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ABSTRACT 

 
The three-way handshake protocol is widely used especially as a part of complex communication and security 
systems. It is used to establish a connection between a client and a server under specific rules and constraints. 
In this research, we used the NuSMV model checker along with Computational Tree Logic (CTL) to verify 
the correctness of the three-way handshake protocol over specific correctness conditions and properties. The 
results showed that the proposed protocol satisfied all correctness conditions except ��, ���, and ���. 
Furthermore, the proposed automated verification approach aims to verify the correctness of a finite number 
of clients each of them iterated infinitely often. 

Keywords: CTL, Model Checking, Nusmv, Three-Way Handshake Protocol, Correctness Conditions, Kripke 

Model. 
  
1. INTRODUCTION 

1.1 Model Checking  

Model checking is one of the most 
important proof techniques used for proving a given 
correctness condition of a finite-state model. It 
checks whether the input model satisfies a specific 
property or not [1]. An automated model checking 
tool verifies automatically the correctness of a 
system. It is a verification tool that simplifies the 
verification of a given system. Thus, it mainly 
minimizes the efforts spent on the verification task, 
as well as the time needed for this task [2]. 

 
Model checking techniques work by 

encoding the system that is intended to be verified 
into an abstract model, and the correctness 
conditions into temporal logic (CTL and/or LTL). 
Then, the model checker interprets the abstract 
model into a kripke model. Thus, the correctness 
conditions are verified over the kripke model to 
determine the correctness of the system [2]. If the 
correctness conditions are satisfied by the system, 
the model checker will return true [3], [4]. 
Otherwise, the system will generate a 
counterexample for each unsatisfied correctness 
condition to show the errors of the system. 

 

 

1.2 Temporal Logic 

Temporal logic is one of the most 
important types of logic that is widely used for 
describing correctness conditions (properties) of 
different systems. Thus, these properties will be 
checked automatically using a model checker to 
determine their correctness. Temporal logic is 
defined as a type of logic where the truth and falsity 
varying over time and interpreted over a graph [5]. 
The motivation behind the temporal logic is that 
many statements are varying over time (can be true 
or false at any point in time). However, the 
propositional logic cannot interpret them. The 
temporal logic is divided into two models; the 
Computation Tree Logic (CTL), and the Linear 
Time Logic (LTL). LTL is a type of temporal logic 
where a sequence of states is interpreted linearly 
over time [5]. The CTL is a type of logic where the 
time is branched in a form of a tree structure and 
called branching time logic [3].  

Temporal logic is one of the most 
important types of logic because it provides the 
ability to branch time over specific tree structures 
[5]. Moreover, it can be used for describing the 
behaviors of concurrent complex systems [6], [7]. 
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1.3.  The Proposed Three-Way Handshake 

Protocol 

The three-way handshake protocol is a 
process used to establish a connection between 
client and a server. In our proposed work, we 
intend to automate the proving process of the 
three-way handshake protocol. Therefore, we 
will try to verify the correctness of this protocol 
over specific correctness conditions using an 
automated model checker (e.g., NuSMV).  

The benefits of the three-way handshake 
protocol can be illustrated into two main points; it 
can be used to establish a connection between 
communicated parties, and it is used as a security 
process to protect the network from malicious 
activates. For example, the TRAP is a three-way 
handshake protocol used for detecting the 
flooding of the synchronize packets and the 
Distributed Denial of Service (DDoS) attacks 
[17].    

 

 
 

Figure 1. The three-way connection establishing process. 

Figure 1, represents how the three-way 
handshake protocol operates to establish a 
connection. For example, assume that there are 
one client and one server that wants to 
communicate with each other using this protocol. 
The client starts the process by sending a 
Synchronize packet (SYNx) to the server. x 
represents the sequence number of the client 
which is a random synchronization number 
generated by the client and sent to the server to 
establish a connection. When the server receives 
the client SYN x, it replies by a Synchronize-
Acknowledge packet (SYNy-ACK1). y represents 
a random synchronization number generated by 
the server and sent to the client. ACK1 represents 
the sequence number of the client x plus one. 
SYNy and ACK1 sent to the client to inform it that 
the server has received SYNx. ACK1 is 

considered as the first acknowledgment. When the 
client receives the server SYN-ACK1, it replies by 
ACK2 packet that contains the sequence number 
of the server y plus one. ACK2 represents the 
second acknowledgment. When the server 
receives this packet, it can establish a connection 
with the client or reject it based on specific rules. 

