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ABSTRACT 
 

Computer networks constitute the vital artery of the information and communications technology era, 
allowing heterogeneous devices to communicate and share data. The immense number of Internet-connected 
devices with unpatched security vulnerabilities makes them susceptible to massive security attacks. Detecting 
unknown security attacks continues to be a major challenge, as they have been ranked constantly in the top 
three attack techniques since 2014. In this paper, the researchers aim to study the ability of supervised shallow 
and deep learning classifiers in detecting unknown botnet attacks on IoT devices. The performance of shallow 
and deep supervised learning classifiers was studied and compared using a well-known dataset (i.e., the 
Aposemat IoT-23 dataset). A thorough and extensive experimentation process was conducted (1000 
experiments in total were performed), in which 12 unknown attack types and 38 unknown attack subtypes 
were studied under binary and multiclass classification problem. The results showed that the overall weighted 
average classification error rate was considerably high (61.46–86.40%), which dictates the importance of 
finding novel approaches and techniques to detect unknown attacks. 
Keywords: Botnet, Deep Learning, IDS, IoT, IoT-23 Dataset, Unknown Attacks 
 
1. INTRODUCTION   

The Internet of Things (IoT) revolution 
allowed commodity hardware to communicate with 
each other and exchange data over the Internet 
cheaply and effectively [1]. In 2018, the number of 
connected devices, whether traditional or IoT, 
surpassed 31 billion devices and several studies 
forecasted this number will exceed 50 billion by 
2020 and reach 125 billion by 2030 [2]. The 
immense growth of  IoT devices enabled IoT to be 
used in many applications, including but not limited 
to; home automation, connected autonomous vehicle 
(CAV), smart cities, industrial control systems 
(ICS), and the Internet of healthcare things (IoHT) 
[3]. This integration of IoT devices in several 
applications has widened the attack surface on the 
Internet and created significant cybersecurity 
threats, where IoT devices have been used to launch 
security attacks against critical infrastructure and 
key resources (CIKR) and Supervisory Control and 
Data Acquisition (SCADA) [4]. 

IoT-based attacks have significantly 
increased in the past 5-years. It is predicted to make 

up 25% of all the cybersecurity attacks on 
enterprises in 2020 [5]. Denial of service (DoS) and 
distributed denial of service (DDoS), malware, 
botnet, man-in-the-middle (MiTM), unauthorised 
access, sinkhole and wormhole are examples of 
common security threats on IoT devices [4], [6]. A 
botnet is a network of compromised computing 
devices, often referred to as Bots or Zombies, thus 
botnet. Botnets are controlled by an attacker or a 
group of attackers via a set of command and control 
(C&C) servers in a well-designed hierarchical order 
that offers redundancy and anonymity [7]. Attackers 
target vulnerable IoT devices to make them part of 
bigger botnets and use them to launch several types 
of attacks, such as DDoS [8]. 

An intrusion detection system (IDS) is one 
of the primary security controls that has been used 
for decades to inspect the network traffic and system 
applications for signs of intrusive activities [9]. 
Several studies have researched the various designs, 
methods and techniques of detecting network attacks 
on IoT devices using IDS [4], [6], [9-11]. A 
significant challenge for machine learning (ML) 
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based IDS is to detect unknown attacks that it has 
never encountered before during training [12].  

 Figure 1: Simplified Intrusion Detection System Architecture.
The ideal IDS for resource-constrained networks, such as IoT, should not introduce any additional 

overhead to the existing infrastructure yet provide a high detection rate using lightweight design [10]. 
In this paper, the authors investigated the problem of detecting unknown botnet attacks targeting 

IoT devices using the notion of Type-A and Type-B unknown attacks presented in [10], where type-A refers 
to unknown attack type, and type-B refers to unknown attack subtypes. We compared shallow and deep 
learning (DL) classifiers ability to detect unknown botnet attacks on IoT devices in a supervised learning 
environment using the IoT-23 dataset [11] to train and test the classifiers. The authors approached the 
research problem as a binary class classification problem and a multiclass classification problem. 

The rest of this paper is structured as follows: Section 2 discusses the different types of intrusion 
detection systems. Section 3 summarises the current studies in the literature related to the research problem. 
Section 4 explores the IoT-23 dataset selection process and the various preprocessing steps to prepare the 
dataset for analysis. Section 5 explains the comparative analysis approach used to study the research problem, 
then presents and discusses the results. Finally, in Section 6, the paper is concluded, and the future work is 
stated. 
 
2. INTRUSION DETECTION SYSTEM (IDS) 

Typically, the IDS comprises four key components, as shown in Figure 1: sniffer, pre-processor, 
decision engine and response module [9]. The sniffer collects raw data from various devices, which are then 
fed to the preprocessing module to extract a set of features to be used by the decision engine. For which, the 
decision engine analyse and classify the data into benign or malicious data based on any combination of pre-
defined signatures of known malicious data, abnormalities in a protocol/standard or variation from a baseline 
profile for what is considered normal behaviour (i.e., signature-based, specification-based and anomaly-
based, respectively). Finally, the response module applies the action determined by the decision engine (e.g., 
alert, block or ignore). 

Several studies classify intrusion detection systems based on various taxonomies [6], [9], [12], [13]. 
Figure 2 shows the general taxonomy of IDS that includes six main categories of IDS classifications, which 
are: data source, detection technique, deployment architecture, deployed applications, anomaly type, and 
defence mechanism. 

Data source, also referred to as monitored environment and monitored platform, classifies IDSs into 
three subcategories: network-based IDS (NIDS), host-based IDS (HIDS) and hybrid IDS. In NIDS, the 
sniffers monitor the network traffic. Conversely, the sniffer in HIDS monitors the activities and events on the 
host OS. Consequently, a hybrid IDS combines both functionalities of NIDS and HIDS. 

With the detection technique, the IDS is categorised based on its approach to determining if the 
activities are benign or malicious. Four main methods are used to classify IDSs based on their detection 
technique: signature-based, anomaly-based, specification-based, and hybrid.  

