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ABSTRACT 
 

The coordination of a flock of robots is a high demand application in applications such as motion planning, 
navigation, herding (tracking and/or tracing), area coverage (exploration, search and rescue, etc.), object 
transportation (surrounding and moving together), and compound tasks, all of which are currently heavily 
researched in robotics. Many approaches have been proposed to solve this problem, but they largely 
compromise system characteristics such as fault tolerance, capacity, efficiency, and in particular cost, since 
real implementations require special hardware. This paper proposes a coordination strategy for a system 
composed of small robots of minimalist design under the condition of minimum processing and sensing 
capacity. The communication requirements have been limited to a local communication strategy sufficient 
to achieve the relative orientation of each swarm member. The usefulness of the scheme is evaluated by 
simulation in specialized search tasks in an unknown region. The results show the high capability of the 
scheme and the ease of implementation on real prototypes. 
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1. INTRODUCTION  
 

Multi-agent systems in robotics are becoming a 
field of application with strong commercial 
implications at the industrial level. Many tasks are 
inefficient when performed by an autonomous 
robot, and the collective models observed in 
animals are very attractive for this type of task. One 
of the basic behaviors of a system composed of a 
group of robots is its movement in a flock [1, 2]. 
This behavior is characterized by the simultaneous 
movement of all the agents of the system as if the 
system were a single entity [3]. This functional 
characteristic seeks to mimic the dynamics of 
groups of animals such as birds or fish when they 
perform a complex task together [4]. In the 
biological model, the flocking behavior increases 
the sensing and response capacity of the system 
(one of the individuals can detect a problem, and 
make the whole system respond accordingly), a 
feature that is also very desirable in a swarm system 
composed of robots or artificial agents [5, 6]. To 
achieve this behavior requires that each agent in the 
system adjusts its speed and alignment (i.e., defines 
its movement strategy) in correspondence with the 
movement of the other robots, avoiding collisions 
while responding to the global dynamics of the 
system [7, 8]. This scheme allows proposing a 

multi-agent system architecture that can be 
controlled for the development of complex tasks. 

Considering the implications of the use on real 
prototypes, this research proposes a global flocking 
behavior strategy for small robotic platforms [9]. 
This motion strategy turns out to be key in robotic 
tasks of motion planning, navigation, herding 
(tracking and/or tracing), area coverage 
(exploration, search and rescue, etc.), object 
transportation (surrounding and moving together), 
and compound tasks from the previous ones [10, 11, 
12, 13]. In particular, we focus on the task of 
searching for elements of interest in an area, such as 
locating people in collapsed environments, or any 
other specific element in an environment, ignoring a 
priori quantity and characteristics of the 
environment [14, 15]. The algorithm is proposed 
and evaluated as a hardware platform-independent 
strategy. 

One of the typical tasks of animal flocks is to 
forage in an environment. The paper presents a 
search algorithm based on flocking behavior and 
local interaction for a swarm of small robots [16, 
17]. It is a navigation scheme that mimics the 
behavior of swarms or flocks that explore an 
environment in search of specific elements, in 
which the group of agents chases a leader along 
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with a navigation environment, while each of the 
agents performs specific searches in the 
environment [18]. The identification of elements of 
interest in the environment should allow the 
formation of sub-groups in regions of the 
environment identified as possible solutions to the 
search problem [9, 19, 20]. The search parameters 
may correspond to the vital signs of a person in a 
collapsed environment, the detection of a metal in 
an area with anti-personnel mines, or the 
morphological characteristics of an endangered 
animal in its natural habitat. 