Our proposed verification approach differs 
from the previous verification techniques in three 
ways as follows:  

   
1. First, model checking techniques can conduct 
proofs for infinitely often processes. Therefore, 
model checking can verify and interpret all of the 
three-way handshake protocol behaviors, and it is 
based on rigorous proof. Unlike other mathematical 
proving techniques that are not based on rigorous 
proof [10], [11]. 
 
2. Second, model checkers generate 
counterexamples if the protocol contains errors, 
unlike other mathematical proving techniques where 
this is not possible. The generated counterexamples 
will help in the enhancement process of the protocol 
by showing its errors (unsatisfied properties).  
 
3. Third, model checking techniques increases the 
effectiveness of the proving process by reducing the 
errors that could arise from conducting the proof 
using other mathematical proving techniques [12], 
[13], [14]. 

2. RELATED WORK 

Zbrzezny, B and Kurkowski  in [18] used 
the Satisfiability Module Theories based on 
Bounded Model Checking (SMT-BMC) techniques 
along with synchronized timed automata networks, 
to verify the correctness of the Needham-Schroeder 
Public key (NSPK), the Needham-Schroeder Shared 
Key (NSSK), and Wide-Mouthed Frog (WMF) 
security protocols using this verification approach. 
In [19], the authors used a continuous verification 
method based on the Cryptographic Protocol Shapes 
Analyzer (CPSA) to verify the correctness of the 
Pair-wise Shared Key Establishment (PSKE) and 
Group Shared Key Establishment (GSKE) security 
protocols. Another study in [20] aimed at using the 
COQ model checker to verify the correctness of 
the NSPK, and the NSSK Protocols over specific 
safety properties and attack models. In [21] Cremers 
et al used the tamarin model checker to validate the 
TLS version 1.3 security protocol. In [22], the 
authors used the induction method along with the 
Isabelle/HOL theorem prover to verify the 
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correctness of the Franklin-Reiter sealed-bid auction 
protocol and the NSSK protocol. Another study 
proposed in [23] aimed at providing a verification 
approach for verifying the correctness of the TLS 
handshake protocol based on the miTLS protocol. Fu 
and Koné in [24] used The Input-Output Labeled 
Transition System (IOLT) to represent the NSSK 
protocol to be verified using the SG-IOLT model. 
Alshorman in [4] used the NuSMV model checker 
to verify the correctness of the TCP protocol. In 
[25], the author developed a vehicular 
communication system and verified it using the 
Casper/FDR formal verification tool. Another 
study in [26] aimed at providing an open-source 
model checker that is called MCMAS for verifying 
the correctness of multi transactions systems such as 
the SPORE protocol and the anonymity protocols. 

 Alshorman in [27] verified the 
correctness of the debits and credits transactions 
using the NuSMV over specific CTL and LTL 
serializability properties. In [28] Alshorman and 
Fawareh developed an efficient verification 
approach based on conflict graph reduction for 
verifying the correctness of a specific multi- 
transaction system. Alshorman and Hussak in [29] 
verified the correctness of a scheduler that schedules 
the infinite incoming and outcoming multi-
transactions of a system using the NuSMV over 
specific LTL serializability properties. In [30], 
Alshorman and Hussak verified the correctness of 
multi-transactions systems for accessing uniform 
data using the NuSMV over specific CTL and LTL 
serializability properties. 

Most of the efforts conducted for proving 
the correctness of security and communication 
protocols limits the number of clients and servers. 
They used formal verification methods or model 
checking based on simulation [18, 20, 21, 24, 26]. 
The drawback of these techniques is that all the 
possible behaviors of a protocol cannot be 
verified. Moreover, the authors may use pure 
mathematical or theorem proving techniques [19, 
22, 23, 25]. The problem with mathematical 
proofs is that it is difficult to write equations to 
represent abstract models of systems. Also, theorem 
proving cannot verify the correctness of a system 
that changes it is states over time. This is because 
they are based on propositional logic that can verify 
the systems that do not change over time. 