Signature-based IDS, commonly referred to as misuse-based, relies on a dataset of pre-defined 
signatures of malicious activities. The main advantage of this approach is the high accuracy and low false 
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alarm rate (FPR) in detecting known attacks. However, it fails in detecting unknown attacks or variants of 
known attacks. Conversely, an anomaly-based IDS works by building a baseline profile for normal behaviour 
and marks any variation as an attack using a pre-defined threshold. With this approach, the IDS can detect 
both known and unknown attacks. However, it suffers from high FPR and false-negative alarm rates. 

A specification-based IDS works by studying how a protocol (e.g., HTTP) should work and identify 
any abnormality in the protocol/standard as an attack. This approach can detect both known and unknown 
attacks at a low FPR. However, it is very complex to design and operate. Moreover, not all systems implement 
the protocols equally.  

Finally, hybrid IDS combines two or more detection techniques to overcome each method’s 
limitations. For example, combining signature-based with anomaly-based detection can achieve high 
accuracy and low FPR rates while being able to detect unknown attacks. 

In deployment architecture, the IDS is categorised into either centralised or distributed IDS based 
on the deployment architecture. A centralised IDS is often found in unified threat management (UTM) 
security solutions and is deployed at a single location, usually at the network gateway. This architecture is 
suitable for small and medium-size organisations (SMEs). A distributed IDS is deployed at multiple network 
segments and reports anomalies to a central management device where the decision engine is located. This 
architecture provides more visibility into anomalies and is often found in highly segregated networks. 

IDS can also be categorised based on the specific application it is designed to protect. A backbone-
based IDS is designed to inspect ingress and egress traffic on different network segments. It is often 
implemented at the network backbones in either centralised or distributed architecture. Conversely, a 
datacentre-based IDS is designed to protect data centres and is often utilised by organisations that rely on 
virtualisation technologies.  

An access point-based IDS is usually found in a wireless intrusion detection system (WIDS), where 
the IDS is implemented at the access point level. An IoT-based IDS is designed to protect IoT applications 
such as wireless sensor networks (WSN) and IoHT.  

A cloud-based IDS is designed to detect internal threats in cloud computing environments where 
traditional IDS are incapable of providing the necessary protection. It is deployed at the cloud service 
provider (CSP) level to protect its internal infrastructure and offer it as a SaaS (Software as a Service) for its 
customers to protect their platforms.  



Journal of Theoretical and Applied Information Technology 
31st July 2021. Vol.99. No 14 
© 2021 Little Lion Scientific  

 ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 3567 
 

 Figure 2: Taxonomy Of The Intrusion Detection System. 
An SDN-based IDS is designed to fit the software-defined network architecture where the data plane 

is separated from the control plane. It is often perpetrated as software implemented at the controller level. 
While a fog and mobile edge computing (FMEC) based IDS is implemented in a decentralised architecture 
at the network edge to accommodate FMEC networks decentralised nature. 

Another method to categorise anomaly-based IDS is based on the variation of the normal activities 
that can be used to distinguish between benign and malicious events. The anomaly type is tightly related to 
the detection approach, and there are three main anomaly types: point, contextual, and collective anomalies.  

Point anomaly, also referred to as Outlier, occurs when some of the data are significantly different 
from the average. Figure 3 (a) shows an example of a point anomaly. 

The contextual anomaly occurs when an 
event is anomalous in a specific context while 
normal in another. For example, in Figure 3 (b), the 
five blue points with a Y-axis value of 0.8 forming 
a valley are not considered outliers because the 
context indicates a continuous decreased line.  
However, the single orange point with the same Y-
axis value is an outlier because all the neighbouring 
points have significantly higher Y-axis values. 

On the other hand, collective anomaly 
looks at a collection of events that act anomalously 
with respect to the entire data pattern, as shown in 
Figure 3 (c). 

Finally, with Defence Mechanism, an IDS 
is categorised into either an Active or a Passive IDS 
based on its response after detecting an attack. An 
active IDS, often referred to as Intrusion Prevention 
System (IPS), responds to security alerts by 
automatically blocking potential malicious 
activities. While with a passive IDS, the decision to 
deal with possible malicious activities is made 
manually by a human (i.e., block or allow), and the 
IDS only automates the alerting process. 
 
3. LITERATURE REVIEW 
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Over the past decade, the research 
community has been actively working on intrusion 
detection solutions suitable for the resource-
constrained IoT environment. Several survey 
studies were conducted [3], [4], [6], [14]–[22]. The 
researchers agreed on the importance of studying 
ML techniques to address the IDS special needs in 
IoT and its importance on protocol-level attacks. 

In [7], the authors proposed a hybrid 
anomaly-based IDS architecture for detecting 
botnet attacks in IoT networks. The proposed 
architecture extends the authors’ previous work 
[23], [24] by introducing a feature selection 
subsystem to make the architecture lightweight. 
Mainly, the architecture consists of two parts: A 
Model Builder and an Attack Detector. The model 
builder is responsible for building, training, and 
selecting ML models to be used by the attack 
detector to identify botnet attacks; where, each 
model is trained to detect one type of botnet attacks 
(i.e., the dataset has one type of attacks in addition 
to the benign instances). Then, the model with the 
highest accuracy is selected by the attack detector. 
The authors utilised the N-BaIoT dataset  [8] and 
compared their results with three other ML 
algorithms; namely, NB, J48 and ANN. The results 
suggested that their hybrid method achieved 
comparable results with ANN and J48; while 
surpassed those of NB. The authors plan to extend 
their architecture to detect new types of unknown 
attacks. 

In [25], the authors presented a two-stage 
cross-layer IDS to detect attacks on mobile ad-hoc 
networks (MANET) and WSN. The proposed 
architecture employs a two-layers heuristic 
detection approach based on the accumulated 
measure of fluctuation and linear regression for 
classification. It was evaluated against several 
attack scenarios, including blackhole and DDoS. 
The result showed a high detection rate with the F1 
score ranged between 93% and 99.36%; however, 
the FPR was noticeably high (1.3-12%). 

In [26], the authors highlighted the 
absence of proper software engineering (SE) 
process in developing IDS solutions in general and 
proposed three SE processes for designing efficient 
IDS for WSN. The results showed that following a 

proper SE process significantly improved the 
lifespan and energy consumption in WSN. 

