
Journal of Theoretical and Applied Information Technology
15th August 2021. Vol.99. No 15

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3725

PROVING THE CORRECTNESS CONDITIONS OF THE
THREE-WAY HANDSHAKE PROTOCOL USING

COMPUTATIONAL TREE LOGIC

1AHMAD ALOMARI, 2 RAFAT ALSHORMAN
1, 2 Computer Science Department, Faculty of Information Technology & Computer Sciences, Yarmouk

University, Irbid-Jordan
E-mail: 1ahmad.alomari56@yahoo.com, 2r.alshorman@yu.edu.jo

ABSTRACT

The three-way handshake protocol is widely used especially as a part of complex communication and security
systems. It is used to establish a connection between a client and a server under specific rules and constraints.
In this research, we used the NuSMV model checker along with Computational Tree Logic (CTL) to verify
the correctness of the three-way handshake protocol over specific correctness conditions and properties. The
results showed that the proposed protocol satisfied all correctness conditions except ��, ���, and ���.
Furthermore, the proposed automated verification approach aims to verify the correctness of a finite number
of clients each of them iterated infinitely often.

Keywords: CTL, Model Checking, Nusmv, Three-Way Handshake Protocol, Correctness Conditions, Kripke

Model.

1. INTRODUCTION

1.1 Model Checking

Model checking is one of the most
important proof techniques used for proving a given
correctness condition of a finite-state model. It
checks whether the input model satisfies a specific
property or not [1]. An automated model checking
tool verifies automatically the correctness of a
system. It is a verification tool that simplifies the
verification of a given system. Thus, it mainly
minimizes the efforts spent on the verification task,
as well as the time needed for this task [2].

Model checking techniques work by

encoding the system that is intended to be verified
into an abstract model, and the correctness
conditions into temporal logic (CTL and/or LTL).
Then, the model checker interprets the abstract
model into a kripke model. Thus, the correctness
conditions are verified over the kripke model to
determine the correctness of the system [2]. If the
correctness conditions are satisfied by the system,
the model checker will return true [3], [4].
Otherwise, the system will generate a
counterexample for each unsatisfied correctness
condition to show the errors of the system.

1.2 Temporal Logic

Temporal logic is one of the most
important types of logic that is widely used for
describing correctness conditions (properties) of
different systems. Thus, these properties will be
checked automatically using a model checker to
determine their correctness. Temporal logic is
defined as a type of logic where the truth and falsity
varying over time and interpreted over a graph [5].
The motivation behind the temporal logic is that
many statements are varying over time (can be true
or false at any point in time). However, the
propositional logic cannot interpret them. The
temporal logic is divided into two models; the
Computation Tree Logic (CTL), and the Linear
Time Logic (LTL). LTL is a type of temporal logic
where a sequence of states is interpreted linearly
over time [5]. The CTL is a type of logic where the
time is branched in a form of a tree structure and
called branching time logic [3].

Temporal logic is one of the most
important types of logic because it provides the
ability to branch time over specific tree structures
[5]. Moreover, it can be used for describing the
behaviors of concurrent complex systems [6], [7].

Journal of Theoretical and Applied Information Technology
15th August 2021. Vol.99. No 15

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3726

1.3. The Proposed Three-Way Handshake

Protocol

The three-way handshake protocol is a
process used to establish a connection between
client and a server. In our proposed work, we
intend to automate the proving process of the
three-way handshake protocol. Therefore, we
will try to verify the correctness of this protocol
over specific correctness conditions using an
automated model checker (e.g., NuSMV).

The benefits of the three-way handshake
protocol can be illustrated into two main points; it
can be used to establish a connection between
communicated parties, and it is used as a security
process to protect the network from malicious
activates. For example, the TRAP is a three-way
handshake protocol used for detecting the
flooding of the synchronize packets and the
Distributed Denial of Service (DDoS) attacks
[17].

Figure 1. The three-way connection establishing process.

Figure 1, represents how the three-way
handshake protocol operates to establish a
connection. For example, assume that there are
one client and one server that wants to
communicate with each other using this protocol.
The client starts the process by sending a
Synchronize packet (SYNx) to the server. x
represents the sequence number of the client
which is a random synchronization number
generated by the client and sent to the server to
establish a connection. When the server receives
the client SYN x, it replies by a Synchronize-
Acknowledge packet (SYNy-ACK1). y represents
a random synchronization number generated by
the server and sent to the client. ACK1 represents
the sequence number of the client x plus one.
SYNy and ACK1 sent to the client to inform it that
the server has received SYNx. ACK1 is

considered as the first acknowledgment. When the
client receives the server SYN-ACK1, it replies by
ACK2 packet that contains the sequence number
of the server y plus one. ACK2 represents the
second acknowledgment. When the server
receives this packet, it can establish a connection
with the client or reject it based on specific rules.