 

 

3. THE PROPOSED AUTOMATED 

VERIFICATION APPROACH 

 

Figure 2. The workflow for the automated model 

checking approach. 

In figure 2, the flowchart of the proposed 
automated verification approach is illustrated to 
specify how the verification approach will verify the 
correctness of the three-way handshake protocol. 
Thus, the automated verification process consists of 
n steps as follows: 

1. The three-way handshake protocol will be 
encoded into an abstract model checking algorithm 
using a specific model checker script (e.g., NuSMV 
script). 

2. The proposed correctness conditions (properties) 
that we assumed for verifying the correctness of the 
proposed protocol, will be encoded into temporal 
logic formulas (CTL). 

3. The model checker will interpret the abstract 
model into kripke structure, to be verified over the 
proposed properties. 
 

If the three-way handshake protocol 
satisfied all the correctness conditions, the model 
checker will return true for each property. 
Otherwise, the model checker will return false as a 
counterexample to show the unsatisfied properties 
which may lead to enhancement on the protocol. If 
there are any errors in specifying the properties in 
temporal logic, the model checker will return a 
compilation error. 

4. KRIPKE STRUCTURE AND TEMPORAL 

LOGIC 

4.1. Kripke Structure  

Kripke structure is a type of directed graph 
that consists of nodes and edges, where nodes 
represent the reachable states of a specific system 
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(model), and edges represent the transitions among 
the states. Each state is labeled with specific 
properties, and each path in the graph describes a 
specific behavior of the modeled system [8]. Kripke 
structure is crucial for temporal logic because it is 
used to provide temporal logic (CTL and LTL) with 
definitions when a specific property is satisfied [9]. 

Model checking techniques suffer from the 
state space explosion problem which indicates that 
there is an exponential increase in the state space, 
making it cannot be handled by the capacity of the 
memory [15]. Therefore, we intend to generate the 
kripke structure that represents the three-way 
handshake protocol using the NuSMV model 
checker because it avoids this problem. 

4.2. CTL 

In this study, we have used CTL to 
represent the proposed correctness conditions 
because it is more expressive than LTL for the 
proposed model. Moreover, this model contains 
many branching times, therefore CTL can 
describe it correctly. 

The CTL is a temporal logic type where 
the time is branched and interpreted over a 
specific branching-time graph (e.g., Kripke 
structure). Thus, each state in a model that is 
represented using CTL has more than one 
successor [31]. 

A model that is specified using CTL is 
interpreted over a specific branching-time 
structure, such that there exist path quantifiers for 
verifying the CTL model over specific paths. The 
syntax of the CTL consists of the set of atomic 
propositions (e.g., p, q), ordinary boolean 
operators (¬, ˄, ˅,⊺, ⊥), propositional quantifiers 
(A, E), and four temporal logic operators �, �, �, 
�. Therefore, any statement in CTL can be 
represented by:  

Φ ∷= pr� |¬φ| φ1˅ φ2| φ1˄ φ2| AXφ| E φ1 ∪
 φ2" EXφ| AFφ| EFφ| AGφ| EGφ| A φ1 ∪  φ2" 
where pr�, pr�, … , pr� identifies any atomic 
proposition used in the three-way handshake 
protocol [4]. 

The CTL semantics can be derived from 
the fact that the CTL is interpreted over 
branching-time structures. Thus, a branching time 
model M = (S, →, L) where S represents the set of 
the model states, → is the transition relation, and 
L is the function that is used to label each state in 
the model with specific atomic propositions [4]. 

Let * = (+, →, ,)  be a transition model 
such that - ∈ +, / ∈ 0 where - represents a state in 
M (belongs to S), 0 represents the set of all possible 
equations (all the possible correctness conditions 
that are written in CTL), the truth values; false and 
true represented by ⊥ and ⊤ symbols respectively. 