In [27], the authors proposed a real-time 
IDS for SCADA systems to detect attacks against 
the distributed network protocol (DNP3). Several 
ML algorithms were studied to classify the traffic in 
an ensemble approach. 

In [28], the authors proposed a physically 
unclonable function (PUF) to identify IoT devices 
to replace cryptographic-based authentication, 
which has several applications in IoT-based IDS. 
Experimental tests showed that the proposed PUF 
has very high accuracy. 

In [29], the authors studied the impact of 
different dimensionality reduction techniques on 
the IDS detection rate in IoT. Three methods (i.e., 
principal component analysis (PCA), random forest 
(RF), and filter-based dimensionality reduction) 
were studied. The results showed that RF has the 
best reduction to detection ratio. Moreover, the 
impact of a proposed ensemble-based 
dimensionality reduction method on IDS 
effectiveness for IoT was studied. Four different 
datasets were utilized in the study, and the results 
showed that the proposed method reduced the 
dimensionality of the datasets with 66% 
confidence. 

In [30], the authors proposed a hybrid 
approach to detect known and unknown attacks in 
IoT environments using a three-phased IDS 
approach. The proposed IDS utilised signature-
based techniques to detect known attacks and deep 
reinforcement learning to classify unknown attacks 
into four attack categories:  DoS, probe, user-to-
root (U2R) and remote-to-local (R2L). It was tested 
using the NSL-KDD dataset. 
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In [31], the authors highlighted the 
weakness of single classifier IDS 
and proposed a hybrid binary and 
multiclass ensemble IDS. The 
proposed IDS utilised 3 ML 
algorithms (i.e., J48, Random 
Forest, and Reptree), and it was 
evaluated using the KDD99 and the 
NSLKDD datasets. The

 (a) Point Anomaly (Outlier) 

 (b) Contextual Anomaly  (c) Collective Anomaly 

 Figure 3: Examples of the different anomaly types. 
 
results showed high detection rates (98.6-99%) with 
negligible RAF (0-0.5%). 

In [32], the authors proposed a multi-stage 
IDS method for detecting attacks on IoT devices 
using a hybrid approach that combines supervised 
and unsupervised ML algorithms. The results 
showed a significant improvement in the accuracy 
(0.9842) compared to other traditional techniques 
such as NB and SVM. 
 
4. IOT-23 DATASET 
 

In machine learning, dataset selection 
constitutes the first and the most crucial step in 
building an ML model. It greatly affects the model 
training, validation, and performance evaluation 
process. Using a biased dataset would produce 
influenced results; simultaneously, using a dataset 
with poor data quality will yield weak models, thus, 
poor results. In anomaly-based IDS, the dataset has 
a vital role in determining the model prediction 
performance. A features-rich dataset with an 
accurate representation of benign and malicious 
activities would often produce better models. 

The research community, over the years, 
has generated and critiqued numerous datasets for 
testing the various types of IDS models [11], [33]–
[39]. The fact that not all datasets are created 
equally to fit all research questions, having the ML 
model training on a domain-specific dataset has a 
better chance of yielding better results [40]. 

In this research, the authors utilised the 
IoT dataset by the Stratosphere Laboratory (i.e., the 

IoT-23 [11]) to evaluate deep and shallow DL 
classifiers ability to detect unknown botnet attacks 
of type-A and type-B in an IoT network 
environment.  

Originally, the dataset comprised more 
than 300 million records divided into 23 comma-
separated values (CSV) files -hence the name- with 
each file contains a specific type of attacks and has 
17 features and two class labels: a binary and a 
multiclass label, where the majority of the traffic 
was malicious. Table 1 shows the distribution for 
the binary class label. It shows a highly unbalanced 
dataset, where most instances are from the 
malicious class label. 

Table 1: Binary class label distribution. 
Class Label Instances Ratio 
Benign 30,860,691 9.5% 
Malicious 294,449,255 90.5% 

 
After selecting a suitable dataset, the 

Feature Engineering stage commences. Its main 
objective is to extract useful information from raw 
data. It starts with the Feature Generation step, 
where raw data are captured and representative 
features are extracted to characterise it. Then, those 
features are studied, and a subset from them is 
chosen to train the ML model based on their ability 
to represent the dataset truly (e.g., information gain, 
information bias, Gini index, gain ratio, and 
entropy). This step is called Feature Selection. It is 
followed by the Feature Conversion step, where the 
data undergoes certain transformations to make its 



Journal of Theoretical and Applied Information Technology 
31st July 2021. Vol.99. No 14 
© 2021 Little Lion Scientific  

 ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 3570 
 

format usable by the ML algorithm. Some ML 
algorithms perform better with scaled data (e.g., 
gradient descent-based algorithms), and in the 
feature normalisation step, the data are scaled up or 
down to fit a specific interval. 

Typically, building the ML model 
comprises three steps; training, validation and 
testing. The ML model learns how to distinguish 
between benign and malicious activities in the 
training phase for an anomaly-based IDS. While in 
the validation phase, the model hyperparameters are 
tuned using an unbiased sample from the dataset. 
Finally, the model performance is estimated in the 
testing phase. Figure 4 summarises the stages 
associated with building an anomaly-based IDS. 

After selecting the IoT-23 dataset, several 
preprocessing steps were taken. First, a new feature 
was generated to indicate the type-A attack each 
row represents, each CSV file holds. The existed 
multiclass label was considered as the type-B 
attack. 

After that, five features were eliminated to 
avoid bias: source and destination IP (id.orig_p and 
id.resp_p), traffic origin indicator (local_orig and 
local_resp because their values are empty) and 
tunnel id (tunnel_parents since traffic with tunnel id 
is benign). 

Then, all the 23 CSV files were merged 
into a single file, and all repeated instances were 
removed, which reduced the dataset size by 36.45 
times. Thereafter, the string features (protocol, 
service, connection state and connection history) 
were converted to numerical values and normalised 
to [0-1] interval using the Min-Max method. Tables 
2, 3 and 4 show the different classes in the IoT-23 
dataset after the preprocessing stage. Comparing 
the binary class distribution before and after 
preprocessing (Table 2 and 3, respectively) shows 
how preprocessing helped balance benign and 
malicious instances. 