Like any other complex system, navigation in 
flocks presents certain problems. Agents in the 
system can collide with each other, all individuals 
must navigate the environment while avoiding 
obstacles, and different elements in the environment 
can affect the navigation path according to the 
sensing capabilities of the agents [21, 22, 2]. Robots 
are designed to identify specific targets in the 
environment (people, metals, certain parameters in 
images, etc.) as well as possible obstacles that limit 
their movement and other agents [23]. Since the 
location within the system is different for each 
agent in the system, each individual will have its 
sensing capability relative to the region of the 
environment in which it is located [24, 25]. When a 
sub-group of agents detects a search parameter in a 
region, the algorithm indicates that this group of 
agents should remain in the region. Also, the more 
agents in a region, the more attractive the region is 
to other agents [26, 27]. This behavior mimics 
bacterial Quorum Sensing (QS), in the biological 
model, a bacterium recognizes the population 
intentionality through the concentration of 
chemicals it deposits in the environment when it 
detects a high intensity it understands that there is a 
large number of individuals, and initiates an attack 
(virulence), which in a robot is expressed as the 
convergence to a possible solution (stay in the 
region). These biological behavioral schemes can 
be integrated to form a simple but high-
performance solution. 

Most of the solutions proposed in the literature 
for bouncing flocks fall into the problem of the 
actual implementation. The schemes require 
complex robots capable of executing the algorithms 
in real-time, which are too complex for small robots 
with hardware limitations. In addition, many of the 
strategies still implement a central control unit, 
which reduces the robustness of the system and 
goes against the decentralized principles of these 
systems. 

 

2. PROBLEM STATEMENT 

The problem can be defined as follows. A swarm 
of agents, with local sensing and displacement 
capabilities, composed of n individuals, all identical 
in structure and capability, are deposited in a 
connected, compact, planar environment identified 
as W. The particular design of each agent is not 
critical to the algorithm; instead, the properties of 
the motion are fundamental. The movement of the 
agent responds to local readings of the environment 
as well as to the tracking of the leading agent. 

This swarm of agents must be able to self-
coordinate and define its position and movement 
strategy according to the location of the other 
agents in the system. The self-organization strategy 
must allow the joint navigation of the system and 
the development of basic tasks throughout the 
environment. 

W can be decomposed into connected regions 
denoted by r, capable of containing a subset of n. 
The collection of all regions is denoted by R. Some 
of these regions contain target points to be located 
by the agents as the convergence of their behavioral 
algorithm. Using Linear Temporal Logic (LTL) to 
specify the task, if Π = {π1, π2, ..., πn} is a set of 
Boolean propositions such that πi is true if and only 
if a subset of n is in ri ∈ R, then the navigation and 
search task can be specified for each agent as: 

Navegation and search for targets: 

(♢π1 ∧ ♢π2 ∧ ··· ♢πn) U ♢πk (1) 

Where the following temporal operators are used:  

 ○: Next  

 v: Disjunction   

 ∧: Conjunction  

 =>: Implication  

 <=>: Equivalence  

 ♢: Eventually  

 []: Always  

 U: Until  

and πk is a target region. Activation of the QS 
causes the robot to move from an initial explorer 
state o to a subsequent virulent state o', which is 
specified as o U o'. 

The agents are not familiar with W, they do not 
know where the target points are, nor do they know 
how many of them there are. Their possible location 
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can only be determined by reading their sensors, 
which have a limited range (much smaller than the 
size of W). There are regions in W inaccessible to 
the agents called obstacles, the collection of all 
obstacles is called O, and W - O = E, which 
corresponds to the free space along which the 
agents can navigate. The movement of the system is 
controlled by the readings of each agent, and in 
particular of the leading agent. 

As a general case, agents have contact sensors 
(very short-range obstacle distance sensors) that 
allow them to identify obstacles, other agents, and 
∂W. In such circumstances, the agents will change 
their navigation direction randomly relying on the 
dynamics of the system to cover the whole 
environment. They also possess specific sensors of 
limited range (but sufficient to detect targets) and 
are centered on the vertical axis that allow them to 
detect target regions. It is assumed that agents can 
identify target regions if they are in the range of the 
sensors and those other agents cannot occlude the 
agent's sensing capability. The specific type of 
sensors is not important, but their ability to identify 
specific elements in the environment at close range, 
including other agents. In principle, the information 
collected by an agent is not shared as such to the 
other members of the system, which allows for a 
much simpler and relaxed communication system. 

