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ABSTRACT 

The portfolio optimization mathematical model is more frequently expressed with an eye to minimize the 
Value at Risk (VaR). Markowitz's difficulties in managing the quadratic programming model were 
alleviated by recent advances in algorithmic analysis, which sparked interest in overcoming real constraints 
in portfolio selection by introducing a linear risk function. The point of this article is to address the issue of 
portfolio selection of minimum transaction lots. An improved search algorithm appertaining to active 
constraints is presented to interpret the integer programming model. The algorithm leads by solving the 
relaxed problem in order to reach a settlement that is similar to a continuous solution. 

Keywords: Mixed Integer Programming, Portfolio Optimization, Active Constrained 

1. INTRODUCTION 

Investment is an activity of investing a number 
of funds in the form of money or goods which are 
expected to give more results in the future. This 
activity takes the form of buying securities 
(securities) which is usually carried out through the 
money market or the capital market. The 
investment instruments that are invested in the 
money market are deposits, Indonesian bank 
certificates (SBI) and foreign currency, while those 
that are invested in the capital market involving 
stocks, bonds, mutual funds, exchange traded funds 
(ETF) and derivatives. According to Jones [1], an 
investment is defined as an asset contribution 
within one or more properties owned in relation to 
the use of financial assets, such as deposit 
certificates, bonds, stocks, or mutual funds, over a 
long period of time. 

Medium and long-term investment management 
problems are frequently conceived as a dynamic 
portfolio selection problem, where investment 
decisions are, for example, changing from time to 
time. Such options become standard given the time 
constraints and dependencies of the countries 
involved. As a result of market frictions including 
trade and regulatory expenses, as well as tax 
limitations, challenges are becoming more 
dynamic, discrete, multi-stage, and control-related. 

The nature of the risk measures used over multiple 
time periods is critical to achieving successful risk 
control. When compared to static conditions, it is 
difficult to construct adequate risk measurements of 
a multi-period nature that are realistic and 
realistically meaningful [2]. 

If an investor wants to maximize his or her 
returns, he or she must devise a good strategy. To 
reduce investment risk, investors can diversify, 
which is done by combining various securities in 
their investments, forming portfolios. And, if an 
investor desire to build a portfolio, he or she must 
be able to properly analyze the current market. The 
intended portfolio is a collection of documents on a 
person's, group's, institution's, organization's, 
company's, or the like's assets that aims to 
document the progress of a process in achieving 
predetermined goals. There are portfolios in a 
portfolio that are not limited in number or a lot, and 
in the formation of the portfolio, the investor will 
choose the right one from the many existing 
portfolios, resulting in the optimal portfolio. This is 
an optimization problem with a mathematical 
model. The goal of optimization is to find a series 
of portfolios with the lowest risk level for each 
specific rate of return or, alternatively, the highest 
rate of return for each specific risk. The portfolio 
optimization problem's main goal is to find the 
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optimal portfolio with the lowest variance of all 
possible portfolio sets for any expected rate of 
return. 

In risk measurement, variance is a tool that 
plays an important role in optimizing under 
uncertainty, particularly when dealing with 
investment losses. The variance is denoted by the 
symbol VaR. VaR is non-convex and 
combinatorial, according to Gaivoronski and Pflug 
[3]. This makes the VaR portfolio problem 
fundamentally complicated to sort out [4], but in 
[5], VaR is a quantifiable risk measure. The mean is 
used to measure the return and is associated to 
degree of precision the risk measure can be 
estimated. 

The VaR and the mean are two measuring 
instruments used in portfolio selection. The initial 
mathematical formulation of the portfolio selection 
problem was developed by Markowitz [6]. The 
portfolio selection problem was developed by 
Markowitz as a tradeoff linking the mean and 
variance of the asset portfolio, which is known as 
the mean-variance (MV) model. Maintain constant 
variance and maximize expected return, or maintain 
constant variance and minimize return to streamline 
the portfolio so that investors can choose a portfolio 
mix based on their risk. Markowitz variant 
optimization is a well-known investment theory 
that is widely used in asset allocation. The most 
significant impact can be seen in portfolio 
management practices. This theory is concerned 
with the assessment and management of risk and 
the return on portfolio investment. This is very 
advantageous because the resulting portfolio 
optimization will have the same expected return 
with less risk or higher expected returns with the 
same level of risk. 