The procedure described in [10] for 
generating training, validation and testing sets of 
unknown attacks was followed to create the binary 
and the multiclass subsets of type-A and type-B 
unknown attacks used in this study. All instances of 
each class label were removed from the training set 
to create a testing set of type-A unknown attack of 
that class. This procedure was done recursively for 
all type-A class labels shown in Table 3. Thus, 
generating 24 different testing sets (i.e., 12 binary 
and 12 multiclass). Similarly, the same procedure 
was followed using the subclass labels shown in 
Table 4 to generate type-B unknown attacks. 

Table 2: Binary class distribution after pre-processing. 
Class Label Instances Ratio 
Benign 4,299,821 48.18% 
Malicious 4,623,937 51.82% 

Table 3: Type-A labels distribution after pre-processing. 
Class Label Instances Ratio 
Gagfyt  65,619  1.4191% 
Hakai  4,112  0.0889% 
HideAndSeek  266,956  5.7733% 
IRCBot  30,343  0.6562% 
Kenjiro  18,532  0.4008% 
Linux.Hajime  131,477  2.8434% 
Linux.Mirai  56,792  1.2282% 
Mirai  3,919,807  84.7721% 
Muhstik  113,959  2.4645% 
Okiru  16,311  0.3528% 
Torii  23  0.0005% 
Trojan  6  0.0001% 

 
In total, 76 testing sets were generated for 

type-B unknown attacks (i.e., 38 binary and 38 
multiclass). Following the procedure proposed in 
[10], it made sure that the models are being tested 
on actual unknown attacks rather than unseen data, 
which are not truly unknown attacks. 
Table 4: Type-B labels distribution after preprocessing. 
Class Label Subclass Label Instances 
Gagfyt C&C-HeartBeat 95 

DDoS 65,524 
Hakai C&C 4,112 
HideAndSeek C&C 1 

PartOfAHorizontalPo
rtScan 

266,955 
IRCBot Attack 677 

C&C 1423 
PartOfAHorizontalPo
rtScan 

28,243 
Kenjiro Attack 4 

C&C-HeartBeat 9,947 
DDoS 1,094 
Okiru 3,004 
PartOfAHorizontalPo
rtScan 

4,478 
PartOfAHorizontalPo
rtScan-Attack 

5 
Linux.Hajime PartOfAHorizontalPo

rtScan 
131,477 

Linux.Mirai C&C-HeartBeat 5,777 
DDoS 39,584 
Okiru 11,431 

Mirai Attack 2,755 
C&C 12,093 
C&C-FileDownload 50 
C&C-HeartBeat-
Attack 

834 
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C&C-HeartBeat-
FileDownload 

11 
C&C-Mirai 2 
C&C-
PartOfAHorizontalPo
rtScan 

795 

DDoS 2,076,658 
FileDownload 15 
Okiru 227 
PartOfAHorizontalPo
rtScan 

1,826,367 

Muhstik Attack 5,962 
C&C 8 
PartOfAHorizontalPo
rtScan 

107,989 
Okiru C&C-HeartBeat 15,687 

Okiru 621 
Okiru-Attack 3 

Torii C&C-Torii 23 
Trojan C&C-FileDownload 3 

FileDownload 3 
 
 
 

Dataset Selection Feature Engineering

Feature 
Generation

Feature 
Selection

Feature 
Conversion

Feature 
Normalisation

ML Model Building

Training Validation Testing

 
Figure 4: Stages of building an anomaly-based IDS. 

 

5. COMPARATIVE ANALYSIS AND 
RESULTS  

 
In this study, 1000 experiments were 

conducted to evaluate the performance of shallow 
and deep ML models in detecting unknown attacks 
related to Botnets in the IoT environment. In total, 
200 ML models were built, trained and tested using 
the same methodology proposed in [10]. Type-A 
and type-B unknown attacks were tested as binary 
and multiclass classification problems to provide 
comprehensive analysis results. Each model was 
trained and tested five times, and the average results 
were reported. 

The study refers to the shallow model as a 
DL classifier with a single hidden layer and ten 
neurons. In contrast, the Deep DL model consists of 
5 hidden layers and ten neurons per layer, similar to 
those proposed in [10], [41]–[43]. Only the number 
of hidden layers is different between shallow and 
deep models. Table 5 summarises the DL model 
hyperparameters configurations. Figure 5 (a) and 
(b) visually illustrates binary shallow and deep 
models. 

 
 

Table 5: DL models hyperparameters configurations. 
Hyperparameter Value 
Activation function Rectifier 
Batch size 32 
Dropout Without dropout 
Epochs 10 
Fold assignment Stratified assignment 
K-fold 10 
Learning rate 0.01 
Prediction threshold 0.5 
Results Overall average of all runs 
Runs 5 
Seed 1,586,512,076,128 

 
Each of the 200 models was trained and 

validated using k-fold cross-validation using the 
stratified assignment and a fixed random seed. 

Four generalisation error measures were 
utilised to evaluate each model performance: 
accuracy, recall, F1-score, and classification error 
rate. Accuracy is used to calculate the number of 
correctly classified instances concerning the total 
dataset size. On the other hand, recall measures the 
number of positively identified instances within a 
class. F1-Score, or simply the F measure, provides 
an insight into the overall model’s accuracy. 
Finally, the classification error rate calculates the 
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fraction of misclassified instances in the dataset. 
Generally, a model with high accuracy, recall, F1-
score and a low classification error rate is preferred.  

Equations (1) to (4) explains how the 
accuracy, recall, F1-score and error rate are 
calculated, respectively. 

 
 ݕܿܽݎݑܿܿܣ =   ܶܲ +  ܶܰ

ܶܲ + + ܲܨ   ܶܰ + ܰܨ    (1)
 

ܴ݈݈݁ܿܽ = ܶܲ
ܶܲ + (2) ܰܨ 

 
1ܨ = ܶܲ

ܶܲ +  12 ሺܲܨ + ሻ (3)ܰܨ 
 
݁ݐܴܽݎ݋ݎݎܧ = 1 − ܶܲ +  ܶܰ

ܶܲ + + ܲܨ   ܶܰ + (4) ܰܨ 
 
The results were split into four sections: 

Section 5.1 and 5.2 discuss the results of type-A and 
type-B unknown attacks. In contrast, the overall 
results were discussed in Section 5.3. Finally, open 
research issues and limitations of current work were 
presented in Section 5.4. 
 
