

15      end if    

16 end if 
 

3.6 Evaluation Operator 

The proposed GA-EM algorithm calls the 

objective function for each candidate solution to 

calculate the fitness value. Then, if the child 

solutions are fittest, will replace the parent 

solutions in the population. Since TSP aims to find 

the shortest path (or shortest distance) and GA is 

based on the survival of the fittest, GA-EM uses an 

objective function based on Eq. (1) to find the 
fitness values for candidate solutions of the 

population in each iteration of GA. 

3.7 Termination Condition 

There are different criteria to terminate the GA 

algorithm such as the number of iterations, reaching 

an optimal solution, or other criteria. The 

termination condition for the proposed GA-EM 

algorithm is checking that the algorithm has no 
possible improvement in the population. Therefore, 

GA-EM computes the termination criterion by 

calculating the average distance of all solutions in 

the population and then comparing the average 

distance with the distance of the best solution in the 

population. If the result equals or less than a 

threshold value, then the termination criterion is 

met. The final result of the proposed algorithm will 

be the fittest solution. The fittest solution means the 

solution with the highest objective function value 

compared to the rest of the solutions. 
 

Algorithm 6  Swap(C_Sol, ci, cj) 

1 
ci+1 ← store the city which is after ci in 

C_Sol 

2 
ci+2 ← store the city which is after ci+1 in 

C_Sol 

3 
cj+1 ← store the city which is after cj  in 

C_Sol 

4 
cj-1 ← store the city which is before cj in 
C_Sol 

5 

 

if (((d(ci, cj) + d(cj, ci+2) + d(cj-1, ci+1) + 

d(ci+1, cj+1)) < (d(ci, ci+1) + d(ci+1, ci+2) + 

d(cj-1, cj) + d(cj, cj+1))) AND (ci+2  < > cj)) 

6      temp1 = C_Sol[ci+1] 

7      temp2 = C_Sol[cj] 

8      C_Sol[ci+1] = temp2 

9      C_Sol[cj] = temp1   

10 end if 

 

4. EXPERIMENTAL ENVIRONMENT AND 

RESULTS 

In this section, the experimental environment and 

the obtained results by GA-EM, MGA-TSP, SOS-

SA, LBSA, and MSA-IBS are presented. The 

datasets of 30 instances are used to test the proposed 

GA-EM algorithm and the other mentioned four 

metaheuristic algorithms, where these 30 instances 
are carefully selected from TSP datasets: TSPLIB 

[19, 20], National TSPs [21], and VLSI data sets 

[22]. These datasets have different numbers of cities 

and graph structures as shown in Table 1. 

To evaluate the performance of the proposed GA-

EM algorithm, the obtained results of the GA-EM 

are compared with the other four metaheuristic 

algorithms. Some of these algorithms showed the 

best-known results for the used TSP instances. Thus, 
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one of these algorithms used GA as a primary 

algorithm for solving TSP and others used hybrid 

algorithms such as simulated annealing with other 

algorithms designed for TSP specifically. For 

evaluation purposes, the experimental testing 

platform for the proposed GA-EM algorithm was 
conducted on a 2.53 GHz CPU Desktop with 3GB 

RAM, while the programming language is C# 

console on Microsoft Visual Studio 2010. 

 

Algorithm 7  Shift-and-Insert(C_Sol, ci, cj) 

1 
ci+1 ← store the city which is after ci in 

C_Sol 

2 
cj+1 ← store the city which is after cj in 

C_Sol 

3 
cj-1 ← store the city which is before cj in 

C_Sol 

4 
if ((d(ci, cj) + d(cj, ci+1) + d(cj-1, cj+1)) < 

(d(ci, ci+1) + d(cj-1, cj) + d(cj, cj+1))) 

5      temp = C_Sol[cj] 

6      if (cj < ci+1) 

7           for (i = cj +1; i <= ci+1; i++) 

8                C_Sol[i-1] = C_Sol [i] 

9           end for 

10      end if 

11      if (cj >= ci+1)  

12           for (i =cj; i > ci+1; i--) 

13                C_Sol [i] = C_Sol [i-1] 

14           end for 

15      end if 

16      C_Sol [ci+1] = temp 

17 end if 

The parameter values have a significant influence 

on the solution’s quality of each algorithm, all these 

algorithms shared the same population size which 

equals 100 candidate solutions except MSA-IBS 

where it is not defined [29]. The mean results of 20 
runs are calculated for each of the 9 TSP instances, 

as shown in Tables 2 and 3. 