Thus, ordinary operators’ semantics are as 
follows: -2 

1. M  s� ⊨ ¬ ϕ   iff  M, s�  ⊭  ϕ. 
 

2. M  s� ⊨  ϕ ⋀  ψ  iff  M, s� ⊨ ϕ and M, s� ⊨
 ψ.  

3. *, s� < ∨ > ?@@ *, s� = < or *, s� >. 
 

4. *, s� < → > ?@@ *, s� ⊨ < then *, s�  ⊨ > *, s� ⊨ ⊤ *, s� ⊭ ⊥. 
Let λ = (s�, s�B� …) such that C represent 

an outgoing path from a specific state s� in M. 
Thus, the semantics of the CTL operators are as 
follows: 

1. *, s� ⊨ AX φ ?@@, ∀C = (s�, s�B� … ), *, 
s�B� ⊨ φ. 
 

2. *, s� ⊨ EX φ ?@@, ∃C = (s�, s�B� … ), *, 
s�B� ⊨  φ. 
 

3. *, s� ⊨  FG φ ?@@, ∀C = (s�, s�B� … ), 
∃ H ≥  ?,  *, -J ⊨  φ. 
 

4. *, s� ⊨ EF φ ?@@, ∃C = (s�, s�B� … ), ∃ H ≥
 ?,  *, -J  ⊨  φ. 
 

5. *, s� ⊨ FK ϕ ?@@, ∀C = (s�, s�B� … ), 
and ∀H, H ≥  ?, *, -J  ⊨  ϕ.  
 

6. *, s� ⊨ LK ϕ ?@@, ∃C = 
(s�, s�B� … ), and ∀H, H ≥  ?, *, -J  ⊨  ϕ. 

7. *, s� ⊨ F ϕ� M ϕ�" ?@@, ∀C = (s�, s�B� … ),
∃ H ≥  ? such that *, -J  ⊨  ϕ�, and 

∀N, ? ≤ N < H, *, -Q ⊨  ϕ�. 
 

8. *, s� ⊨ L ϕ� M ϕ�" ?@@, ∃C = (s�, s�B� … ) 
such that, ∃ H ≥  ? *,  -J  ⊨  ϕ�, 
and ∀N, ? ≤ N < H, *, -Q  ⊨  ϕ�. 

According to the above semantics, we can 
ensure that there is branching in the CTL future, 
as there are many paths to go. 

In this study, CTL is used to encode the 
correctness conditions and the properties of the 
three-way handshake protocol. Therefore, the 
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NuSMV model checker is used to verify whether 
the proposed three-way handshake protocol 
satisfies these conditions and properties or not. If 
the proposed protocol satisfied all these 
properties, The NuSMV will generate true for 
each satisfied property. In case there is unsatisfied 
property, the NuSMV will generate a 
counterexample to show the set of states, in the 
model, where this unrequired property is violated.  

CTL and LTL have incomparable 
expressive power. In LTL the time is linear; which 
means that each possible execution is represented 
as a linear line of a sequence of states [32]. On the 
other hand, in CTL there is branching in time; 
which means that there is more than one execution 
path. This means that many properties can be 
expressed using only LTL, and many properties can 
be expressed using only CTL. Thus, the choice 
between CTL and LTL depends on the system and 
the correctness conditions you intend to verify.  

For example, the LTL formula KGR →
KGS is only satisfied using LTL, not CTL. 
Therefore, in all paths, this formula will 
eventually be satisfied by the model where R 
represents a statement (Baier and Katoen, 2008). 
KGR → KGS is not equivalent to LK(FGR) →
 FK(FGS) (KGR → KGS ≢ LK(FGR) →
 FK(FGS)). LK(FGR) →  FK(FGS) represents the 
CTL formula of the LTL formula KGR → KGS. 
However, CTL is not suitable to be used to verify 
this type of formulas, and this example is 
explained in details in section 7. 

5. THE SYNCHRONOUS MODEL OF 

ITERATED CONCURRENT CLIENTS AND 

SERVER 

In this part of the proposed study, we 
assume that there is a finite number of clients each 
of them requests the server infinitely often to 
establish a connection. We used the NuSMV model 
checker to generate the kripke structure of this 
model. 