Our proposed verification approach differs
from the previous verification techniques in three
ways as follows:

1. First, model checking techniques can conduct
proofs for infinitely often processes. Therefore,
model checking can verify and interpret all of the
three-way handshake protocol behaviors, and it is
based on rigorous proof. Unlike other mathematical
proving techniques that are not based on rigorous
proof [10], [11].

2. Second, model checkers generate
counterexamples if the protocol contains errors,
unlike other mathematical proving techniques where
this is not possible. The generated counterexamples
will help in the enhancement process of the protocol
by showing its errors (unsatisfied properties).

3. Third, model checking techniques increases the
effectiveness of the proving process by reducing the
errors that could arise from conducting the proof
using other mathematical proving techniques [12],
[13], [14].

2. RELATED WORK

Zbrzezny, B and Kurkowski in [18] used
the Satisfiability Module Theories based on
Bounded Model Checking (SMT-BMC) techniques
along with synchronized timed automata networks,
to verify the correctness of the Needham-Schroeder
Public key (NSPK), the Needham-Schroeder Shared
Key (NSSK), and Wide-Mouthed Frog (WMF)
security protocols using this verification approach.
In [19], the authors used a continuous verification
method based on the Cryptographic Protocol Shapes
Analyzer (CPSA) to verify the correctness of the
Pair-wise Shared Key Establishment (PSKE) and
Group Shared Key Establishment (GSKE) security
protocols. Another study in [20] aimed at using the
COQ model checker to verify the correctness of
the NSPK, and the NSSK Protocols over specific
safety properties and attack models. In [21] Cremers
et al used the tamarin model checker to validate the
TLS version 1.3 security protocol. In [22], the
authors used the induction method along with the
Isabelle/HOL theorem prover to verify the

Journal of Theoretical and Applied Information Technology
15th August 2021. Vol.99. No 15

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3727

correctness of the Franklin-Reiter sealed-bid auction
protocol and the NSSK protocol. Another study
proposed in [23] aimed at providing a verification
approach for verifying the correctness of the TLS
handshake protocol based on the miTLS protocol. Fu
and Koné in [24] used The Input-Output Labeled
Transition System (IOLT) to represent the NSSK
protocol to be verified using the SG-IOLT model.
Alshorman in [4] used the NuSMV model checker
to verify the correctness of the TCP protocol. In
[25], the author developed a vehicular
communication system and verified it using the
Casper/FDR formal verification tool. Another
study in [26] aimed at providing an open-source
model checker that is called MCMAS for verifying
the correctness of multi transactions systems such as
the SPORE protocol and the anonymity protocols.

 Alshorman in [27] verified the
correctness of the debits and credits transactions
using the NuSMV over specific CTL and LTL
serializability properties. In [28] Alshorman and
Fawareh developed an efficient verification
approach based on conflict graph reduction for
verifying the correctness of a specific multi-
transaction system. Alshorman and Hussak in [29]
verified the correctness of a scheduler that schedules
the infinite incoming and outcoming multi-
transactions of a system using the NuSMV over
specific LTL serializability properties. In [30],
Alshorman and Hussak verified the correctness of
multi-transactions systems for accessing uniform
data using the NuSMV over specific CTL and LTL
serializability properties.

Most of the efforts conducted for proving
the correctness of security and communication
protocols limits the number of clients and servers.
They used formal verification methods or model
checking based on simulation [18, 20, 21, 24, 26].
The drawback of these techniques is that all the
possible behaviors of a protocol cannot be
verified. Moreover, the authors may use pure
mathematical or theorem proving techniques [19,
22, 23, 25]. The problem with mathematical
proofs is that it is difficult to write equations to
represent abstract models of systems. Also, theorem
proving cannot verify the correctness of a system
that changes it is states over time. This is because
they are based on propositional logic that can verify
the systems that do not change over time.

3. THE PROPOSED AUTOMATED

VERIFICATION APPROACH

Figure 2. The workflow for the automated model

checking approach.

In figure 2, the flowchart of the proposed
automated verification approach is illustrated to
specify how the verification approach will verify the
correctness of the three-way handshake protocol.
Thus, the automated verification process consists of
n steps as follows:

1. The three-way handshake protocol will be
encoded into an abstract model checking algorithm
using a specific model checker script (e.g., NuSMV
script).

2. The proposed correctness conditions (properties)
that we assumed for verifying the correctness of the
proposed protocol, will be encoded into temporal
logic formulas (CTL).

3. The model checker will interpret the abstract
model into kripke structure, to be verified over the
proposed properties.

If the three-way handshake protocol
satisfied all the correctness conditions, the model
checker will return true for each property.
Otherwise, the model checker will return false as a
counterexample to show the unsatisfied properties
which may lead to enhancement on the protocol. If
there are any errors in specifying the properties in
temporal logic, the model checker will return a
compilation error.