As mentioned previously, efficient mutation 

involves two phases. The first phase is the random 

mutation step "without heuristic calculation" as 

shown in Line 7 of Algorithm 4 and the second 

phase is the enhancement step "with heuristic 

calculation" for a solution as shown in Lines 9–14   

of Algorithm 4.  

Table 2 shows the results of GA-EM using 

transpose, shift-and-insert, and swap operators 
where each operator has one random mutation 

"without heuristic calculation". Therefore, the 

second phase of the efficient mutation "with 

heuristic calculation" is not applied. The number of 

steps of transpose, shift-and-insert, and swap 

operators in each GA iteration is one step. The OPT-

BKS column is the Optimal Best-Known Solution 

results for each TSP instance. 

Table 2 shows the results of GA-EM using the 

classical mutation in each GA iteration. According 

to the results shown in Table 2, the transpose 
operator is better to use the random mutation in 

finding the shortest distance. So that, the efficient 

mutation employs the transpose operator in the first 

phase. 

Since the proposed GA-EM does not execute the 

efficient mutation in each iteration, the threshold 

values used to enter the efficient mutation must be 

selected, which is, as a minimum threshold value 

equals 1 and as a maximum threshold value equals 

10. Thus, using a threshold value larger than 10 can 

lead to vanishing the mutation role. However, the 

number of initial transpose steps executed on cities 
that are selected randomly and without heuristic 

calculations is validated in terms of mean accuracy 

as shown in Table 3. 

As borne out by the results shown in Table 3, 

almost all the best results are obtained when the 

number of transpose steps equals 2, this means the 

first phase of efficient mutation operation replaces 4 

edges in the candidate solution in each entry for 

efficient mutation operation. The results show a 

small number of mutations after a specific number 

of failed tries can produce more efficient 
enhancement than executing a large number of 

mutations since the GA-EM searches deeply toward 

the best solution.  

Table 4 presents the abbreviations of the four 

comparative algorithms. However, Table 5 shows 

the mean accuracy results. These results are 

obtained by the proposed GA-EM algorithm and the 

other four metaheuristic algorithms, namely MGA-

TSP, SOS-SA, LBSA, and MSA-IBS. Also, Table 5 

shows the mean results of 20 runs by each algorithm 

for all TSP instances. In Table 5, the best results in 

terms of accuracy are highlighted in bold font. 

According to Table 5, the proposed GA-EM 

algorithm achieved better accuracy than the other 

four comparative algorithms in 11 datasets. Also, 

GA-EM achieved the best-known optimal solutions 

in 19 datasets, as well as the other four algorithms, 

where they have obtained the same best results in 

terms of mean accuracy. The proposed algorithm 

has achieved these results since it can ensure a 

diversity aspect in the population during the GA-EM 

running process. Thus, the population with a diverse 

aspect can achieve better results, where the 
candidate solutions selected to crossover can 
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produce new child has more capabilities to reach 

optimal results. However, the MGA-TSP algorithm 

achieved the second rank. The results show that 

preserving diversity aspects in the population during 

the execution of an algorithm used to solve TSP 

such as in the proposed GA-EM, can achieve better 

results than others such as MGA-TSP which 

offering the diversity aspect in the initial population 

step only. In summary, the proposed GA-EM has 

achieved better results in terms of accuracy since 

GA-EM can ensure a diversity aspect in the 

population until the termination condition is met. 
 

Table 1: Datasets of TSP Instances.