The kripke model of the iterated concurrent clients 
and server model is shown in figure 4. The 
connection between a concurrent client and the 
server is synchronous. This means that the client and 
the server will synchronously send their states to 
each other, which provides reliable communication 
between them. Therefore, the server will not move 
to the next state until the client takes action, and the 
client also will not move to the next state until the 
server takes action.  

 

Figure 3. The kripke model of the three-way handshake 
protocol. 

Figure 3 shows the finite state model of the 
iterated concurrent clients and server 
communicating using the three-way handshake 
protocol. In this finite state model x, represents the 
sequence number of the client (a random 
synchronization number sent by the client to the 
server), and y represents the sequence number of the 
server (a random synchronization number sent by the 
server to the client). ACK1 represents the sequence 
number of the client x plus 1, and it is an 
acknowledgment sent by the server. ACK2 
represents the sequence number of the server y plus 
1, and it is an acknowledgment sent by the client. 

In our proposed iterated model, we assume 
that x is greater than y. Therefore, to establish a 
successful connection between a concurrent client 
and the server, ACK1 has to be greater than ACK2. 
The transitions among the proposed finite state 
model are as follows:   

1. The client starts the execution of the protocol by 
moving from the Idle state to the SYNx state, which 
indicates that the client has sent a request that 
contains x to the server to establish a connection. 

2. When the server receives this request, it moves 
from the Listen state to the Receive SYNx state. 
Then, the server moves to the SYNy-ACK1 states, 
which in this state it sends y and ACK1 to the client 
indicating that the server has received the client 
request. 

3. When the client receives y and ACK1 from the 
server, it moves to the Receive SYNy-ACK1 if and 
only if ACK1 is greater than y. Then, the client 
moves to the ACK2 state, which in this state it sends 
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ACK2 to the server indicating that the client has 
received y and ACK1. 

4. When the server receives ACK2, it moves from 
the previous state to the Receive ACK2 state. 
Therefore, if FUV2 <  FUV1, the server moves 
from the previous state to the establish connection 
state. Otherwise, the server moves to the Reject 
connection state. If FUV1 > FUV2 the client moves 
from the previous state to the Established state 
indicating that the connection is established by the 
server. Otherwise, the client moves to the Rejected 
state indicating that the connection is rejected by the 
server.  

5. When the server satisfies the client request, it 
moves from the previous state to the Close 
Connection state; indicating that the connection is 
terminated by the server. On the other hand, the 
client moves from the previous state to the Finish 
state when the server terminates the connection. 

6. After the server successfully ends the connection 
and the client request has been satisfied, the client 
goes back to the Idle state to request the server 
infinitely often. On the other hand, the server goes 
back to the Listen state to satisfies more client's 
requests.  

7. A client can stay idle forever if it not requesting 
the server, and the server can also stay listening 
forever if there are no requesting clients.    

The verification process of the proposed 
iterated concurrent clients and server model is not 
trivial. So, we need to efficiently prove this model 
by verifying all of its possible behaviors. Thus, we 
used CTL to encode and describe the correctness 
conditions of this model. However, it is critical to 
automate the proving process of a finite number of 
clients iterated infinitely often using model checkers 
to reduce the errors that arise from conducting 
traditional proofs. 

6. THE PROPOSED CORRECTNESS 

CONDITIONS  

In this proposed work, we intend to prove 
the correctness of the three-way handshake protocol 
by verifying general correctness conditions for 
synchronous processes and specific correctness 
conditions for the protocol model. Most protocols 
proofs assume that the number of requests is finite. 
Thus, in this research, we assume that the client’s 
requests are iterated infinitely often. Therefore, the 
proposed protocol is not correct until it satisfies the 

following correctness conditions (encoded into 
CTL):  

1. As the three-way handshake protocol is a three-
way connection establishing mechanism, then at 
least there will be one satisfied request +XY from a 
client Z2  to the server, + to establish a successful 
connection between them. 
 