4. KRIPKE STRUCTURE AND TEMPORAL

LOGIC

4.1. Kripke Structure

Kripke structure is a type of directed graph
that consists of nodes and edges, where nodes
represent the reachable states of a specific system

Journal of Theoretical and Applied Information Technology
15th August 2021. Vol.99. No 15

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3728

(model), and edges represent the transitions among
the states. Each state is labeled with specific
properties, and each path in the graph describes a
specific behavior of the modeled system [8]. Kripke
structure is crucial for temporal logic because it is
used to provide temporal logic (CTL and LTL) with
definitions when a specific property is satisfied [9].

Model checking techniques suffer from the
state space explosion problem which indicates that
there is an exponential increase in the state space,
making it cannot be handled by the capacity of the
memory [15]. Therefore, we intend to generate the
kripke structure that represents the three-way
handshake protocol using the NuSMV model
checker because it avoids this problem.

4.2. CTL

In this study, we have used CTL to
represent the proposed correctness conditions
because it is more expressive than LTL for the
proposed model. Moreover, this model contains
many branching times, therefore CTL can
describe it correctly.

The CTL is a temporal logic type where
the time is branched and interpreted over a
specific branching-time graph (e.g., Kripke
structure). Thus, each state in a model that is
represented using CTL has more than one
successor [31].

A model that is specified using CTL is
interpreted over a specific branching-time
structure, such that there exist path quantifiers for
verifying the CTL model over specific paths. The
syntax of the CTL consists of the set of atomic
propositions (e.g., p, q), ordinary boolean
operators (¬, ˄, ˅,⊺, ⊥), propositional quantifiers
(A, E), and four temporal logic operators �, �, �,
�. Therefore, any statement in CTL can be
represented by:

Φ ∷= pr� |¬φ| φ1˅ φ2| φ1˄ φ2| AXφ| E φ1 ∪
 φ2" EXφ| AFφ| EFφ| AGφ| EGφ| A φ1 ∪ φ2"
where pr�, pr�, … , pr� identifies any atomic
proposition used in the three-way handshake
protocol [4].

The CTL semantics can be derived from
the fact that the CTL is interpreted over
branching-time structures. Thus, a branching time
model M = (S, →, L) where S represents the set of
the model states, → is the transition relation, and
L is the function that is used to label each state in
the model with specific atomic propositions [4].

Let * = (+, →, ,) be a transition model
such that - ∈ +, / ∈ 0 where - represents a state in
M (belongs to S), 0 represents the set of all possible
equations (all the possible correctness conditions
that are written in CTL), the truth values; false and
true represented by ⊥ and ⊤ symbols respectively.

Thus, ordinary operators’ semantics are as
follows: -2

1. M s� ⊨ ¬ ϕ iff M, s� ⊭ ϕ.

2. M s� ⊨ ϕ ⋀ ψ iff M, s� ⊨ ϕ and M, s� ⊨
 ψ.

3. *, s� < ∨ > ?@@ *, s� = < or *, s� >.

4. *, s� < → > ?@@ *, s� ⊨ < then *, s� ⊨ > *, s� ⊨ ⊤ *, s� ⊭ ⊥.
Let λ = (s�, s�B� …) such that C represent

an outgoing path from a specific state s� in M.
Thus, the semantics of the CTL operators are as
follows:

1. *, s� ⊨ AX φ ?@@, ∀C = (s�, s�B� …), *,
s�B� ⊨ φ.

2. *, s� ⊨ EX φ ?@@, ∃C = (s�, s�B� …), *,
s�B� ⊨ φ.

3. *, s� ⊨ FG φ ?@@, ∀C = (s�, s�B� …),
∃ H ≥ ?, *, -J ⊨ φ.

4. *, s� ⊨ EF φ ?@@, ∃C = (s�, s�B� …), ∃ H ≥
 ?, *, -J ⊨ φ.

5. *, s� ⊨ FK ϕ ?@@, ∀C = (s�, s�B� …),
and ∀H, H ≥ ?, *, -J ⊨ ϕ.

6. *, s� ⊨ LK ϕ ?@@, ∃C =
(s�, s�B� …), and ∀H, H ≥ ?, *, -J ⊨ ϕ.

7. *, s� ⊨ F ϕ� M ϕ�" ?@@, ∀C = (s�, s�B� …),
∃ H ≥ ? such that *, -J ⊨ ϕ�, and

∀N, ? ≤ N < H, *, -Q ⊨ ϕ�.

8. *, s� ⊨ L ϕ� M ϕ�" ?@@, ∃C = (s�, s�B� …)
such that, ∃ H ≥ ? *, -J ⊨ ϕ�,
and ∀N, ? ≤ N < H, *, -Q ⊨ ϕ�.

According to the above semantics, we can
ensure that there is branching in the CTL future,
as there are many paths to go.

In this study, CTL is used to encode the
correctness conditions and the properties of the
three-way handshake protocol. Therefore, the

Journal of Theoretical and Applied Information Technology
15th August 2021. Vol.99. No 15

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3729

NuSMV model checker is used to verify whether
the proposed three-way handshake protocol
satisfies these conditions and properties or not. If
the proposed protocol satisfied all these
properties, The NuSMV will generate true for
each satisfied property. In case there is unsatisfied
property, the NuSMV will generate a
counterexample to show the set of states, in the
model, where this unrequired property is violated.