5.1. Results of Type-A Unknown Attacks 

 
A comparison between shallow and deep DL 

classifiers in detecting type-A unknown attacks is 
presented in this section. The results are compared, 

first under a binary classification problem then 
under a multiclass classification problem. 

 
 

 

(a)   

(b) 
Figure 5: Visualisation of the shallow and deep binary 

DL model 
 

When examining the result for the shallow and 
deep classifiers, five of the type-A unknown 

attacks were discovered with marginal 
classification error (i.e., <0.10): Gagfyt, IRCBot, 
Linux.Hajime, Okiru, and Trojan. In the case of 

the Gagfyt attack, the four classifiers (i.e., shallow 
binary, shallow multiclass, deep binary and deep 

multiclass) were able to detect the attack at a near-
zero error rate (i.e., <0.0017). 

Conversely, seven out of the twelve type-
A unknown attacks showed extremely high 
classification error rate under the four classifiers, 
namely, Hakai (0.34 – 0.50), HideAndSeek (0.44 – 
0.74), Kenjiro (0.19 – 0.55), Linux.Mirai (0.89 – 
0.95), Mirai (0.94 – 0.96), Muhstik (0.54 – 0.76), 
and Torii (0.26 – 0.65). It is was noticeable that 
shallow models, in general, have the highest error 
rate in comparison to the models and in particular 
as multiclass classifiers with two exceptions, the 
HideAndSeek and the Kenjiro attacks, where they 
outperformed their counterparts, DL models. 

Figure 6 visually compares the 
classification error rate for the four models. Tables 
6 and 7 summarise the results of detecting unknown 
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attacks of type-A, showing each model accuracy, 
recall, F1-score and classification error rate. 

 
5.2. Results of Type-B Unknown Attacks 

 
This section presents a comparison 

between shallow and deep DL classifiers in 
detecting type-B unknown attacks under both 
binary and multiclass classification problems. In 
total, there were 38 type-B attacks studied. 

Unlike type-A unknown attacks, only 
three type-B unknown attacks were entirely 
detected by the four classifiers, namely, the 
PartOfAHorizontalPortScan subtype of IRCBot 
and Kenjiro attacks in addition to the CC-
HeartBeat-FileDownload subtype of the Mirai 
botnet. 

Even though the four models entirely 
discovered IRCBot attacks as a type-A attack, two 
sub-attacks (i.e., attack and cc) were missed with a 
significant error rate up to 0.41 when the models 
were training on detecting type-B unknown attacks. 
The Gagfyt attack was also missed by the four 
models with a high error rate (0.46 – 1.0). 

On the contrary, the “Linux.Hajime” 
attack was detected with a near-zero error rate 
(0.0019) except by the deep model when trained to 
detect multiclass attacks where the error rate was 
marginally noticeable (0.13). 

On the other hand, the deep binary model 
was able to completely detect one of the three 
subtypes of the Okiru attack (i.e., CC-HeartBeat), 
while its shallow counterpart model could detect it 
with a marginal error rate (i.e., 0.08). 

As for the Trojan attack, the error rate for 
the multiclass shallow and deep models was around 
100%; however, both binary classifiers could detect 
it with zero error rate. This was also true for the 
Troii CC-Filedownload attack. 

Noticeably, the DDoS sub-attack from 
“Linux.Mirai” attack and the CC subtype of 
HideAndSeek were both entirely missed by the four 
classifiers. Simultaneously, the error rate of 
detecting the DDoS from the Mirai attack ranged 
between 0.94 and 0.97 by the four classifiers. 

Tables 8 and 9 describe the results of 
detecting unknown attacks of type-B, showing each 
of the DL models’ accuracy, recall, F1-score and 
classification error rate. Figure 7 shows a 
comparison between the classification error rate of 
the four DL models. 

 
 
 

5.3. Overall Results 
 
When considering the overall performance 

of each DL model, the overall weighted 
classification error average ranged between 0.85 
and 0.87 for the shallow models under the type-A 
problem. In comparison, being between 0.87 and 
0.88 for the deep classifiers under the same 
problem. 

As for the models’ performance under the 
type-B problem, the weighted classification error 
average slightly increased (0.88–0.89) for the 
shallow classifiers. However, while the weighted 
classification error average for deep binary 
classifiers decreased somewhat to become 0.86, it 
rose for the deep multiclass models to become 0.89. 

Nonetheless, when the overall average 
classification error rate is calculated per attack type 
for type-A and type-B, the results indicated that the 
DL models for type-A outperformed those for type-
B except in detecting Mirai attacks. This is because 
all models failed to classify the horizontal port 
scanning attack in both flavours of the Mirai attack 
(i.e., “Linux.Mirai” and Mirai). 

Moreover, the performance of the type-B 
models in detecting the Gagfyt botnets worsened 
significantly with a 0.71 decrease. The Okiru and 
Trojan-based attacks also witnessed a similar 
decline in performance in terms of 0.47 and 0.46. 

Overall, the evaluation results showed that 
some unknown attacks are better discovered using 
a shallow model (e.g., Gagfyt, HideAndSeek, and 
Kenjiro), while other attacks are detected the best 
using deep models (e.g., Hakai, Muhstik and 
Okiru). Moreover, some unknown attacks are best 
detected using a type-A DL model, such as Hakai, 
HideAndSeek, and Okiru. While some attacks are 
best discovered using type-B classifiers such as the 
Mirai-based attacks. 

More importantly, no one classifier could 
detect all types of unknown attacks with an 
acceptable classification error rate, which dictates 
the need to develop a hybrid model that combines 
the advantages of each model. 

