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ABSTRACT

Detecting olfactory impairment using an objective diagnosis kit has been a challenge. Recently, machine
learning and deep learning models have been used on EEG data with promising results. The goal of our study
was to detect olfactory impairment through a machine learning classifier with EEG data. This was done by
identifying the important EEG data factors affecting olfactory impairment. Finally, we compared our model
to other machine learning and deep learning algorithms in order to identify possibilities for further research.
Downsampling and extracting various waves from EEG data were conducted for data preprocessing. Then,
an independent component analysis was performed to remove artifacts. Through this processing, a dataset in
CSV format was obtained. Next, we built a CatBoost classifier model because it is recent boost model and
has high performance for classification. It identified whether a subject had olfactory impairment or not. After
training with the CatBoost algorithm, we compared it to different machine learning and deep learning
algorithms. The CatBoost model showed 87.56 % accuracy, while other machine learning algorithms such
as the random forest classifier, gradient boosting classifier, XG boosting classifier, k-nearest-neighbor
classifier, decision tree classifier, Gaussian NB, and logistic regressor revealed 82.22 %, 78.89 %, 78.22 %,
75.78 %, 74 %, 69.78 %, and 41.11 % accuracy, respectively. With deep learning models, which consisted
of bi-directional long short term memory, long short term memory and a deep neural network, the
performance was 63.11 %, 51.33 %, and 60 %. The CatBoost model showed feature importance, which
revealed that the gamma wave on the Cz channel was about 20, which was the highest among the other
variables.
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diagnosis, patient factors are significant, which
means detecting malingering is difficult and affects
the reliability of diagnosis. Secondly, a subjective
1.1 Background diagnosis kit cannot distinguish between hyposmia

Olfactory impairment can be divided into  and anosmia. Lastly, there is no kit for early
normosmia, hyposmia, and anosmia. Normosmia iS  detection of dementia, brain tumors, or Alzheimer’s
a subjectively perceived standard olfactory feature, ({isease (AD). Electroencephalography (EEG) is a
typically defined as the ability to detect a large  measurement of electrical activity in the human
majority of odors tested in an olfactory test.  prajn [2]. We decided to utilize EEG signals to
Hyposmia results in diminished olfactory function, diagnose olfactory impairment because EEG has
and anosmia is the loss of olfactory function [1].  ghown promising results in detecting a number of
However there is no diagnosis kit that can  gisorders, Furthermore, in recent days, the market of
objectively and quantitatively determine impairment.  medical devices has grown faster, as shown in
Therefore, subjective olfactory test methods areused  Tgplel. Specifically, the technologies such as Deep

for diagnosis. The absence of a diagnosis kit can [ earning, Natural Language Processing have been
trigger various problems. First of all, in olfactory developed rapidly[3].

1. INTRODUCTION

e
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1.2 Objectives

We applied machine learning and deep
learning algorithms to EEG data for detecting and
discriminating olfactory impairment. Therefore, the
goal was to create an objective olfactory test method
for diagnosis and hopefully solve the problems
mentioned above. We want to come up with the
novel method of detecting olfactory impairment and
encourage the further research related to ours.
Furthermore, as we show a possibility of EEG data
for diagnosis, we believe that other data sources
could also be used as input data. To the end, our
paper shows a various possibility for upcoming
researches. For discriminating olfactory impairment,
we labelled the patient data in two categories, 1 for
olfactory impairment and 0 for normosmia. Our
research was structured in two stages. In the first
stage, we utilized the CatBoost algorithm for
discrimination and compared the result to other
machine learning algorithms such as decision tree,
logistic regression, k-nearest neighbors (KNN),
naive Bayes, random forest, gradient boosting, XG
boosting, and the light gradient boosting model
(LGBM). The second stage compares deep learning
models such as deep neural network(DNN), long
short term memory(LSTM), and bi-directional long
short term memory(Bi-LSTM) to the CatBoost
model.

2. Related Works

There are various researches conducted for
utilizing EEG data to discriminate diverse diseases
or states such as sleep stage, odors, confused states
and emotions. Those researches apply machine
learning and deep learning methods in common.
Jeon et al.[4] utilized multi -domain hybrid neural
network(HNN-multi) consisting of a convolutional
neural network(CNN) and bidirectional long short-
term memory for discriminating three sleep stages.
This research achieved F1 score of 92.21%. Li et
al.[5] applied Support Vector Machines (SVM) and
K- Nearest Neighbors (KNN) classifiers to the

resting state EEG data and achieved accuracy of 98%.

Zhang et al.[6] used K-Nearest Neighbors (KNN),

Support  Vector Machines (SVM), Linear
Discriminant Analysis (LDA), Back Propagation
Neural Network (BPNN) and Convolutional Neural
Network (CNN) to classify five different odors and
got accuracy of 82.2%. For classifying confused
state, Ni et al.[7] suggested possibility of applying
EEG data to confused state which achieved accuracy
of 73.3%. Wang et al.[8] showed possibility of
associating EEG data with emotional state by
achieving average classification accuracy of 91.77%.