CTL and LTL have incomparable
expressive power. In LTL the time is linear; which
means that each possible execution is represented
as a linear line of a sequence of states [32]. On the
other hand, in CTL there is branching in time;
which means that there is more than one execution
path. This means that many properties can be
expressed using only LTL, and many properties can
be expressed using only CTL. Thus, the choice
between CTL and LTL depends on the system and
the correctness conditions you intend to verify.

For example, the LTL formula KGR →
KGS is only satisfied using LTL, not CTL.
Therefore, in all paths, this formula will
eventually be satisfied by the model where R
represents a statement (Baier and Katoen, 2008).
KGR → KGS is not equivalent to LK(FGR) →
 FK(FGS) (KGR → KGS ≢ LK(FGR) →
 FK(FGS)). LK(FGR) → FK(FGS) represents the
CTL formula of the LTL formula KGR → KGS.
However, CTL is not suitable to be used to verify
this type of formulas, and this example is
explained in details in section 7.

5. THE SYNCHRONOUS MODEL OF

ITERATED CONCURRENT CLIENTS AND

SERVER

In this part of the proposed study, we
assume that there is a finite number of clients each
of them requests the server infinitely often to
establish a connection. We used the NuSMV model
checker to generate the kripke structure of this
model.

The kripke model of the iterated concurrent clients
and server model is shown in figure 4. The
connection between a concurrent client and the
server is synchronous. This means that the client and
the server will synchronously send their states to
each other, which provides reliable communication
between them. Therefore, the server will not move
to the next state until the client takes action, and the
client also will not move to the next state until the
server takes action.

Figure 3. The kripke model of the three-way handshake
protocol.

Figure 3 shows the finite state model of the
iterated concurrent clients and server
communicating using the three-way handshake
protocol. In this finite state model x, represents the
sequence number of the client (a random
synchronization number sent by the client to the
server), and y represents the sequence number of the
server (a random synchronization number sent by the
server to the client). ACK1 represents the sequence
number of the client x plus 1, and it is an
acknowledgment sent by the server. ACK2
represents the sequence number of the server y plus
1, and it is an acknowledgment sent by the client.

In our proposed iterated model, we assume
that x is greater than y. Therefore, to establish a
successful connection between a concurrent client
and the server, ACK1 has to be greater than ACK2.
The transitions among the proposed finite state
model are as follows:

1. The client starts the execution of the protocol by
moving from the Idle state to the SYNx state, which
indicates that the client has sent a request that
contains x to the server to establish a connection.

2. When the server receives this request, it moves
from the Listen state to the Receive SYNx state.
Then, the server moves to the SYNy-ACK1 states,
which in this state it sends y and ACK1 to the client
indicating that the server has received the client
request.

3. When the client receives y and ACK1 from the
server, it moves to the Receive SYNy-ACK1 if and
only if ACK1 is greater than y. Then, the client
moves to the ACK2 state, which in this state it sends

Journal of Theoretical and Applied Information Technology
15th August 2021. Vol.99. No 15

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3730

ACK2 to the server indicating that the client has
received y and ACK1.

4. When the server receives ACK2, it moves from
the previous state to the Receive ACK2 state.
Therefore, if FUV2 < FUV1, the server moves
from the previous state to the establish connection
state. Otherwise, the server moves to the Reject
connection state. If FUV1 > FUV2 the client moves
from the previous state to the Established state
indicating that the connection is established by the
server. Otherwise, the client moves to the Rejected
state indicating that the connection is rejected by the
server.

5. When the server satisfies the client request, it
moves from the previous state to the Close
Connection state; indicating that the connection is
terminated by the server. On the other hand, the
client moves from the previous state to the Finish
state when the server terminates the connection.

6. After the server successfully ends the connection
and the client request has been satisfied, the client
goes back to the Idle state to request the server
infinitely often. On the other hand, the server goes
back to the Listen state to satisfies more client's
requests.

7. A client can stay idle forever if it not requesting
the server, and the server can also stay listening
forever if there are no requesting clients.

The verification process of the proposed
iterated concurrent clients and server model is not
trivial. So, we need to efficiently prove this model
by verifying all of its possible behaviors. Thus, we
used CTL to encode and describe the correctness
conditions of this model. However, it is critical to
automate the proving process of a finite number of
clients iterated infinitely often using model checkers
to reduce the errors that arise from conducting
traditional proofs.

6. THE PROPOSED CORRECTNESS

CONDITIONS

In this proposed work, we intend to prove
the correctness of the three-way handshake protocol
by verifying general correctness conditions for
synchronous processes and specific correctness
conditions for the protocol model. Most protocols
proofs assume that the number of requests is finite.
Thus, in this research, we assume that the client’s
requests are iterated infinitely often. Therefore, the
proposed protocol is not correct until it satisfies the

following correctness conditions (encoded into
CTL):

1. As the three-way handshake protocol is a three-
way connection establishing mechanism, then at
least there will be one satisfied request +XY from a
client Z2 to the server, + to establish a successful
connection between them.