Instance 

Number 

Instance 

Name 

Optimal 

Solution 
General Description Name 

1 Ch150 6,528 150 city problem (Churritz) 

2 U159 42,080 Drilling problem (Reinelt) 

3 Rat195 2,323 Rattled grid (Pulleyblank) 

4 Kroa200 29,368 200 city problem A (Krolak/Felts/Nelson) 

5 Ts225 126,643 225 city problem (Juenger) 

6 Gil262 2,378 262 city problem (Gillet/Johnson) 

7 Pr299 48,191 299 city problem (Padberg/Rinaldi) 

8 Lin318 42,029 318 city problem (Lin/Kernighan) 

9 Rd400 15,281 400 city random TSP(Reinelt) 

10 Fl417 11,861 Drilling problem (Reinelt) 

11 Pr439 107,217 439 city problem (Padberg/Rinaldi) 

12 U574 36,905 Drilling problem (Reinelt) 

13 Rat575 6,773 Rattled grid (Pulleyblank) 

14 U724 41,910 Drilling problem (Reinelt) 

15 Rat783 8,806 Rattled grid (Pulleyblank) 

16 Pr1002 259,045 1,002 city problem (Padberg/Rinaldi) 

17 Pcb1173 56,892 Drilling problem (Juenger/Reinelt) 

18 D1291 50,801 Drilling problem (Reinelt) 

19 Rl1323 270,199 1,323 city TSP (Reinelt) 

20 Fl1400 20,127 Drilling problem (Reinelt) 

21 D1655 62,128 Drilling problem (Reinelt) 

22 Vm1748 336,556 1,784 city problem (Reinelt) 

23 U2319 234,256 Drilling problem (Reinelt) 

24 Pcb3038 137,694 Drilling problem (Junger/Reinelt) 

25 Fnl4461 182,566 Die 5 neuen Laender Deutschlands (ExDDR) 

(Bachem/Wottawa) 

26 Rl5934 556,045 5,934 city TSP (Reinelt) 

27 Pla7397 23,260,728 Programmed logic array (Johnson) 

28 Usa13509 19,982,859 Cities with pop. at least 500 in the continental 
US 

29 Brd14051 469,385 BR Deutschland in den Grenzen von 1989 

(Bachem/Wottawa) 

30 D18512 645,238 Bundesrepublik Deutschland (Bachem)                              
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Table 2: Mean Accuracy of GA-EM Using Three Variations of Mutation for 9 TSP Instances.

S/N 
Instance 

Name 
OPT-BKS 

Transpose 

Operator 

Shift-and-Insert 

Operator 

Swap 

Operator 

1 Ch150 6,528 6,533 6,537 6,538 

2 Lin318 42,029 42,037 42,042 42,045 

3 Pr1002 259,045 259,055 259,064 259,069 

4 D1655 62,128 62,149 62,156 62,162 

5 U2319 234,256 234,371 234,378 234,390 

6 Pcb3038 137,694 137,743 137,764 137,783 

7 Fnl4461 182,566 182,609 182,654 182,675 

8 Rl5934 556,045 556,121 556,142 556,174 

9 Pla7397 23,260,728 23,261,816 23,261,853 23,261,877 

Table 3: Mean Accuracy of GA-EM Using Three Variations of Number of Transpose Steps for 9 TSP Instances.

S/N 
Instance 

Name 
OPT-BKS 

Number of Transpose Steps 

= 2 = 5 = 10 

1 Ch150 6,528 6,528 6,528 6,528 

2 Lin318 42,029 42,029 42,040 42,077 

3 Pr1002 259,045 259,045 259,062 259,089 

4 D1655 62,128 62,134 62,145 62,159 

5 U2319 234,256 234,350 234,372 234,382 

6 Pcb3038 137,694 137,695 137,711 137,720 

7 Fnl4461 182,566 182,570 182,588 182,595 

8 Rl5934 556,045 556,054 556,074 556,092 

9 Pla7397 23,260,728 23,261,749 23,261,782 23,261,796 
 

Table 4: The Abbreviations of the Four Comparative 
Algorithms. 

 

Abbreviation Algorithm Name Reference 

 
MGA-TSP 

Modernised 
genetic algorithm 

for the travelling 
salesman problem 

 
[7] 

 

 
SOS-SA 

Simulated 

annealing based 
symbiotic 

organisms search 
optimization 

algorithm 

 

 
[28] 

 

LBSA 

List-based 

simulated 
annealing 

algorithm 

 

[27] 

 

 
MSA-IBS 

Multiagent 

simulated 
annealing 

algorithm with 
instance-based 

sampling 

 

 
[29] 

 

 

5. CONCLUSION AND FUTURE WORK 

In this paper, an efficient mutation for a genetic 

algorithm is presented and used to solve TSP. The 

efficient mutation is based on three operators 

(transpose, shift-and-insert, and swap) to avoid 

getting stuck on local optima and allow for deep 

search. The proposed efficient mutation is called 

after a specific number of failed tries to improve the 

population of candidate solutions. The specific 

number of trials is bounded by minimum and 

maximum threshold values. Thus, initially, the 

specific number of trials is defined by the 

maximum threshold value and decreased after each 
entry. When the minimum threshold value is 

reached, the value is redefined to the maximum 

threshold value. The proposed GA-EM is applied 

for a small number of tries to mutate the population 

which led to reduce the number of failed tries to 

enhance the population during the enhancement 

process. The initial step of efficient mutation is 

based on selecting two cities randomly from the 

selected solution, then applying the transpose 
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procedure without heuristic calculations, this step is 

repeated a specific number of times, and then 

applying heuristic steps by the three operators 

(transpose, shift-and-insert, and swap). The results 

obtained from the proposed GA-EM were 

compared with those obtained by four relatively 
recent efficient algorithms; namely, MGA-TSP, 