The motion control policy of each agent i dictates 
that it must follow the movements of its target agent 
j unless it identifies a target region, which has a 
higher degree of attraction for the agent. If the two 
agents are close to each other (at a distance of less 
than ρ), then the two agents are considered as one as 
long as this condition holds. The relationship 
between an agent and its target agent cannot be 
reciprocal, i.e., these two agents cannot mutually 
establish the other as a target, since they would stop 
moving and separate from the system. One of the 
agents, the lead agent, will navigate the 
environment without following any agent. The 
system will always have at least one leading agent, 
and any agent in the system can be a leader. The 
assignment as lead agent is given if the agent does 
not detect other agents to follow. This agent 
navigates the free space avoiding obstacles until it 
finds an agent to follow. Agents separate from the 
system eventually join it, and those that are 
followed direct the navigation of the system and 
sub-systems that form along with the development 
of the task (Fig. 1). 

 

Figure 1: Pseudo-Code Of Control Policy For Each 
Flock Member 

 
3. METHODS 
 

Most of the strategies for swarm-like systems 
have only been demonstrated on prototypes with a 
small number of agents, largely because the 
algorithms require expensive robots with high 
processing, communication, and sensing 
capabilities. Not only is it costly to implement a 
large swarm with these robots, but it is also costly 
to reduce the size of existing robots while 
maintaining these features. These features also go 
against the minimalist principles of agents in these 
types of systems. This research seeks to propose a 
coordinated navigation strategy of a multi-robot 
system that retains a simple structure to implement 
on low-cost robots, which implies hardware with 
limitations in processing, sensing, and 
communication. The movement strategy of our 
multi-robot system is flocking, which will allow the 
search for specific elements in the environment. 

Flocking is characterized by the coordinated 
movement of agents according to a target. The goal 
of our system is to explore the entire free space E in 
search of a region of interest πk. This region 
contains a special element that can be detected and 
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identified at close range by any of the agents, so the 
exploration turns out to be more efficient with a 
larger number of individuals. However, given the 
limited processing capacity of the agents, the 
decision-making is restricted to following simple 
control policies. This design principle goes hand in 
hand with biological models (fish, birds, bees, etc.) 
in which system dynamics emerge as a consequence 
of simple local interaction. These control policies 
must succeed in defining for each individual its 
relative position concerning the other agents and its 
movement strategy (direction and speed). 

The strategy we propose is based on the ability of 
each robot to identify obstacles at close range 
around it and to be able to discern if it is another 
agent in the system. This is a common strategy in 
swarm systems consistent with biological systems. 
Robots cannot estimate their odometry, nor is it 
required to define their motion. Instead, it is 
proposed to identify only their location relative to 
their neighbors and obstacles in the environment. 
There is also no communication between agents 
beyond this ability to detect each other, and relies 
on the self-organization of the system to produce 
higher-order dynamics to solve the task. Unlike 
other schemes, we do not use anchor nodes in our 
proposal, all agents have an identical design 
(homogeneous agents). This feature increases the 
robustness and failure resilience of our scheme 
(damage of any of the agents does not affect the 
system performance). 

A serious functional problem with swarm 
prototypes is that the location of individuals in the 

system depends on their communication, and if the 
communication is slow compared to the speed at 
which the agents move, it is impossible to estimate 
positions accurately. We solve the problem by 
simplifying the communication to a scheme in 
which each agent is informed from its local 
readings, which includes the identification of 
nearby agents. This eliminates communication 
delays, as well as protocol issues and the amount of 
data to be transmitted. In this way, the noise 
produced by the movement of the robots during 
transmission is eliminated. 

Each agent in the system is capable of measuring 
the distance to neighboring robots within its range. 
Each agent can be assimilated to a node or vertex of 
a graph with edges (undirected graph) that connects 
the agents aware of the presence of its neighbors 
(connects the agents it detects with its sensors, Fig. 
2). All agents in the system are identical, or with 
statistically negligible variations, so they all have 
the same sensing range, which causes the detection 
to be mutual or bidirectional. If an agent detects at 
least three other agents around it, from these 
distances it can establish its relative position by 2D 
trilateration, and consequently adjust its direction of 
movement and velocity (follow the closest one, 
increase its velocity if it is too far away, and reduce 
its velocity or move away if it is too close to 
another agent). If there are less than three agents 
around it, it simply follows the closest one, and if it 
detects none, it scans the environment looking for 
agents, target region, and dodging obstacles. 