�� = [FK((Z2 = +XY) → FG(Z2
�\2\] = L-^_`a?-ℎcd)) (1).

e represents the finite number of clients,
and ? represents the number of the current client,
+XY represents the request of the client Zi, and
L-^_`a?-ℎcd represents the state where the
connection is established between the client and the
server.

2. Each client Z2 must request the server infinitely
often (many times).

�� = [(FK((Z2 = +XY) → FG(Z2
�\2\] = L-^_`a?-ℎcd)) ⋀ FK((Z2= L-^_`a?-ℎ) → FG(Z2= +XY))) (2).

If a client Z2 has successfully established
a connection with the server +, then after Zi finish
sending data to + and + terminates the
connection, Z2 can request the server infinitely
often (iterated infinitely often).

3. The server + must satisfy each client Zi infinitely
often requests.

�f = [(FK((+ = gcZc?hc_+XY) → FG(+
�\2\]= L-^_`a?-ℎ_UjeecZ^?je)) ⋀ FK((+

= L-^_`a?-ℎ_UjeecZ^?je) → FG(+
= gcZc?hc_+XY))) (3).

4. At least there will be one client Zi which is
currently in the Idle state and eventually will finish
sending the data to the server successfully (before
the termination of the connection by the server).

�l = [FK((Z2 = mdca)
�\2\] → FG(Z2 = G?e-?ℎ)) (4).

Journal of Theoretical and Applied Information Technology
15th August 2021. Vol.99. No 15

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3731

G?e-?ℎ represents the state where Zi finish
sending data to the server.

5. We must have two acknowledgments such that the
first acknowledgment FUV1 precedes the second
acknowledgment FUV2. FUV1 lies at the beginning
of the communication process, and FUV2 lies at the
end of this process. When a client Z2 receives FUV2,
this indicates that the connection is established (or
may be rejected by the server +).

�o = [FK(((+ = +ced_+XY_FUV1) ⋀ (Z2
�\2\] = FUV2)) → Fp(+

= gcZc?hc_FUV2)) (5).
+ced_+XY_FUV1 represents the state

where + sends FUV1, and FUV2 represents the state
where Z2 has received FUV1 and sends FUV2 to +.

gcZc?hc_FUV2 represents the state where + has
received FUV2 from Z2 .

6. A client Z2 request +XY must precede
FUV1 and FUV2; +XY < FUV1 < FUV2, where <
means occurs before.

�r = [(FK((Z2 = +XY) ⋀ (+
�\2\]

= +ced_+XY_FUV1))
→ FG(Z2
= gcZc?hc_+XY_FUV1) ⋀ (+
= gcZc?hc_FUV2 (6).

7. FUV2must precede the data sending (before
establishing the connection); FUV2 <
L-^_`a?-ℎ_UjeecZ^?je.

�t = [FK((+ = gcZc?hc_FUV2) → FG(+
�\2\] = L-^_`a?-ℎ_UjeecZ^?je)) (7).

8. If we have two clients; client Z2 and client ZJ such
that Z2 requests +XYi and Zj requests +XYj the
server +, then, request +XY2 should precede request
+XYJ; +XY2 < +XYJ where ? ≠ H.

�w = [FK(((Z2 = +XY2) → LG(ZJ
�\2\],�\ J\],2xJ

= +XYJ)) → ((Z2
= L-^_`a?-ℎcd) → FG(ZJ
= L-^_`a?-ℎcd))) (8).

9. If a client Z2 is currently in the mdac state, Z2 can
stay in the mdac state forever.

�� = [LK(FG(Z2 = mdac))
�\2\] → FK(FG(Z2 = mdac)) (Uz,).

�� = [K(G(Z2 = mdac))
�\2\] → K(G(Z2 = mdac)) (,z,).
This correctness condition is encoded in

both CTL and LTL. Therefore, based on the
verification results for each of these CTL and LTL
formulas, we will be able to see the difference
between CTL and LTL in describing this correctness
condition.

10. If a client Zi is rejected by the server +, the client
can request the server infinitely often many times.

��{ = [FK((Z2 = gcHcZ^cd) → FG(Z2
�\2\] = +XY)) (10. Uz,).

gcHcZ^cd represents the state where the
request of the client Z2 is rejected by +.

11. If a client Z2 has sent FUV2 to the server +, and
+ is currently in the gcZc?hc_FUV2 state, then,
always the next state of Z2 is the gcHcZ^cd state.

��� = [FK(((Z2 = FUV2) ⋀ (+
�\2\]

= gcZc?hc_FUV2)) → Fp(Z2= gcHcZ^cd)) (11).
12. If a client Z2 is currently in the FUV2 state, then,
always the next state of Z2 is the L-^_`a?-ℎcd state.