 
5.4. Open Research Issues 

 
During the recent pandemic, adversaries 

relied more on unknown malwares in their attack 
techniques, where the utilisation of unknown 
attacks has increased from 20% before COVID-19 
to 35% during the pandemic [44]. The current 
literature lacks a standard consistent definition of 
unknown attacks, where unseen instances are 
falsely treated as unknown attacks [10]. A new 
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categorisation method to define unknown attacks 
into two main categories (i.e., type-A and type-B) 
was proposed [10]. Given the ubiquity of IoT 
networks, the prevalence of botnet attacks and the 
importance of the research issue, in this study, the 
authors tested the previously proposed 
categorisation on detecting unknown botnet attacks 
in IoT networks. 

Up to the authors’ knowledge, this issue 
has not been addressed in the literature before; thus, 
it constitutes an open research issue. The results of 
this study indicated that current modern ML 
algorithms are not capable of detecting all type of 
unknown botnet attacks. It also highlighted the 
importance of proposing novel methods to solve the 
research issue. Although this study provides the 
analytical analysis of the research problem, a 
solution is yet to be proposed to fully address the 
problem of detecting unknown botnet attacks in IoT 
networks. 

 
6. CONCLUSION AND FUTURE WORK 
 

Unknown cybersecurity attacks remains a 
challenging issue yet to be solved by the research 
community. In this paper, the authors addressed the 
issue of detecting unknown botnet-based attacks 
that target IoT devices and empirically 
demonstrated that the current methods in detecting 
unknown attacks could not detect all types of actual 
unknown attacks. The performance of shallow and 
deep learning models in detecting unknown botnet 
attacks in IoT environment was evaluated.   

A well-established and current 
benchmarking dataset (i.e., Aposemat IoT-23 
dataset) was utilised in the evaluation. The research 
problem was formulated as both binary and 
multiclass supervised classification problem. The 
notion of type-A and type-B unknown attacks was 
applied in this research study, where type-A 
represents an entirely new unknown attack. In 
contrast, type-B represents an unknown subtype of 
attack of a previously known attack category. 

The results showed that while some types 
of unknown botnet attacks were best discovered 
using shallow learners (e.g., “Linux.Mirai” C&C), 
others were detected the best using deep classifiers 
(e.g., Okiru). Moreover, while most botnet attacks 
were better detected using binary classifiers, other 
botnets, such as Kenjiro Okiru, were best 
discovered using multiclass models. Furthermore, 
the results indicated that no single classifier could 
correctly identify all types of unknown attacks with 
acceptable generalisation error metrics, where the 
overall weighted average classification error rate 

was considerably high (61.46–86.40%). This 
emphasises the need for a new architecture that 
combines the best of each model to detect unknown 
attacks with sufficient accuracy.  

In future work, the authors plan to evaluate 
anomaly-based unsupervised deep learning 
classifiers in detecting unknown botnet attacks on 
IoT devices using the same methodology applied 
during this study. Moreover, to assess the 
performance of none -artificial neural networks-
based machine learning algorithms in detected 
unknown attacks utilising the notion of type-A and 
type-B unknown attacks. 
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 Figure 6: Comparison between the classification error rate for type-A unknown attacks. 
Table 6: Evaluation metrics for binary shallow and deep DL models in detecting type-A unknown attacks. 

Label  Shallow Deep 
Class Instances Recall Accuracy F1 Error Recall Accuracy F1 Error 

Gagfyt 65,619 0.999 0.999 0.999 0.001 0.999 0.999 0.999 0.001 
Hakai 4112 0.606 0.606 0.755 0.394 0.665 0.665 0.799 0.335 
HideAndSeek 266,956 0.556 0.556 0.715 0.444 0.352 0.352 0.521 0.648 
IRCBot 30,343 0.993 0.993 0.996 0.007 0.948 0.948 0.973 0.052 
Kenjiro 18,532 0.813 0.813 0.897 0.187 0.450 0.450 0.621 0.550 
Linux.Hajime 131,477 0.998 0.998 0.999 0.002 0.998 0.998 0.999 0.002 
Linux.Mirai 56,792 0.051 0.051 0.097 0.949 0.062 0.062 0.116 0.938 
Mirai 3,919,807 0.057 0.057 0.107 0.943 0.038 0.038 0.074 0.962 
Muhstik 113,959 0.375 0.375 0.545 0.625 0.463 0.463 0.633 0.537 
Okiru 16,311 0.968 0.968 0.984 0.032 0.996 0.996 0.998 0.004 
Torii 23 0.739 0.739 0.850 0.261 0.565 0.565 0.722 0.435 
Trojan 6 1.000 1.000 1.000 0.000 1.000 1.000 1.000 0.000 

Table 7: Evaluation metrics for multiclass shallow and deep DL models in detecting type-A unknown attacks. 
Label  Shallow Deep 

Class Instances Recall Accuracy F1 Error Recall Accuracy F1 Error 
Gagfyt 65,619 0.999 0.999 1.000 0.001 0.999 0.999 0.999 0.001 
Hakai 4112 0.500 0.500 0.667 0.500 0.562 0.562 0.720 0.438 
HideAndSeek 266,956 0.316 0.316 0.480 0.684 0.262 0.262 0.416 0.738 
IRCBot 30,343 0.969 0.969 0.984 0.031 0.996 0.996 0.998 0.004 
Kenjiro 18,532 0.773 0.773 0.872 0.227 0.565 0.565 0.722 0.435 
Linux.Hajime 131,477 0.916 0.916 0.956 0.084 0.998 0.998 0.999 0.002 
Linux.Mirai 56,792 0.049 0.049 0.093 0.951 0.107 0.107 0.193 0.893 
Mirai 3,919,807 0.057 0.057 0.107 0.943 0.056 0.056 0.107 0.944 
Muhstik 113,959 0.238 0.238 0.385 0.762 0.353 0.353 0.522 0.647 
Okiru 16,311 0.962 0.962 0.981 0.038 0.964 0.964 0.982 0.036 
Torii 23 0.348 0.348 0.516 0.652 0.739 0.739 0.850 0.261 
Trojan 6 0.833 0.833 0.909 0.167 1.000 1.000 1.000 0.000 
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Table 8: Evaluation metrics for binary shallow and deep DL models in detecting type-B unknown attacks. 
Label  Shallow Deep 