�� =  [ FK((Z2 = +XY) → FG(Z2
�\2\] = L-^_`a?-ℎcd)) (1). 

e represents the finite number of clients, 
and ? represents the number of the current client, 
+XY represents the request of the client Zi, and 
L-^_`a?-ℎcd represents the state where the 
connection is established between the client and the 
server.  

2. Each client Z2 must request the server infinitely 
often (many times). 

�� = [ (FK((Z2 = +XY) → FG(Z2
�\2\] = L-^_`a?-ℎcd)) ⋀ FK((Z2= L-^_`a?-ℎ) → FG(Z2= +XY))) (2). 

If a client Z2  has successfully established 
a connection with the server +, then after Zi finish 
sending data to + and + terminates the 
connection, Z2 can request the server infinitely 
often (iterated infinitely often). 

3. The server + must satisfy each client Zi infinitely 
often requests. 

�f = [ (FK((+ = gcZc?hc_+XY) → FG(+
�\2\]= L-^_`a?-ℎ_UjeecZ^?je)) ⋀ FK((+

= L-^_`a?-ℎ_UjeecZ^?je) → FG(+
= gcZc?hc_+XY))) (3). 

4. At least there will be one client Zi which is 
currently in the Idle state and eventually will finish 
sending the data to the server successfully (before 
the termination of the connection by the server). 

�l = [ FK((Z2 = mdca)
�\2\] → FG(Z2 = G?e-?ℎ)) (4). 
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G?e-?ℎ represents the state where Zi finish 
sending data to the server. 

5. We must have two acknowledgments such that the 
first acknowledgment FUV1 precedes the second 
acknowledgment FUV2. FUV1 lies at the beginning 
of the communication process, and FUV2 lies at the 
end of this process. When a client Z2 receives FUV2, 
this indicates that the connection is established (or 
may be rejected by the server +).  

�o = [ FK(((+ = +ced_+XY_FUV1) ⋀ (Z2 
�\2\] =  FUV2))  → Fp(+ 

=  gcZc?hc_FUV2)) (5). 
+ced_+XY_FUV1 represents the state 

where + sends FUV1, and FUV2 represents the state 
where Z2 has received FUV1 and sends FUV2 to +. 

gcZc?hc_FUV2 represents the state where + has 
received FUV2 from Z2 . 

6. A client Z2  request +XY must precede 
FUV1 and FUV2; +XY < FUV1 < FUV2, where < 
means occurs before.  

�r = [ (FK((Z2 = +XY) ⋀ (+
�\2\]

=  +ced_+XY_FUV1))  
→ FG(Z2  
=  gcZc?hc_+XY_FUV1) ⋀ (+
= gcZc?hc_FUV2 (6). 

7. FUV2must precede the data sending (before 
establishing the connection); FUV2 <
L-^_`a?-ℎ_UjeecZ^?je. 

�t = [ FK((+ = gcZc?hc_FUV2) → FG(+
�\2\] = L-^_`a?-ℎ_UjeecZ^?je)) (7). 

8. If we have two clients; client Z2  and client ZJ  such 
that Z2  requests +XYi and Zj requests +XYj the 
server +, then, request +XY2 should precede request 
+XYJ; +XY2 < +XYJ where ? ≠ H. 

�w = [ FK(((Z2 = +XY2) → LG(ZJ
�\2\],�\ J\],2xJ

= +XYJ))  → ((Z2
= L-^_`a?-ℎcd) → FG(ZJ
= L-^_`a?-ℎcd))) (8). 

9. If a client Z2  is currently in the mdac state, Z2 can 
stay in the mdac state forever. 

�� = [ LK(FG(Z2 = mdac))
�\2\] → FK(FG(Z2 = mdac)) (Uz,). 

�� = [ K(G(Z2 = mdac))
�\2\] → K(G(Z2 = mdac)) (,z,). 
This correctness condition is encoded in 

both CTL and LTL. Therefore, based on the 
verification results for each of these CTL and LTL 
formulas, we will be able to see the difference 
between CTL and LTL in describing this correctness 
condition.        

10. If a client Zi is rejected by the server +, the client 
can request the server infinitely often many times. 

��{ = [ FK((Z2 = gcHcZ^cd) → FG(Z2
�\2\] = +XY)) (10. Uz,). 

gcHcZ^cd represents the state where the 
request of the client Z2 is rejected by +. 