��� = [FK((Z2 = FUV2) → Fp(Z2
�\2\] = L-^_`a?-ℎcd)) (12).

Let ∅ = ⋀ �2 ,�\2\�� where ∅ represents the
conjunction of all the correctness conditions
(��, ��, … , ���), and �2 is the current correctness
condition. Now, we will build an abstract model *
of the proposed three-way handshake protocol, such
that * represents the kripke structure of the
proposed protocol. Therefore, given *, and ∅ ∈
 CTL, * is considered true and correct iff * ⊨ ∅ in
all states. This means that all the correctness

Journal of Theoretical and Applied Information Technology
15th August 2021. Vol.99. No 15

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3732

conditions *2 ⊨ �2 represented by a model * in all
states.

7. RESEARCH RESULTS

This section consists of two subsections.
The first subsection describes the keywords and the
variables of the proposed NuSMV model; how they
are encoded into the NuSMV script to represent the
three-way handshake protocol. In the second
subsection, the crucial part of the proposed
correctness conditions results is shown.

7.1. The Proposed NuSMV Model Script and

Used Variables

In this part of the proposed study, we have
encoded the three-way handshake protocol into an
abstract model using the NuSMV script to be able to
check automatically if the abstract model satisfies
the proposed correctness conditions. NuSMV script
is a low-level coding language used for representing
finite state systems.

We have encoded the proposed protocol
into a NuSMV abstract mode using several
keywords and variables as follows:

 MODULE: Keyword that identifies the
main module and submodules.

 VAR: Keyword that declares variables.

 SPEC: Keyword that defines the
proposed CTL and LTL correctness
conditions.

 ASSIGN: Keyword used to identify the
transition relations among the variables.

 init: Keyword used to define the initial
values of the variables.

 next: Keyword used to declare a
relationship between the variables in a
specific state or and its inheritor state
(defines the next values of the variables).

 MODULE Client (y, A1, SS): declares
the model of the client such that; y
represents the sequence number of the
server, A1 represents the first
acknowledgment, and SS represents the
set of the server states. y, A1, and SS will
be synchronously sent to the client by the
server.

 c_state: Variable that represents the set of
the client states.

 c_seq: Variable that represents the
sequence number of the client.

 MODULE Server (x, A2, CS): declares
the model of the server such that; x
represents the sequence number of the
client, A2 represents the second
acknowledgment, and CS represents the
set of the client states. x, A2, and CS will
be synchronously sent to the server by the
client.

 s_state: Variable that represents the set of
the server states.

 s_seq: Variable that represents the
sequence number of the server.

 MODULE main: Identifies the main
model from where the code will start
executing.

 s: Variable of type MODULE Server
defines the server that will provide
clients with the connection.

 c1: Variable of type MODULE Client
defines the first client.

 c2: Variable of type MODULE Client
defines the second client.

7.2. The Proposed Correctness Conditions

Results

When we have checked the proposed
correctness conditions in the NuSMV, the results
showed that some of these correctness conditions
(��, ��, … , �w, and ��{) are satisfied and some are not
(��, ���, ���) explained in counterexamples.
Therefore, the proposed correctness conditions
(��, ��, … , ���) that are written in CTL were
unfolded in NuSMV script and checked. The
following figures are part of the results using the
NuSMV:

1. SPEC AG ((s.s_state = Receive_SYN) -> AF
(s.s_state = Establish_Connection)) & AG
((s.s_state = Establish_Connection) -> AF (s.s_state
= Receive_SYN)).
2. A. SPEC AG ((c1.c_state = Idle) -> AF (c1.c_state
= Finish)).

Journal of Theoretical and Applied Information Technology
15th August 2021. Vol.99. No 15

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3733

B. SPEC AG ((c2.c_state = Idle) -> AF (c2.c_state =
Finish)).

Figure 4. The results of the correctness

conditions ~�, ~�

In figure 4, the results of the correctness
conditions δf, δl are true in all of the model *
states. Thus, these correctness conditions are
satisfied by *.

1. A. SPEC EG (AF (c1.c_state = Idle))-> AG (AF
(c1.c_state = Idle)).

B. LTLSPEC G (F (c1.c_state = Idle)-> G (F
(c1.c_state = Idle))).

C. SPEC EG (AF (c2.c_state = Idle))-> AG (AF
(c2.c_state = Idle)).

D. LTLSPEC G (F (c2.c_state = Idle)-> G (F
(c2.c_state = Idle))).

Figure 5. The results of the correctness ~�.

The correctness condition �� indicates a
linear path. Therefore, we have used LTL to
express this correctness condition and verify it
correctly. This correctness condition cannot be
expressed using CTL because CTL is interpreted
on many paths of the proposed model. This means
that using the quantifier L in CTL will include an
incorrect path resulting in incorrect verification. As
shown in figure 5, the verification result of �� using
LTL is false. Therefore, the NuSMV generated a
counterexample to show the set of states where ��
is not satisfied by the model *.