Despite that, there are some disadvantages or 
limitations to Mean-Variance (MV), such as 
parameter uncertainty, which is a significant issue 
in optimization problems. The uncertainty in market 
parameters affects the best approach of the problem 
in the Markowitz model, so the results are 
unreliable and the computational complexity is 
high, and the input problem is required for 
calculations where an investor obtains the estimate 
(return, variance, and covariance) for each stock / 
securities included in the portfolio. If the portfolio 
contains N assets, an estimate of N returns, an 
estimate of N variance, and an estimate of the 
covariance of N (N-1) / 2 are required, and the 
result is 2N + N (N - 1) / 2, so that as the number of 

assets in the portfolio grows, so does the total 
required parameter/estimate, because the covariance 
between each asset must be estimated [7]. 

2. RELATED WORKS 

The Markowitz model's limitations prompted 
the development of new theories in portfolio 
problems. Konno and Yamazaki [8] developed the 
earliest linear model for portfolio selection. This 
model is in the form of linear programming, 
making it easier to use for optimizing large 
portfolios. Furthermore, because this model does 
not need to calculate the correlation and covariance 
of each asset return, the computation process is 
faster and more efficient. The linear version of this 
model employs a risk function distinct from the 
classic portfolio variant, more particularly the 
absolute deviation portfolio. A noteworthy 
hallmark of this model is that no probabilistic 
approximations are created on the security level of 
returns, whereas the multivariate normal 
distribution model is demonstrated to be 
indistinguishable to the Markowitz model as 
provision for the rate of return. 

Mansini [9], in addition to Konno and 
Yamazaki, created a portfolio optimization 
optimization model using a linear program, which 
resulted in portfolio optimization using a linear 
program and demonstrated that LP (Linear 
Programming) was more reliable than QP 
(Quadratic Programming). 

Then Zenios and Kang [10] developed the 
Konno and Yamazaki model, which yielded the 
Mean Absolute Deviation (MAD) model for 
mortgage-backed portfolio optimization securities 
by demonstrating how a suitable choice of 
coefficients in linear combinations yielded a model 
identical to Konno and Yamazaki, but with half the 
number of constraints. The MAD model is also 
regarded as a viable alternative to the traditional 
MV model because it considers absolute mean 
deviations rather than standard deviations [11]. 
Feinstein and Thapa [12] independently obtained 
comparable results, namely that, some of assets in 
the best-performing portfolio with no non-zero 
asset limits (assuming no upper bound) is at most 
2T + 2, where T is the number of time periods for 
estimating profit distribution asset parameters. The 
amount of non-zero assets in the portfolio is 
optimal in this formulation. 
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Furthermore, Zymler [13] contends that 
portfolio optimization responds to investment 
uncertainty by selecting a portfolio that maximizes 
profits while achieving a certain level of risk that is 
calculated or, more accurately, minimizes variance, 
with the constraints obtained at a predetermined 
rate of return. 

Furthermore, Valle [14] presents three portfolio 
optimization models for three distinct problems. 
The first issue concerns the selection of an 
Absolute Return Portfolio (ARP). ARP is 
commonly regarded as a financial portfolio 
designed to generate high returns nonetheless of 
how the fundamental market enact. The presented 
program is a three-stage zero-integer solution to the 
ARP selection problem. The second issue to 
consider is creating a Market Neutral Portfolio 
(MNP). 

MNP is generally defined as a financial 
portfolio that (ideally) outperforms the underlying 
market. MNP was designed with mixed-integer 
nonlinear programming (MINLP) in mind, with the 
goal of minimizing the absolute value of the 
correlation between portfolio returns and 
underlying benchmark returns. The third issue is 
about Exchange-Traded Funds (ETFs). ETFs are 
open-market funds whose performance is typically 
linked to a benchmark index. Performance studies 
are also discussed in depth in the ETF market, with 
the conclusion that ETF performance is consistently 
low. More than just index tracking. Furthermore, 
MINLP is presented on the topic of selecting assets 
that comprise ETFs. 