SOS-SA, LBSA, and MSA-IBS using the same 

TSP instances. The proposed algorithm can 

outperform these algorithms in all tested TSP 

instances in terms of accuracy.  

In general, solving TSP for complex and large 

TSP datasets requires a lot of running time on 

sequential computers. Therefore, improving the 

running time can be accomplished using a parallel 

approach as shown in [41, 42]. So, improving the 

running time of the proposed GA-EM can be 

achieved using a parallel approach, which is 

considered as future work. Parallel approaches can 

be achieved on various parallel architectures and 

interconnection networks. Examples of these 
architectures and interconnection networks are 

OTIS hyper hexa-cell [43–45], OTIS-Hypercube 

[46], chained-cubic tree interconnection network 

[47, 48], optical chained-cubic tree [49], OTIS-

Mesh interconnection network [46, 50], and hyper 

hexa-cell interconnection network [51, 52]. 

Accordingly, as future work, other complex and 

larger TSP datasets can be solved to further ensure 

the validity of the GA-EM algorithm. 

 

Table 5: The Mean Accuracy Results of the GA-EM in Comparison to the Other Four Metaheuristic Algorithms.

S/N 

 

Instance 

Name 

 

Mean Accuracy 

OPT-BKS 
MGA-TSP 

(2019) [7] 

SOS-SA 

(2017) [28] 

LBSA 

(2016) [27] 

MSA-IBS 

(2015) [29] 
GA-EM 

1 Ch150 6,528 6,528 6,530 6,530 6,529 6,528 

2 U159 42,080 42,080 42,081 42,080 42,080 42,080 

3 Rat195 2,323 2,323 2,327 2,328 2,330 2,323 

4 Kroa200 29,368 29,368 29,371 29,374 29,378 29,368 

5 Ts225 126,643 126,643 126,701 126,643 126,643 126,643 

6 Gil262 2,378 2,378 2,382 2,379 2,379 2,378 

7 Pr299 48,191 48,191 48,228 48,221 48,226 48,191 

8 Lin318 42,029 42,029 42,180 42,196 42,184 42,029 

9 Rd400 15,281 15,281 15,452 15,350 15,430 15,281 

10 Fl417 11,861 11,861 11,878 11,868 11,876 11,861 

11 Pr439 107,217 107,217 107,561 107,465 107,407 107,217 

12 U574 36,905 36,905 37,164 37,165 37,156 36,905 

13 Rat575 6,773 6,773 6,840 6,837 6,840 6,773 

14 U724 41,910 41,910 42,262 42,252 42,212 41,910 

15 Rat783 8,806 8,806 8,900 8,888 8,893 8,806 

16 Pr1002 259,045 259,045 261,802 261,805 261,482 259,045 

17 Pcb1173 56,892 56,892 57,570 57,432 57,562 56,892 

18 D1291 50,801 50,801 51,291 51,199 51,344 50,801 

19 Rl1323 270,199 270,199 271,711 271,714 271,818 270,199 

20 Fl1400 20,127 20,132 20,231 20,249 20,375 20,130 

21 D1655 62,128 62,134 64,112 63,001 62,893 62,134 

22 Vm1748 336,556 336,558 336,719 339,711 339,618 336,557 

23 U2319 234,256 234,356 235,338 235,975 235,236 234,350 

24 Pcb3038 137,694 137,696 139,702 139,635 139,706 137,695 

25 Fnl4461 182,566 182,571 185,546 185,509 185,535 182,570 

26 Rl5934 556,045 556,056 566,212 566,053 566,167 556,054 

27 Pla7397 23,260,728 23,261,751 23,800,000 23,800,000 23,800,000 23,261,749 

28 Usa13509 19,982,859 19,984,989 21,400,000 20,400,000 20,400,000 19,984,987 

29 Brd14051 469,385 469,396 478,099 478,010 478,610 469,394 

30 D18512 645,238 645,463 659,457 657,457 658,149 645,460 
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