The verification results of �� proves that
LTL and CTL have incomparable expressive
power by ensuring that many properties can be
expressed using only CTL, and others using only
LTL.

Figure 6. The modified kripke model of the three-way

handshake protocol.

As shown in figure 6, we have modified the
abstract model of the three-way handshake protocol
to obtain the correct verification results of ��. We
have removed the self-loop of the idle state and the
path between the finish state and the idle state. The
blooded path in figure 11 indicts that a client Z2 will
eventually be in the finish state forever, and no path
leads to the idle state. This path proves the
correctness of the verification results that are
generated by the NuSMV for �� in figure 6.
Therefore, our modification on the proposed model
proves it is correctness without been modified.

8. CONCLUSION

The main aim of this study is to propose and
use the CTL to verify the correctness of the
synchronous processes that are competing to share
resources based on specific protocol rules. The
three-way handshake protocol one of the most
widely used protocols in networking, security, and
mobile computing because this protocol can
establish a reliable and efficient connection between

Journal of Theoretical and Applied Information Technology
15th August 2021. Vol.99. No 15

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3734

concurrent iterated clients and a specific server. In
this study, we verified the correctness of the three-
way handshake protocol concerning specific
properties using the NuSMV.

We have proved the correctness of a finite
number of concurrent clients each of them requests
the server infinitely many times by automating the
proving process using the NuSMV. Also, we have
proposed a kripke structure that represents the
synchronous model of the iterated concurrent clients
and the server. Moreover, we have discovered that
CTL is very efficient and suitable for encoding
synchronous correctness conditions. Furthermore,
the proposed automated verification approach
increases the effectiveness of the proving process by
reducing the errors that could arise from conducting
the proof using other mathematical proving
techniques such as simulation.

The results showed that the correctness
conditions ��, ��, … , ��{ were satisfied by the
proposed protocol, which means that these
correctness conditions are true in all of the protocol
states. On the other hand, the correctness conditions
���, ��, and ��� were not satisfied by the protocol,
and counterexamples were generated by the NuSMV
to show the states where these unsatisfied
correctness conditions are violated. Moreover, the
correctness conditions ��, �f proves that the
proposed model of the three-way handshake
protocol is a finite number of clients iterated
infinitely often.

For future work, we intend to prove the
correctness of complex security protocols that the
three-way handshake protocol is a part of these
protocols, and this is called prove by construction.

REFERENCES

[1] Baier, C. and Katoen, J. (2008) Principles of

Model Checking. Cambridge, Mass: The MIT
Press Ltd.

[2] Baier, C. and Katoen, J. (2008) Principles of
Model Checking. Cambridge, Mass: The MIT
Press Ltd.

[3] Alshorman, R. and Fawareh, H. (2013)
‘Reducing conflict graph of multi-step
transactions accessing ordered data with gaps’,
Annals of the University of Craiova-

Mathematics and Computer Science Series,
40(1), pp. 1–8.

[4] Alshorman, R. (2019) ‘Toward Proving the
Correctness of TCP Protocol Using CTL’, The

International Arab Journal of Information

Technology, 16(3), pp. 407–414.
[5] Venema, Y. (2017) ‘Temporal logic’, in Goble,

L. (ed.) The Blackwell Guide to Philosophical

Logic. first edit. new jersey: Blackwell, pp.
203–223.

[6] König. H. (2012) Protocol Engineering.
Berlin: Springer-Verlag Berlin Heidelberg.

[7] Konur, S. (2013) ‘A survey on temporal logics
for specifying and verifying real-time
systems’, Frontiers of Computer Science, 7(3),
pp. 370–403.

[8] Molnár, V. et al. (2016) ‘Component-wise
incremental LTL model’, Formal Aspects of

Computing, 23(3), pp. 345–379.
[9] Torres, P. J. R. et al. (2018) ‘Probabilistic

Boolean network modeling and model
checking as an approach for DFMEA for
manufacturing systems’, Journal of Intelligent
Manufacturing. Springer US, 29(6), pp. 1393–
1413.

[10] Nickel, G. (2019) ‘Aspects of freedom in
mathematical proof’, ZDM. Springer Berlin
Heidelberg, 51(5), pp. 845–856.

[11] Jongsma, C. (2019) ‘Mathematical Induction
and Arithmetic’, in Introduction to Discrete

Mathematics via Logic and Proof. 1st edn.
Cham: Springer, pp. 149–204.

[12] Antonini, S. (2019) ‘Intuitive acceptance of
proof by contradiction’, ZDM. Springer Berlin
Heidelberg, 51(5), pp. 793–806.

[13] Kaur, K. and Kumar, S. (2013) ‘Analysis of
various testing techniques’, International

Journal of System Assurance Engineering and

Management, 5(3), pp. pages276–290.
[14] Boci, I. and Nicolás, B. (2019) ‘Inductive

verification of data model invariants in web
applications using first-order logic’,
Automated Software Engineering, 26(2), pp.
379–416.