Hosseinia and Hamidi [15], unlike previous 
researchers, developed a general fund investment 
portfolio optimization model using a fuzzy 
approach. Houda [16] presents two numerical 
methods of mathematical optimization problems for 
one and multiple purposes (ILP, IGP), with two 
values (0 and 1) as decision variables. 

Rankovic [17] repurposed Markowitz's 
measuring instruments in 2016. Rankovic models 
the portfolio optimization problem with the new 
mean Value at Risk (VaR) optimization method, 
with VaR approximated using the univariate 
Generalized Auto Regressive Conditional 
Heteroscedasticity (GARCH) volatility model. 

Rahnama [18] conducted a study in the same 
year that focused on the Markowitz MV portfolio 
optimization optimization problem with cardinality 

constraints and the dependent variable called the 
modern portfolio optimization problem, which is a 
MINLP problem and is known as the NP-Hard 
problem. Due to the complexity of the covariance 
matrix structure, precise methods such as branching 
and cutting, even when resolved by CPLEX, cannot 
solve large samples in a reasonable time. 

In other words, as more securities are added to 
the portfolio, the calculation grows geometrically 
because the number of correlation coefficients 
considered for the covariance matrix is (n-1) / 2 
independent entries, requiring a large number of 
combinations to be calculated in order to select the 
non-well-correlated assets from the matrix 
covariance. The complexity of portfolio selection 
problems, as well as the need to select optimal 
portfolios in a reasonable time in the real stock 
market where transactions must be quick, 
necessitate efficient methods to interpret portfolio 
selection problems that take into account the trade-
off between solution quality and computation time, 
which is the goal of this study. 

A foundational assumption on Markowitz 
model is that the allocation of the assets return is 
normal [19]. However, soon later, Mandelbrot [20] 
and Fama [21] suggested that this distribution 
would not be normal in 10 general. It is also further 
certified empirically that asset returns exhibit fat 
tails and asymmetry [22]. Besides risks measured 
by variance, there are risks controlled by skewness 
and kurtosis as well [23]. Therefore, generalized 
Markowitz models taking into account skewness or 
(and) kurtosis have been becoming a research 
frontier, see [24]–[27] and references therein. As 
variance is related to a quadratic polynomial, the 
mean-variance model gives a quadratic 
programming [28]. Likewise, a generalized 
Markowitz model involving skewness and kurtosis 
will give a polynomial optimization problem 
involving cubic and quartic polynomials [27]. In 
general, a polynomial optimization problem is 
nonconvex and NP-hard to solve [29]. Thus, global 
optimal solutions to the proposed generalized 
Markowitz models cannot be found with a 
guarantee, and in turn it becomes subtle to either 
compare or give a conclusion for these models 
precisely. This notorious property of general 
polynomial optimization 20 problems therefore 
becomes a huge obstacle for applications of 
generalized Markowitz models. Nevertheless, 
various approaches have been proposed for solving 
generalized Markowitz models, see [27], [28], 
[30]–[33]. 
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Using previous research findings, the author 
conducted a study utilizing an alternative method to 
optimize the portfolio, namely the active constraint 
strategy or method. The MV model has never been 
used in conjunction with this method before. This is 
why the MV model was chosen as one of the 
variables in this study. 

According to Chinneck [34], active constraints 
include all equality constraints and inequalities at 
the point of the equation. This definition includes 
all inequalities between active constraints; it is 
related to the nonbasis variable. The optimal point 
will yield a solution. Further investigation will 
reveal the location of the test point and vice versa. 
This satisfies the requirement that the majority of 
the variables influence the active constraint at the 
LP point of optimum relaxation. The active 
constraint strategy, according to Mawengkang [35], 
is a strategy for searching for global optimal 
solutions by removing non-base variables from its 
boundaries so that the basic feasible solution is 
close to its limit and combined with the concept of 
superbasis variables, namely variables that are not 
at the limit. The active constraint method has the 
advantage of taking returns into account when 
determining risk. 