3. MATERIALS AND METHODS

3.1 Data Description

Mobilab+, brain wave  measuring
equipment, was used for the EEG data. Through this
equipment, 4 types of channels were measured: Cz,
Pz, P1, P2, and Fp2. The purpose was to remove
artifacts by eye blink. Figure 1 provides the EEG
channel locations. At this time, the air presented to
the subjects was kept under the conditions of flow
rate (8 L/min), temperature (38.5°C), and humidity
(80 %). We used n-butanol (99.5 %) as the olfactory
source. The total number of subjects involved in the
experiment with the average age of the subjects
being 24.4 years (19-38). There was only one person
with olfactory impairment and forty seven subjects
who did not have an impairment

3.2 Data Preprocessing

Firstly, down sampling to 256 Hz for each
channel was conducted. We then extracted various
types of brain waves, which are alpha (8-13 Hz),
beta (14-30 Hz), theta (4-7 Hz), and gamma (3047
Hz). Subsequently, we conducted an independent
component analysis to remove eye blink artifacts and
movements [9]. To the end, we got 4 types of brain
waves from each channel through preprocessing.
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Table 1. Market size of medical devices

2016 2018 2020 2022 2023 CAGR
Hardware 19163  441.89 999.87 2219.65 3283.41 49.
Software 94091 210734 463351 9999.99 14587.7 ! 47,
Service 30825  696.04 1543.04 3357.77 47918.56 ° 48,
Total 144079 324528 7176.42 15577.40 22789.7 : 48.
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Figure 2. Result after preprocessing process
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Figure 3. Preprocessing software based on matlab

Table 2. Types of brain wave

Types of brain wave Hz
Theta 4-7 Hz
Alpha 8-15 Hz
Beta 16-31 Hz
Gamma 32-47 Hz

2.1 Boosting Algorithm

The boosting algorithm is an ensemble
algorithm that improves the prediction through
training of a sequence of weak models so that they
can be converted to strong models. The boosting
algorithm is a decision tree-based algorithm, and the
decision tree cannot handle categorical variables
directly. In other words, the general boosting
technique requires the preprocessing of categorical
variables. To this end, techniques such as one-hot
encoding are used, but this is not efficient in terms
of memory usage and speed. In addition, the
boosting technique basically builds a model for

learning residual errors, in turn learning the previous
residual errors and predicting the results. As a result,
this traditional boosting technique is vulnerable to
overfitting [10]. Figure 2 shows the sequential
process in boosting the algorithm.

2.2 Catboost Algorithm

The CatBoost algorithm is an ordered boosting
algorithm that focuses on preprocessing categorical
data and solving the overfitting problem. Unlike the
original boosting algorithms that train every residual
error in a sequence, the CatBoost algorithm only
calculates the residual error that is left on certain
data. Furthermore, by randomizing the data
sequences through random permutation on ordered
boosting, the CatBoost algorithm can prevent
overfitting. For preprocessing categorical variables,
the CatBoost algorithm calculates the sample mean
values for variables in the same category from a
dataset that has gone through random permutation.

s E}‘zl[xji =xJ] © y; +ab

Xk = 5 n
% =xl]+a
(1)
where a is the corresponding weight, P denotes the
prior value, x;, = (x%,,,,,,, x,™) is the random

vector of m features, and y, € R denotes the
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corresponding label.

The CatBoost algorithm speeds up training through
feature combinations that combine variables with the
same information gain [11]. In addition, unlike other
ensemble algorithms that use GridSearchcv or
RandomizedSearchcv  to  find the optimal
hyperparameters, the initial hyperparameter values
are well optimized and do not need to go through
parameter tuning procedures [12].

2.3 Train and Test Dataset

In this research, our final dataset contains
columns that consist of four channels (P1, P2, Cz,
Pz) and four types of brain waves for each channel
(alpha, beta, theta, and gamma). Therefore, the
number of total columns is 20. The number of rows
in our dataset is 1500. With this dataset, 70 percent
are used as training sets, and the remaining 30

percent as test sets.

ANLNAN

Figure 4. A sequential approach in boosting algorithm
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Figure 5. Final dataset with 4 types of channels and 4 types of brain waves
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Figure 6. Flowchart for CatBoost Model with EEG dataset

2.4 Catboost Pipeline

The CatBoost model can handle categorical
variables by itself, and the basic parameters are
optimized, so it goes through fewer steps than
normal machine learning analyses. Other machine
learning algorithms as well as boosting algorithms
cannot handle categorical variables directly [13].
Therefore, it should be converted to numerical data
through one-hot encoding in order to unify the range
of all values from 0 to 1 through min-max
normalization, such as expression(). Instead of
trying all the possible hyperparameters,
hyperparameter tuning through
RandomizedSearchCV could be more efficient [12].

X — min(x)

2= max(x) — min(x)

)

2.5 Evaluation of Classifier Result

The performance of the classifier was measured
by an accuracy score, which is the simple ratio of the
correctly predicted observations to total observations.

The accuracy score was calculated through scikit-
learn.