 

Figure 2: The Relative Positioning Of Agents In The System. The Nodes In Green Correspond To Agents. Agent 1 Seeks 
To Establish Its Relative Location 
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From the perspective of Agent 1, using its 
sensors this agent detects the distance to the three 
closest agents: Agent 2 (distance d21), Agent 3 
(distance d31), and Agent 4 (distance d41). These 
three distances correspond to the radii of three 
circles centered on Agents 2, 3, and 4, which 
intersect at the position of Agent 1 (Fig. 2). If one 
takes as the origin of the two-dimensional plane the 
position of one of the detected agents, for example, 
the closest one (assuming it is Agent 2, with d21 < 
d31, and d21 < d41), then it is possible to calculate the 
relative position of Agent 1 concerning the closest 
agent and to track it over time by simple geometric 
relations (the agents correspond to the vertices of 
triangles for which Agent 1 measures the sides and 
angles, note the blue triangle in Fig. 2, and the 
triangles formed with the distances that can be 
solved with the cosine theorem, determining the 
relative coordinates of the other agents). 

This strategy forms the search algorithm for the 
target agent. To complete the movement strategy, a 
dynamic is programmed that makes the agent be in 
continuous movement, at the same time that it 
dodges obstacles and performs local readings of the 
environment. When these readings produce a search 
value above a certain region threshold, the agent 
stops following the target agent and stays in the 
region. When the population in this region exceeds 
a certain population threshold, a Quorum Sensing 
(QS) mechanism is triggered that causes the agent's 
behavior to change from explorer to virulent. This 
change indicates that the agents have located the πk 
target region within the W environment. 

 

 4. RESULTS 
 

The strategy was implemented on a swarm 
consisting of the TurtleBot 3 Burger by Robotis 
(Fig. 3). This platform is 13.8 cm x 17.8 cm x 19.2 
cm in size, but its great advantage is that it has a 
360-degree LiDAR sensor (Laser Distance Sensor 
LDS-01) capable of easily detecting distances to 
obstacles around the robot (detection distance 12 
cm to 3.5 m, 1-degree angular resolution, and 
300±10 rpm scan rate). Similar robots were 
assembled to evaluate the performance of the 
strategy with similar but not identical agents. In any 
case, the LiDAR configurations and other features 
were similar to allow a homogeneous system. This 
is an understudied feature on real platforms that 
provides real operational capabilities of these 
systems. 

 

Figure 3: TurtleBot 3 Burger by Robotis 

The simulations of this system were performed in 
a proprietary application developed in Python 
3.7.10 with support for Numpy 1.19.5, Scipy 1.4.1, 
and Matplotlib 3.2.2. The simulations assume the 
idealized characteristics of the TurtleBot 3 Burger 
robot, i.e., circular robots with a radius of 0.105 m, 
the maximum forward speed of 0.22 m/s, with 
perfect sensing, and no explicit communication 
with other robots. The algorithm was implemented 
under the principle of collective movement along 
with the environment with a minimum of collisions 
between robots. The first test consisted of allowing 
free navigation of the swarm without designing any 
target region. Under these conditions, the swarm 
must navigate together along with the free space E. 

Fig. 4 shows the results of one of these tests. 
Fifty agents were used in the swarm, each with a 
sensing capability of up to 3.5 m, and a minimum 
collision dodging range of 0.5 m. The test 
environment was designed with a size of 10 m x 10 
m, and three rectangular obstacles were placed at 
global coordinates (2, 4), (9, 9), and (6, 1). The 
robots were randomly placed around the initial 
point (1, 8) (the dispersion around this point 
considered the size of the robot), and the behavior 
was simulated for the equivalent of 120 s (multi-
agent system time). 

The second part of the tests consisted of 
including a target region and observing how it is 
identified by the flock of robots. This region was 
defined within the global coordinates (7, 3), (8, 3), 
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(8, 2), and (7, 2). It is a square area of 1 square 
meter in which a sub-group of the swarm should 
gather. The other conditions of the environment, 
robots, and system dynamics were kept the same. 
Fig. 5 shows the behavior of one of the tests 
performed. 