Active constraints, according to these 
definitions, are constraints that form an extreme 
point. Inactive constraints, on the other hand, are 
constraints that do not form an extreme point. 
Redundancy occurs when a constraint does not 
determine which part of the feasible area it is in. A 
feasible solution to an optimization problem is the 
set of values for the decision variables that satisfy 
the constraints at the same time. The existing 
constraints define the solution's feasible region. The 
best interpretation is a set of decision variable 
values that satisfy all of the constraints. 

There are two methods for optimizing the 
model: linear programming and non-linear 
programming. Using the amount of information 
available, the linear programming method can be 
used to clearly formulate problems. After the 
problem has been thoroughly defined, the next step 
is to convert it into a mathematical model. 

Minimize: ���⃗� 

 �⃗ = ���, ⋯ , �
� ∈ �
 

 � ≤ �� ≤ ��  � = �, … , � 

Constraint: ����⃗� ≤ 0 � = �, … , � 

 ℎ���⃗� = 0 � = � + 1, … , � 

The search space, S, is identified as an n-
dimensional rectangle in �
�� ⊆ �
�, and the 
objective function f is defined on it. A lower and 
upper bound define the variable domain. An 
additional set of constraints ��� ≥ 0� defines a 
feasible area  ⊆ �, and �⃗ is defined on a feasible 
space ��⃗ ∈  ∈ ��. The active constraint at �⃗ is the 
boundary �� satisfying ����⃗� = 0 at any point �⃗ ∈ . As a result, the equality constraint ℎ�  is active at 
all � points [36]. 

Active constraint strategies are being 
researched. Mawengkang [35] efficiently solves 
non-linear mathematical programming problems by 
combining the active constraint method with non-
basis variables. After ignoring the integral 
requirement and solving the problem, this strategy 
is accustomed to oblige the correct non-integer base 
variable to shift to a point integer neighborhood. 

Erwin [37] discusses nonlinear integer 
programming problems that are large-scale, highly 
combinatorial, and highly nonlinear. This problem 
is structured by a subset of variables bounded to 
undertake discrete, linear values that can be 
separated from continuous variables by providing a 
direct search method to achieve integer feasibility 
for a class of mixed non-linear programming 
problems in a moderately short time. The direct 
search method combines the active constraint 
method and the concept of a superbase with a 
strategy of removing non-basic variables from 
constraints. 

Mansyur [38] conducted another study on a 
subset of the nonlinear mathematical programming 
problems discussed in this study. To efficiently 
solve problems, a technique has been devised to 
free non-basic variables from their constraints in 
conjunction with the active restriction approach and 
the concept of the magnificent foundation. 
Following ignorance of the integral requirement 
and resolution of the problem, this method is 
applied to drive the appropriate non-integer basis 
variables into their integer point environment. 

Tambunan [39] also presents a solution based 
on active constraints for dealing with specific 
MINLP classes. The variable of the superbasis idea 
that is not closely bound to obtain the active 
constraint from the nonlinear objective and the 
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constraint function is the variable that is not closely 
bound to obtain the active constraint from the 
nonlinear objective and the constraint function. 
Active constraints are used to determine a global 
optimal point where a feasible solution approaches 
its limit. 

Sitopu[40] discusses nonlinear mathematical 
programming problems that are specialized in 
structures distinguished by a subset of variables that 
are limited to assuming discrete values, are linear, 
and can be separated from continuous variables in 
another study. Combining the active constraint 
method with a strategy for releasing non-basis 
variables from the limit has resulted in the 
development of a strategy for releasing non-basis 
variables from the limit. This procedure is used to 
coerce the corresponding non-integer base variable 
into the integer point environment. 

3. PORTFOLIO OPTIMIZATION MODEL 

The investor utility function, which serves as 
the foundation aimed at reducing risk factor 
tolerance, is discussed first in this mathematical 
model. Second, without risk-free assets, investment 
portfolio modeling discusses the Mean-VaR. 