[15] Aceituna, D. and Do, H. (2019) ‘Addressing
the state explosion problem when visualizing
off ‑ nominal behaviors in a set of reactive
requirements’, Requirements Engineering.
Springer London, 24(2), pp. 161–180.

[16] Hsu, F. et al. (2016) ‘applied sciences TRAP :
A Three-Way Handshake Server for TCP
Connection Establishment’, Applied Sciences,
6(11), p. 358.

[17] [17] Boro, D. and Bhattacharyya, D. K. (2017)
‘DyProSD : a dynamic protocol specific
defense for high ‑ rate DDoS flooding attacks’,
Microsystem Technologies. Springer Berlin
Heidelberg, 23(3), pp. 593–611.

[18] Zbrzezny, A.M., Szymoniak, S. and
Kurkowski, M. (2020) ‘Efficient Verification

Journal of Theoretical and Applied Information Technology
15th August 2021. Vol.99. No 15

© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3735

of Security Protocols Time Properties Using
SMT Solvers’, in Martínez Álvarez, F. et al.
(eds) International Joint Conference: 12th

International Conference on Computational

Intelligence in Security for Information

Systems (CISIS 2019) and 10th International
Conference on EUropean Transnational

Education (ICEUTE 2019). CISIS 2019,

ICEUTE 2019. Adva. Cham: Springer, pp. 25–
35.

[19] Molina-markham, A. and Rowe, P. D. (2017)
‘Continuous Verification for Cryptographic
Protocol Development’, in SafeThings’17

Proceedings of the 1st ACM Workshop on the

Internet of Safe Things. Delft: ACM, pp. 51–
56.

[20] Ligatti, J. (2017) ‘POSTER : Towards Precise
and Automated Verification of Security
Protocols in Coq’, in CCS ’17 Proceedings of

the 2017 ACM SIGSAC Conference on

Computer and Communications Security.
Dallas: ACM, pp. 2567–2569.

[21] Cremers, C. et al. (2016) ‘Automated Analysis
and Verification of TLS 1 . 3 : 0-RTT ,
Resumption and Delayed Authentication’, in
2016 IEEE Symposium on Security and

Privacy (SP). San Jose: IEEE, pp. 470–485.
[22] Everson, J., Lawrence, M. and Paulson, C.

(2015) ‘Verifying multicast-based security
protocols using the inductive method’,
International Journal of Information Security,
14(2), pp. 187–204.

[23] Bhargavan, K. et al. (2014) ‘Proving the TLS
Handshake Secure (As It Is)’, in Garay J, A.
and Gennaro, R. (eds) Advances in Cryptology

– CRYPTO 2014. CRYPTO 2014. Lecture

Notes in Computer Science. Berlin: Springer,
pp. 235–255.

[24] Fu, Y. and Koné, O. (2013) ‘A Finite
Transition Model for Security Protocol
Verification’, in SIN ’13 Proceedings of the 6th
International Conference on Security of

Information and Networks. Aksaray: ACM,
pp. 368–371.

[25] Bae, W. S. (2015) ‘Function-based connection
protocol development and verification’,
Cluster Computing. Springer US, 18(2), pp.
761–769.

[26] Vinh, T. and Levente, T. (2013) ‘On
automating the verification of secure ad-hoc
network routing protocols’,
Telecommunication Systems, 52(4), pp. 2611–
2635.

[27] Lomuscio, A., Qu, H. and Raimondi, F. (2017)
‘MCMAS : an open-source model checker for
the verification of multi-agent systems’,
International Journal on Software Tools for

Technology Transfer. Springer Berlin
Heidelberg, 19(1), pp. 9–30.

[28] Alshorman, R. (2016) ‘Temporal Logics
Specifications for Debit and Credit
Transactions’, International Journal of

Information Technology and Computer

Science, 7(5), pp. 10–17.
[29] Alshorman, R. and Fawareh, H. (2013)

‘Reducing conflict graph of multi-step
transactions accessing ordered data with gaps’,
Annals of the University of Craiova-

Mathematics and Computer Science Series,
40(1), pp. 1–8.

[30] Alshorman, R. and Hussak, W. (2010)
‘specifying a Timestamp-based Protocol For
Multi-step Transactions Using LTL’,
International Journal of Computer and

Information Engineering, 4(11), pp. 1716–
1723.

[31] Alshorman, R. and Hussak, W. (2009) ‘A CTL
Specification of Serializability for
Transactions Accessing Uniform Data’,
International Journal of Computer, Electrical,

Automation, Control and Information

Engineering, 3(3), pp. 780–786.
[32] Doczkal, C. and Smolka, G. (2016)

‘Completeness and Decidability Results for
CTL in Constructive Type Theory’, Journal of

Automated Reasoning. Springer Netherlands,
56(3), pp. 343–365.