11. If a client Z2  has sent FUV2 to the server +, and 
+ is currently in the gcZc?hc_FUV2 state, then, 
always the next state of Z2 is the gcHcZ^cd state. 

��� =  [ FK(((Z2 = FUV2) ⋀ (+
�\2\]

= gcZc?hc_FUV2)) → Fp(Z2= gcHcZ^cd)) (11). 
12. If a client Z2  is currently in the FUV2 state, then, 
always the next state of Z2 is the L-^_`a?-ℎcd state. 

��� =  [ FK((Z2 = FUV2) → Fp(Z2
�\2\] = L-^_`a?-ℎcd)) (12). 

Let ∅ = ⋀ �2 ,�\2\�� where ∅ represents the 
conjunction of all the correctness conditions 
(��, ��, … , ���), and �2 is the current correctness 
condition. Now, we will build an abstract model * 
of the proposed three-way handshake protocol, such 
that * represents the kripke structure of the 
proposed protocol. Therefore, given *, and ∅ ∈
 CTL, * is considered true and correct iff * ⊨  ∅ in 
all states. This means that all the correctness 
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conditions *2  ⊨  �2 represented by a model * in all 
states. 

7. RESEARCH RESULTS 

This section consists of two subsections. 
The first subsection describes the keywords and the 
variables of the proposed NuSMV model; how they 
are encoded into the NuSMV script to represent the 
three-way handshake protocol. In the second 
subsection, the crucial part of the proposed 
correctness conditions results is shown.  

7.1. The Proposed NuSMV Model Script and 

Used Variables 

In this part of the proposed study, we have 
encoded the three-way handshake protocol into an 
abstract model using the NuSMV script to be able to 
check automatically if the abstract model satisfies 
the proposed correctness conditions. NuSMV script 
is a low-level coding language used for representing 
finite state systems. 

We have encoded the proposed protocol 
into a NuSMV abstract mode using several 
keywords and variables as follows: 

 MODULE: Keyword that identifies the 
main module and submodules. 
   

 VAR: Keyword that declares variables. 
 

 SPEC: Keyword that defines the 
proposed CTL and LTL correctness 
conditions. 
 

 ASSIGN: Keyword used to identify the 
transition relations among the variables. 

 init: Keyword used to define the initial 
values of the variables. 
 

 next: Keyword used to declare a 
relationship between the variables in a 
specific state or and its inheritor state 
(defines the next values of the variables). 
 

 MODULE Client (y, A1, SS): declares 
the model of the client such that; y 
represents the sequence number of the 
server, A1 represents the first 
acknowledgment, and SS represents the 
set of the server states. y, A1, and SS will 
be synchronously sent to the client by the 
server. 
 

 c_state: Variable that represents the set of 
the client states.  
 

 c_seq: Variable that represents the 
sequence number of the client.     
 

 MODULE Server (x, A2, CS): declares 
the model of the server such that; x 
represents the sequence number of the 
client, A2 represents the second 
acknowledgment, and CS represents the 
set of the client states. x, A2, and CS will 
be synchronously sent to the server by the 
client.  
 

 s_state: Variable that represents the set of 
the server states.  
 

 s_seq: Variable that represents the 
sequence number of the server.   
 

 MODULE main: Identifies the main 
model from where the code will start 
executing.   
 

 s: Variable of type MODULE Server 
defines the server that will provide 
clients with the connection. 
 

 c1: Variable of type MODULE Client 
defines the first client.  
 

 c2: Variable of type MODULE Client 
defines the second client. 

7.2. The Proposed Correctness Conditions 

Results  

When we have checked the proposed 
correctness conditions in the NuSMV, the results 
showed that some of these correctness conditions 
(��, ��, … , �w, and ��{) are satisfied and some are not 
(��, ���, ��� ) explained in counterexamples. 
Therefore, the proposed correctness conditions 
(��, ��, … , ���) that are written in CTL were 
unfolded in NuSMV script and checked. The 
following figures are part of the results using the 
NuSMV:         

1. SPEC AG ((s.s_state = Receive_SYN) -> AF 
(s.s_state = Establish_Connection)) & AG 
((s.s_state = Establish_Connection) -> AF (s.s_state 
= Receive_SYN)). 
2. A. SPEC AG ((c1.c_state = Idle) -> AF (c1.c_state 
= Finish)). 
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B. SPEC AG ((c2.c_state = Idle) -> AF (c2.c_state = 
Finish)). 