3.1 Investor Utility Function 

Individual investors generally have different 
equations of curves or utility functions based on 
their risk tolerance in investing. The investor's risk 
avoidance function can be determined based on a 
person's utility function. The utility functions 
discussed here are in square form. 

Let ! represent the investment property 
(funds). Assume that an investor also has a 
rectangular utility function, as shown below [41], 
[42]: "�!� = ! − $!%; with parameter coefficient $ > 0. 

This utility function's first and second 
derivatives are as follows: " ′�!� = 1 − 2$! > 0 for ! < 1/2$ and " ′′�!� = −2$ < 0 

One of these investors' risk aversion function *�!� 
can be defined as follows: 

*�!� = " ′′�!�" ′�!� = −2$1 − 2$! = 2$1 − 2$! 

As a result, the risk tolerance factor + can be 
calculated as follows: 

+�!� = 1*�!� = 1 − 2$!2$  

If the initial funds are invested ! = !, , the 
following variables become risk tolerance: 

+�!,� = 1*�!,� = 1 − 2$!,2$  

The risk tolerance factor, which is then used to 
create an optimal portfolio in accordance with 
Value-at-Risk, is discussed further below. 

3.2 Modeling Mean-VaR Portfolio 

Optimization 

Discrete time portfolios are mentioned in this 
section. Assume the return on asset � where � =1,2, … , - and - is the total number of assets in the 
portfolio. The portfolio return is the average 
weighted return of the portfolio's assets [43]. If the 
investor selects a portfolio with the following 
vector weights: 

./ = �.�, … , .0�, 1 .� = 10
�2�  

where .� is the proportion (weight) of funds 
invested in asset �, then the vector portfolio weight ., 34 return is provided by [44]: 

34 = ∑ .�3�0�2�    (1) 

The average portfolio (expected return) 64 is 
given by equation (1): 

64 = 7[34] ∑ .�7[3�]0�2� = ∑ .�6�0�2�  
     (2) 

And the :4% portfolio variance is calculated as 
follows: 

:4% = Var 34 = 1 1 .�.�Cov (3� , 3��0
�2�

0
�2�= 1 1 .�.�:��0

�2�
0
�2�  

     
     (3) 

The :�� expresses the covariance between � and � shares. That is, it is written as follows: :�� =  Cov ;3� , 3�< = 7=�3� − 6���3� − 6�> = ?��:�:� 
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     (4) 

Where ?�� is the correlation coefficient between 

asset returns � and �, and :� = @:�% is the standard 
deviation of asset returns �[45]. 

Assume the Σ covariance matrix and the identity 
matrix are as follows: 

Σ = A :��:�% … :�0:%�:%% … :%0:          ∶          ∶          ∶:0�:0% … :0%
E and 

F = A1       0     …       00       1     …       0:        ∶        ∶        ∶0       0     …       1E 

where :�� = :�% with � = 1, … , - 

Furthermore, the vector equation can be used to 
express the expected portfolio returns in equation 
(2) as follows: 

64 = 7=34> = ./6   (5) 

and the variance equation (4.2.3) is as follows: 

:4% = Var ;34< = ./Σ.  (6) 

According to [46], [47], the risk measurement 
model is Value-at-Risk for Portfolio G, expressed as H��4 = −!,I64 + JK:4L. The Value-at-Risk for 
portfolio p can be demonstrated using equations (5) 
and (6) as follows: 

H��4 = −!,Iw/6 + JN�w/Σw��/%L (7) 

Where the sign (-) portrays a loss, !,  represents 
the initial capital invested, and JK represents the 
percentile of the standard normal distribution when 
the level of significance is given �1 − O�%. 

Furthermore, an efficient portfolio is defined as 
follows: 

Definition 1[48]. 

If there is no G portfolio with 64 ≥ 64∗ and H��4 < H��4∗, the G∗ portfolio is called (Mean - 
VaR) efficient. 

Thus, if the risk of portfolio investment is 
measured using Value-at-Risk, then the investment 

portfolio optimization problem will be solved using 
Markowitz's, resulting in [49]: 

Maximum R2+64 − H��4S 

Constraint ∑ .� = 10�2�  

If the initial investment is !, = 1 unit of 
money, the objective function is as follows: 

Given H��4 = −!,I64 + JK:4L then, 2+64 − H��4 2+64 + !,I64 + JK:4L 2+64+!,64+!,JK:4 

Because !, = 1 unit of money, so 2+64 + 64 + JK:4 �2+ + 1�64 + JK:4 

It is then obtained. 