Class Subclass Instan
ces 

Reca
ll 

Accur
acy 

F1 Err
or 

Reca
ll 

Accur
acy 

F1 Err
or 

Gagfyt CC-HeartBeat 95 0.453 0.453 0.6
23 

0.54
7 

0.537 0.537 0.6
99 

0.46
3 

DDoS 65,524 0.439 0.439 0.6
10 

0.56
1 

0.155 0.155 0.2
69 

0.84
5 

Hakai CC 4112 0.513 0.513 0.6
78 

0.48
7 

0.560 0.560 0.7
18 

0.44
0 

HideAnd
Seek 

CC 1 0.000 0.000 0.0
00 

1.00
0 

0.000 0.000 0.0
00 

1.00
0 

PartOfAHorizontalP
ortScan 

266,955 0.312 0.312 0.4
76 

0.68
8 

0.296 0.296 0.4
56 

0.70
4 

IRCBot Attack 677 0.957 0.957 0.9
78 

0.04
3 

0.786 0.786 0.8
80 

0.21
4 

CC 1423 0.706 0.706 0.8
28 

0.29
4 

0.871 0.871 0.9
31 

0.12
9 

PartOfAHorizontalP
ortScan 

28,243 1.000 1.000 1.0
00 

0.00
0 

1.000 1.000 1.0
00 

0.00
0 

Kenjiro Attack 4 0.000 0.000 0.0
00 

1.00
0 

0.250 0.250 0.4
00 

0.75
0 

CC-HeartBeat 9947 0.841 0.841 0.9
13 

0.15
9 

0.674 0.674 0.8
05 

0.32
6 

DDoS 1094 0.402 0.402 0.5
74 

0.59
8 

0.995 0.995 0.9
98 

0.00
5 

Okiru 3004 0.027 0.027 0.0
52 

0.97
3 

0.140 0.140 0.2
46 

0.86
0 

PartOfAHorizontalP
ortScan 

4478 0.874 0.874 0.9
33 

0.12
6 

0.299 0.299 0.4
61 

0.70
1 

PartOfAHorizontalP
ortScan-Attack 

5 1.000 1.000 1.0
00 

0.00
0 

1.000 1.000 1.0
00 

0.00
0 

Linux.Haj
ime 

PartOfAHorizontalP
ortScan 

131,477 0.998 0.998 0.9
99 

0.00
2 

0.998 0.998 0.9
99 

0.00
2 

Linux.Mi
rai 

CC-HeartBeat 5777 0.997 0.997 0.9
98 

0.00
3 

0.448 0.448 0.6
18 

0.55
2 

DDoS 39,584 0.001 0.001 0.0
03 

0.99
9 

0.000 0.000 0.0
00 

1.00
0 

Okiru 11,431 0.993 0.993 0.9
96 

0.00
7 

0.970 0.970 0.9
85 

0.03
0 

Mirai Attack 2755 0.448 0.448 0.6
19 

0.55
2 

0.649 0.649 0.7
87 

0.35
1 

CC 12,093 0.748 0.748 0.8
56 

0.25
2 

0.575 0.575 0.7
30 

0.42
5 

CC-FileDownload 50 0.960 0.960 0.9
80 

0.04
0 

0.960 0.960 0.9
80 

0.04
0 

CC-HeartBeat-
Attack 

834 0.474 0.474 0.6
43 

0.52
6 

0.312 0.312 0.4
75 

0.68
8 

CC-HeartBeat-
FileDownload 

11 1.000 1.000 1.0
00 

0.00
0 

1.000 1.000 1.0
00 

0.00
0 

CC-Mirai 2 0.000 0.000 0.0
00 

1.00
0 

0.500 0.500 0.6
67 

0.50
0 
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CC-
PartOfAHorizontalP
ortScan 

795 1.000 1.000 1.0
00 

0.00
0 

0.605 0.605 0.7
54 

0.39
5 

DDoS 2,076,6
58 

0.032 0.032 0.0
61 

0.96
8 

0.063 0.063 0.1
19 

0.93
7 

FileDownload 15 0.867 0.867 0.9
29 

0.13
3 

0.000 0.000 0.0
00 

1.00
0 

Okiru 227 0.295 0.295 0.4
56 

0.70
5 

0.203 0.203 0.3
37 

0.79
7 

PartOfAHorizontalP
ortScan 

1,826,3
67 

0.084 0.084 0.1
54 

0.91
6 

0.079 0.079 0.1
47 

0.92
1 

Muhstik Attack 5962 0.065 0.065 0.1
23 

0.93
5 

0.955 0.955 0.9
77 

0.04
5 

CC 8 0.375 0.375 0.5
45 

0.62
5 

0.250 0.250 0.4
00 

0.75
0 

PartOfAHorizontalP
ortScan 

107,989 0.249 0.249 0.3
98 

0.75
1 

0.435 0.435 0.6
07 

0.56
5 

Okiru CC-HeartBeat 15,687 0.923 0.923 0.9
60 

0.07
7 

1.000 1.000 1.0
00 

0.00
0 

Okiru 621 0.008 0.008 0.0
16 

0.99
2 

0.895 0.895 0.9
45 

0.10
5 

Okiru-Attack 3 0.667 0.667 0.8
00 

0.33
3 

0.667 0.667 0.8
00 

0.33
3 

Torii CC-Torii 23 0.739 0.739 0.8
50 

0.26
1 

0.348 0.348 0.5
16 

0.65
2 

Trojan CC-FileDownload 3 1.000 1.000 1.0
00 

0.00
0 

1.000 1.000 1.0
00 

0.00
0 

FileDownload 3 1.000 1.000 1.0
00 

0.00
0 

1.000 1.000 1.0
00 

0.00
0 

Table 9: Evaluation metrics for multiclass shallow and deep DL models in detecting type-B unknown attacks. 
Label  Shallow Deep 