 

Figure 4. The results of the correctness 

conditions ~�, ~� 

In figure 4, the results of the correctness 
conditions δf, δl are true in all of the model * 
states. Thus, these correctness conditions are 
satisfied by *.              

1. A. SPEC EG (AF (c1.c_state = Idle))-> AG (AF 
(c1.c_state = Idle)). 

B. LTLSPEC G (F (c1.c_state = Idle)-> G (F 
(c1.c_state = Idle))). 

C. SPEC EG (AF (c2.c_state = Idle))-> AG (AF 
(c2.c_state = Idle)). 

D. LTLSPEC G (F (c2.c_state = Idle)-> G (F 
(c2.c_state = Idle))). 

 

Figure 5. The results of the correctness ~�. 

The correctness condition �� indicates a 
linear path. Therefore, we have used LTL to 
express this correctness condition and verify it 
correctly. This correctness condition cannot be 
expressed using CTL because CTL is interpreted 
on many paths of the proposed model. This means 
that using the quantifier L in CTL will include an 
incorrect path resulting in incorrect verification. As 
shown in figure 5, the verification result of �� using 
LTL is false. Therefore, the NuSMV generated a 
counterexample to show the set of states where �� 
is not satisfied by the model *. 
 

The verification results of �� proves that 
LTL and CTL have incomparable expressive 
power by ensuring that many properties can be 
expressed using only CTL, and others using only 
LTL.  

 
Figure 6. The modified kripke model of the three-way 

handshake protocol. 

As shown in figure 6, we have modified the 
abstract model of the three-way handshake protocol 
to obtain the correct verification results of ��. We 
have removed the self-loop of the idle state and the 
path between the finish state and the idle state. The 
blooded path in figure 11 indicts that a client Z2 will 
eventually be in the finish state forever, and no path 
leads to the idle state. This path proves the 
correctness of the verification results that are 
generated by the NuSMV for �� in figure 6. 
Therefore, our modification on the proposed model 
proves it is correctness without been modified. 

8. CONCLUSION  

The main aim of this study is to propose and 
use the CTL to verify the correctness of the 
synchronous processes that are competing to share 
resources based on specific protocol rules. The 
three-way handshake protocol one of the most 
widely used protocols in networking, security, and 
mobile computing because this protocol can 
establish a reliable and efficient connection between 
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concurrent iterated clients and a specific server. In 
this study, we verified the correctness of the three-
way handshake protocol concerning specific 
properties using the NuSMV.  

We have proved the correctness of a finite 
number of concurrent clients each of them requests 
the server infinitely many times by automating the 
proving process using the NuSMV. Also, we have 
proposed a kripke structure that represents the 
synchronous model of the iterated concurrent clients 
and the server. Moreover, we have discovered that 
CTL is very efficient and suitable for encoding 
synchronous correctness conditions. Furthermore, 
the proposed automated verification approach 
increases the effectiveness of the proving process by 
reducing the errors that could arise from conducting 
the proof using other mathematical proving 
techniques such as simulation. 

The results showed that the correctness 
conditions ��, ��, … , ��{ were satisfied by the 
proposed protocol, which means that these 
correctness conditions are true in all of the protocol 
states. On the other hand, the correctness conditions 
���, ��, and ��� were not satisfied by the protocol, 
and counterexamples were generated by the NuSMV 
to show the states where these unsatisfied 
correctness conditions are violated. Moreover, the 
correctness conditions ��, �f proves that the 
proposed model of the three-way handshake 
protocol is a finite number of clients iterated 
infinitely often.   

For future work, we intend to prove the 
correctness of complex security protocols that the 
three-way handshake protocol is a part of these 
protocols, and this is called prove by construction. 
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