Maximum R�2+ + 1�64 + JK:4S 

Constraint ∑ .� = 10�2�   (8) 

with + risk tolerance factor owned by investors. 
Because 64 = w/6 and :4% = w/Σw Equation (8) 
can be expressed as follows in linear algebraic 
form: 

�2+ + 1�64 + JK:4 as well as 

Maximum  �2+ + 1�w/6 + JK�w/Σw��/% 

Constraint  w/T = 1  (9) 

The Mean-VaR portfolio investment 
optimization problem is represented by equations 
(8) and (9). 

The active constraint method is used in this 
study to find a solution to the Mean-VaR portfolio 
investment optimization question. 

4. METHODS FOR OPTIMIZATION 

BASED ON ACTIVE CONSTRAINTS 

This research looked at a class of algorithms 
wherein the search direction along the active 
constraint coat is defined as being between an 
orthogonal U matrix and a normal constraint matrix. 
As a result, if VW� = $X is the latest set of active 
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constraints � − Y, U is a � × Y matrix that looks like 
this: VWU = 0    (10) 

The following are the main steps that must be 
completed in each iteration (by producing a proper 
descent direction, G): 

1. Determine the reduced gradient �[ = U/�. 

2. Create some approximations for the Hessian 

reduction, specifically T

A
G Z GZ&

&
. 

3. Obtain approximations for systems of 

equations: U/\UG[ = −U/�   
    (11) 
by resolving the system \[G[ = −�[ 

4. Determine the direction to obtain G = UG[ . 

5. Use a line search to find the closest 

approximation to �∗ where 

*

{  feasibel}

( ) min ( )
x p

f f




 


  x p x p  

In addition to having full column rankings, e.g. 
(10) is the only (algebraically) constraint on U, and 
thus U can be a couple forms. The U parallel to the 
procedure itself, in particular, takes the form 

1 }

}

0 0 }

W b S m

Z I I s

n m s

   
      
         (12)

 

This is a simple description that will be used for 
exposition in the subsequent segment, but it should 
be indicated that it only works computationally 
with the � and triangular (LU) factorizations of B. 
The U matrix is certainly not calculated in its 
entirety. 

U, whose column is orthonormal �U/U = F�, is 
recommended for good reason. The main advantage 
of the U transformation is that it does not initiate 
redundant condition into the problem reduction (see 
steps A–D aforementioned, specifically equation 
(11)). This method has been used in programs in 
which U is definitely accumulated as a dense 
matrix. The LDV factorization of the matrix [] �] 
allows for the expansion to the expansively 
scattered / sparse linear constraints: 

[] �] = [^ _]`H 

where ^ is a triangle, ` is a diagonal, and 
1/2

D V  is normal, and ^ and H are accumulated as 
products.  Despite that, if � has numerous columns, 
this factorization will always be much denser than ]'s LU factorization. It is thus based on 
performances by continuing with U in (12). 
Simultaneously, be aware (due to ]a�'s unwelcome 
appearance) that B must be cared for as best as 
possible. 

Summary of the procedure: 

This section provides an overview of the 
optimization algorithm. 

Assume you have the following items: 

1. [] � -]� = $,  ≤ � ≤ � is satisfied by 

a viable vector �. 

2. The equivalent function value ���� and the 

gradient vector ���� = [�b �c �0]/. 

3. The number of superbasis variables, Y�0 ≤Y ≤ � − ��. 
4. Factorization, LU, on the base matrix ]  � × �. 
5. The factorization, RTR, of the quasi-Newton 

approach to the Y × Y matrix is U/\U. (It 

should be noted that \, U, and U/\U are 
never truly counted). 