The different simulations demonstrate the 
capability of the system, and therefore of the 

proposed algorithm, to scout in a finite time the 
navigation environment as a flock of robots, while 
dodging obstacles and searching the environment 
for a region of interest. This research is currently 
continuing with the implementation of the 
algorithm on real robotic platforms. 

 

Figure 4: Flocking Simulation Starting From The Global Position (1, 8). The Captures Correspond To The Following 
Simulation Times: (a) 0 s, (b) 25 s, (c) 34 s, (d) 44 s, (e) 55 s, (f) 80 s, (g) 90 s, (h) 100 s, and (i) 110 s 
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Figure 5: Flocking Simulation With Target Region Recognition Based On The Global Position (1, 8). The Captures 
Correspond To The Following Simulation Times: (a) 0 s, (b) 10 s, (c) 22 s, (d) 32 s, (e) 42 s, (f) 62 s, (g) 72 s, (h) 92 s, 

and (i) 112 s 

 

6. CONCLUSION 
 

This paper proposes a low computational 
cost algorithm for the autonomous coordination of a 
flock of robots whose task is the exploration of an 
environment and the identification of a region in 
which it meets certain specific characteristics. We 
start from the need to implement a robust and 
homogeneous scheme (without anchor agent) 
capable of running on real hardware with low 
processing, communication, and sensing capacity, 
which allows the self-organization of its agents 

while performing the exploration of the 
environment. To this end, we propose a dynamic 
that allows the flock to explore the entire 
environment in finite time, and a relative 
localization strategy that allows each agent to 
define in a simplified way its movement strategy 
(direction and speed). Along with these algorithms, 
a reactive control strategy is implemented in each 
agent based on local readings that allow each agent 
to avoid obstacles and other agents as it moves, and 
to identify specific regions in the environment. The 
design was formulated for the TurtleBot 3 Burger 
robotic platform, replicating its functional 
characteristics in a proprietary simulator developed 
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in Python. Throughout multiple simulations, it was 
possible to establish the success of each of the 
blocks that make up the strategy, as well as its 
ability to find the solution to the search task. This 
research continues with implementations on real 
prototypes to identify limitations and possible 
improvements to develop a real-world application. 
 
7. LIMITATIONS AND FUTURE RESEARCH 
 

A large number of simulations performed 
confirmed the algorithm's ability to control the 
swarm of robots without delays in the system's 
response. Throughout the tests, it was possible to 
confirm that in 100% of the cases the system was 
able to traverse the entire free space of the 
environment and correctly avoid the obstacles in it. 
Furthermore, it was able to always find the target 
region, even when the signal in this region was poor 
or there was more than one target region (part of the 
population remained in each of the possible 
solutions). However, at this point it was impossible 
to explicitly determine the dependence of the time 
required for the sweep of the environment or the 
identification of the target region as a function of 
the system parameters, i.e., size of the environment, 
characteristics of the obstacles, population size, 
functional characteristics of the robot, and tuning 
parameters of the algorithm (quorum threshold, 
tracking signal strength threshold, and obstacle 
avoidance distance). It was possible to demonstrate 
that the time required for the development of the 
task is finite, but as the future development of this 
research, it is necessary to develop a statistical 
analysis to determine the dependence of these 
variables on the parameters of the system. 

Secondly, it is necessary to implement the 
algorithm and evaluate it on the TurtleBot 3 Burger 
robots to identify functional differences with the 
simulation model and adjust the model accordingly. 
Besides, it is necessary to identify possible 
functional problems of the system in the real world 
that prevent or limit its use, and the true scaling 
capabilities of the system. These tests should also 
include studies of the time required to develop the 
task for different parameters of the system to adjust 
the behavior of the simulation model so that it can 
be used as a validation and design tool before the 
use of real prototypes. Testing with prototypes 
should also include the study of effects on the 
system caused by significant functional variations 
between robots (as in real robots, what happens to 
the performance of the algorithm when not all 
robots work identically). 
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