3. RESULTS

3.1 Catboost Results

The achievement of the classifier was
measured by the accuracy score. The experiment
was conducted along the CatBoost flowchart, which
does not contain other procedures such as one-hot
encoding or RandomizedSearchCV. The result was
87.56 %. The CatBoost algorithm visualizes the
feature importance of each variable, and it showed
that the gamma brain wave of the Cz channel
achieved the highest score, the second one for
gamma brain wave from Pz channel and the theta
wave of the Pz channel achieved the lowest one.
Unlike other researches mentioned above, such as
[4] and [5] which just classified the targets, and got
accuracy score, our research got difference in
finding important features among EEG channels.

3.2. Other Machine Learning Model Result
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Just like the CatBoost algorithm, we learning models, we constructed a deep neural
evaluated the achievement of the classifier by the network (DNN), long short term memory (LSTM),
accuracy score. The model we used were Random and bi-directional LSTM(Bi — LSTM) model. It
Forest classifier, Gradient Boosting classifier, XG showed that the highest accuracy was through the
Boosting classifier, KNN classifier, Decision Tree DNN model with a 60 % accuracy. Next was the bi-
classifier, Gaussian NB, and Logistic Regressor. directional LSTM model with 63.11 % and the least
The random forest classifier showed 82.22 %, accurate one was LSTM with 51.33 %. The average
gradient boosting classifier showed 78.89 %, XG accuracy score of the deep learning models were
Boosting classifier yielded 78.22 %, and the least relatively lower than he machine learning models.
accurate one was the logistic regressor, which
showed 41.11 %.
3.3. Deep Learning Model Results
For comparing our model to the deep
Visualizing Important Features
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Figure 7. Feature importance score on detecting olfactory impairment
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Figure 9. Accuracy of various deep learning models

4. DISCUSSION
4.1 Principal Finding

This research supports the possibility of
combining CatBoost based machine learning
algorithms with EEG signals as a diagnostic tool in
olfactory impairment detection. THe CatBoost
classifier model with 48 subjects showed the highest
accuracy among the other machine learning and deep
learning models at 87.56 %. As we succeeded in
discriminating olfactory impairment with machine
learning and deep learning models, it shows us the

possibility of developing an objective diagnostic tool.

Therefore, further research using machine learning
and deep learning models should be undertaken. In
addition to the EEG data used in our research, other
types of body signals could be used. With EEG data,
we can prevent patient factors that lower the
reliability of diagnosis. For instance, a patient could
be malingering for insurance money and as the
current diagnosis methods are subjective ones,
doctors or insurance companies cannot prevent
malingering. This results in losses to insurance
companies. However, if EEG data is used, patients
can be prevented from malingering. Lastly, the
CatBoost algorithm shows the feature importance,

and our suggested model shows that gamma waves
at the Cz channel have the highest feature
importance. This result means that gamma waves at
the Cz channel have the greatest influence on
olfactory impairment. Even though explainable
Artificial Intelligence (XAI) has been developed to
show feature importance in deep learning models, it
is now in the early stages so that it might take some

time to identify the highest impact feature in a model.

4.2 Limitations and Further Considerations

Our model shows an accuracy of 87.56% in
detecting olfactory impairment. However, there are

some limitations in our model. First, the sample of
data was insufficient. Subjects with olfactory
impairment were not very common, so it was
difficult to obtain enough data. As we could not have
enough data, deep learning models such as DNN,
LSTM, and Bi-LSTM could not perform well
enough compared to other machine learning models
[14]. Secondly, even though olfactory impairment
can be divided into normosmia, hyposmia, and
amosmia, we were not able to classify these three
conditions. As there were not enough data available,
we just divided them into patients or not, a binary
classification. Lastly, as we only had CSV data, we
could not apply the CNN model to our EEG data. If
there were more subjects and we had sufficient EEG
signal graph data, we could have used a CNN model.
We could have also applied an Hybrid Neural
Network (HNN) model combined with the CNN +
LSTM or CNN + Bi-LSTM model. The HNN model
could be appropriate for this research because the
EEG data was time-series, so LSTM could be
efficient for classification [15]. Therefore, for
further research, collecting a large dataset should be
considered as a top priority. When collecting a
dataset, the percentage of normal people and people
with olfactory impairment should be considered to
prevent the dataset from leaning toward normal data.
If there is a significant difference in the amount of
data between them, the result of the model is likely
to be unreliable with the possibility of overfitting
[16].

5. CONCLUSION

Our research shows the possibility of
further research into classifying olfactory
impairment by combining a model that consists of
Al based models and EEG data. We suggest that the
CatBoost classifier could work effectively on EEG
data. The accuracy of the CatBoost classifier was
higher than the other machine learning and deep
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learning based models. The model also provides a
feature importance graph that allows us to know that
the gamma wave on the Cz channel had the highest
effect on olfactory impairment. Furthermore, our
research has strength on showing a possibility of
EEG data for diagnosing olfactory impairment. As
we took the first step of the field, other researches
could follow and develop ours. There exists a
limitation in that a larger dataset is required. In the
future, further experiments should be conducted to
obtain more data from olfactory impairment subjects
so that further research can be performed with a
greater variety of Al based models with EEG data.
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