6. A vector rr that meets ]/d = �b. 

7. The reduced gradient vector ℎ = �c − �/d. 

8. TOLRG and TOLDJ both have small 
positive convergence tolerances. 

The portfolio model to be solved is derived 
from equation (9), namely 

Maximum I�2+ + 1�./6 + JK�./Σ.��/%L 
Constraint ./T = 1 

This model contains a non-linear form of the 
objective function, as has been pointed out. 

The Generalized Reduced Gradient method is 
used to solve the model by first using the 
Langrange function and then continuing as stated in 
the algorithm. 

The algorithm will then proceed as follows: 
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Step 1. (Convergence testing in a known 

subspace). If ‖ℎ‖ > TOLRG, proceed to 

step 3. 

Step 2. ("PRICE", i.e., calculate the Lagrange 
multiplier, add one superbase). 

(a) Determine m = �0 − -/d. 

(b) Choose 

 
1 2

TOLDJ TOLDJq q     , the m's largest element that corresponds to the 

variables in its upper (lower) bound. If not, 
STOP; Kuhn-Tucker's essential 

requirements for an optimal solution have 
been met. 

(c) If this is not the case, 

(i)  Select � = �� or �% based on nmopn =max �nmopn, nmotn�; 

(ii)  Insert �o as the new column�; 

(iii) Insert m� as a new ℎ element; 
(iv) Sum up a new relevant column to �. 

(d) Multiply S by 1. 
(Note: MINOS also has a DOUBLE 
PRICE alternative, which provides several 
non-basic variable to be a super base). 

Step 3. (Determine the search direction, G = UGu). 

(a) Complete �/�Gc = −ℎ. 

(b) Complete LU Gb = −�Gc. 

(c) Make G = wGbGc0 x. 
Step 4. (Test Ratio, "CHUZR"). 

(a) If Omax ≥ 0, the highest O value of � + OG 
is feasible. 

(b) If Omax = 0, proceed to step 7. 

Step 5. (Line search). 
(a) Determine O, an O∗ approximation in 

which  �� + O∗G� = min,{|}Kmax ��� + ~G� 
(b) Convert � to � + OG and � and � to their 

respective values in the new �. 

Step 6. (Calculate the reduced slope, ℎ� = U/�). 

(a) Complete "/^/d = �b. 

(b) Determine the new reduced slope, ℎ� =�c − �/d. 
(c) Using O, Gc  and metric-variable recursion 

on �/�, modify � and switch in reduced 
gradient, ℎ� − ℎ. 

(d) Set ℎ� − ℎ. 

(e) If O < Omax proceeds to step 1. Because no 
new constraints are discovered, they 
remain in this subspace. 

Step 7. (Exchange base if required; eliminate one 
superbasis). Here, O < Omax has reached 
one of its limits, and for some G�0 < G ≤� + Y�, the variable associated to the G 
column of [] �] has also attained one of 
its limits. 

(a) If the base variable exceeds the limit �0 <G ≤ ��, 
(i) Replace the G-th column with the �-th 

column of � ]�b�� and � ��c/� 
where � is picked to maintain ] 
nonsingular (this involves dG vector 
that fulfills "/^/d4 = T4); 

(ii) Changes to ^, ", � and d as well as 
changes to ] to reflect these changes; 

(iii) Find the latest lower gradient ℎ = �c −�/d; 
(iv) Go to (c). 

(b) If not, the variable superbase reaches its 
limit �� < G ≤ � + Y�. Determine � =G − �. 

(c) At the appropriate limit, construct the �th 
variable in nonbasis�, as follows: 

(i) Remove the �th column from � ��c/� and � �ℎ/�; 
(ii) Add � to the triangular matrix. 

(d) Subtract Y by one and return to step 1. 

5. CONCLUSIONS 

Portfolio optimization problems are typically 
represented by a non-linear program. The objective 
function contains nonlinearities, which are always 
quadratic in form. A mathematical method, namely 
the active constraint, is required to solve this 
portfolio optimization problem. The steps for 
completing this portfolio optimization model begin 
with the Langrange function and then proceed with 
the algorithm. As a result, the portfolio 
optimization problem that has been developed and 
can be solved by deciding which investment to take 
with the decision variable (binary) is w. 
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