Class Subclass Instan
ces 

Rec
all 

Accur
acy 

F1 Err
or 

Rec
all 

Accur
acy 

F1 Err
or 

Gagfyt CC-HeartBeat 95 0.53
7 

0.537 0.6
99 

0.46
3 

0.01
1 

0.011 0.0
21 

0.98
9 

DDoS 65,524 0.16
1 

0.161 0.2
77 

0.83
9 

0.00
0 

0.000 0.0
01 

1.00
0 

Hakai CC 4112 0.00
0 

0.000 0.0
00 

1.00
0 

0.00
0 

0.000 0.0
00 

1.00
0 

HideAnd
Seek 

CC 1 0.00
0 

0.000 0.0
00 

1.00
0 

0.00
0 

0.000 0.0
00 

1.00
0 

PartOfAHorizontalP
ortScan 

266,955 0.31
9 

0.319 0.4
84 

0.68
1 

0.35
7 

0.357 0.5
26 

0.64
3 

IRCBot Attack 677 0.83
6 

0.836 0.9
11 

0.16
4 

0.72
8 

0.728 0.8
43 

0.27
2 

CC 1423 0.58
8 

0.588 0.7
41 

0.41
2 

0.67
2 

0.672 0.8
04 

0.32
8 

PartOfAHorizontalP
ortScan 

28,243 1.00
0 

1.000 1.0
00 

0.00
0 

1.00
0 

1.000 1.0
00 

0.00
0 

Kenjiro Attack 4 0.75
0 

0.750 0.8
57 

0.25
0 

0.25
0 

0.250 0.4
00 

0.75
0 

CC-HeartBeat 9947 0.82
3 

0.823 0.9
03 

0.17
7 

0.65
1 

0.651 0.7
89 

0.34
9 

DDoS 1094 0.65
8 

0.658 0.7
94 

0.34
2 

0.70
0 

0.700 0.8
24 

0.30
0 

Okiru 3004 0.14
7 

0.147 0.2
57 

0.85
3 

0.14
4 

0.144 0.2
52 

0.85
6 
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PartOfAHorizontalP
ortScan 

4478 0.83
8 

0.838 0.9
12 

0.16
2 

0.29
6 

0.296 0.4
57 

0.70
4 

PartOfAHorizontalP
ortScan-Attack 

5 1.00
0 

1.000 1.0
00 

0.00
0 

1.00
0 

1.000 1.0
00 

0.00
0 

Linux.Haj
ime 

PartOfAHorizontalP
ortScan 

131,477 0.99
8 

0.998 0.9
99 

0.00
2 

0.86
7 

0.867 0.9
29 

0.13
3 

Linux.Mir
ai 

CC-HeartBeat 5777 0.63
5 

0.635 0.7
77 

0.36
5 

0.44
8 

0.448 0.6
19 

0.55
2 

DDoS 39,584 0.00
0 

0.000 0.0
00 

1.00
0 

0.00
0 

0.000 0.0
00 

1.00
0 

Okiru 11,431 0.03
3 

0.033 0.0
64 

0.96
7 

0.00
1 

0.001 0.0
03 

0.99
9 

Mirai Attack 2755 0.17
3 

0.173 0.2
95 

0.82
7 

0.05
4 

0.054 0.1
03 

0.94
6 

CC 12,093 0.71
2 

0.712 0.8
32 

0.28
8 

0.61
2 

0.612 0.7
59 

0.38
8 

CC-FileDownload 50 0.76
0 

0.760 0.8
64 

0.24
0 

0.92
0 

0.920 0.9
58 

0.08
0 

CC-HeartBeat-
Attack 

834 0.54
7 

0.547 0.7
07 

0.45
3 

0.03
4 

0.034 0.0
65 

0.96
6 

CC-HeartBeat-
FileDownload 

11 1.00
0 

1.000 1.0
00 

0.00
0 

1.00
0 

1.000 1.0
00 

0.00
0 

CC-Mirai 2 0.00
0 

0.000 0.0
00 

1.00
0 

0.50
0 

0.500 0.6
67 

0.50
0 

CC-
PartOfAHorizontalP
ortScan 

795 1.00
0 

1.000 1.0
00 

0.00
0 

0.60
5 

0.605 0.7
54 

0.39
5 

DDoS 2,076,6
58 

0.03
2 

0.032 0.0
61 

0.96
8 

0.03
2 

0.032 0.0
61 

0.96
8 

FileDownload 15 0.86
7 

0.867 0.9
29 

0.13
3 

0.73
3 

0.733 0.8
46 

0.26
7 

Okiru 227 0.21
6 

0.216 0.3
55 

0.78
4 

0.29
1 

0.291 0.4
51 

0.70
9 

PartOfAHorizontalP
ortScan 

1,826,3
67 

0.07
9 

0.079 0.1
46 

0.92
1 

0.07
9 

0.079 0.1
46 

0.92
1 

Muhstik Attack 5962 0.04
8 

0.048 0.0
92 

0.95
2 

0.23
6 

0.236 0.3
82 

0.76
4 

CC 8 0.25
0 

0.250 0.4
00 

0.75
0 

0.25
0 

0.250 0.4
00 

0.75
0 

PartOfAHorizontalP
ortScan 

107,989 0.23
3 

0.233 0.3
78 

0.76
7 

0.23
3 

0.233 0.3
78 

0.76
7 

Okiru CC-HeartBeat 15,687 0.09
3 

0.093 0.1
71 

0.90
7 

0.21
8 

0.218 0.3
58 

0.78
2 

Okiru 621 0.04
8 

0.048 0.0
92 

0.95
2 

0.89
7 

0.897 0.9
46 

0.10
3 

Okiru-Attack 3 0.33
3 

0.333 0.5
00 

0.66
7 

0.33
3 

0.333 0.5
00 

0.66
7 

Torii CC-Torii 23 0.00
0 

0.000 0.0
00 

1.00
0 

0.00
0 

0.000 0.0
00 

1.00
0 

Trojan CC-FileDownload 3 0.00
0 

0.000 0.0
00 

1.00
0 

0.00
0 

0.000 0.0
00 

1.00
0 

FileDownload 3 0.00
0 

0.000 0.0
00 

1.00
0 

0.00
0 

0.000 0.0
00 

1.00
0 
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 (a) 
Figure 7: Comparison between the classification error rate for type-B unknown attacks. 
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 (b) 
Figure 7: Comparison between the classification error rate for type-B unknown attacks. 


