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ABSTRACT 
 

Frequent itemset mining is a data mining technique to discover the frequent patterns from a collection of 
databases. However, it becomes a computational expensive task when it is used for mining large volume of 
data. Hence, there is a necessity for a scalable algorithm that can handle bigger datasets. Binary-based 
Technique Algorithm (BBT) can simplify the process of generating frequent patterns by using bit wise 
operations and binary database representation. However, it still suffers with the problem of low 
performance when dealing with high volume of data and a minimum values of support threshold to generate 
the list of frequent itemset patterns. This is due to its design which run in a single thread of execution. This 
research proposed a Parallel Binary-Based Algorithm (P-BBA) to solve the mentioned problem. The 
proposed algorithm is designed with collaborative threads which simultaneously work together to generate 
frequent itemsets in a big data environment. A master/slave architecture is used to fit the algorithm with 
distributed computing platform. The obtained results showed significant reductions in execution time when 
using the proposed parallel binary-based algorithm. 
Keywords: Big Data mining, Distributed Framework, Frequent Itemsets Mining, Parallel Frequent Item 

Mining 
 
1. INTRODUCTION  
 

Data mining is a powerful emerging technology 
to discover hidden knowledge that can be in a form 
of pattern, correlations, relationships, and anomalies 
[1]. When going into the context of data mining, 
Frequent itemset mining (FIM) is considered as the 
core for association rule mining [2]. FIM is used to 
find which particular set of items may contain high 
number of occurrences from a list of database 
transactions [3]. Information of frequent items 
extracted from database is crucial to discover the 
hidden patterns between data and relevant 
association rules. The occurrence of itemsets 
provide a valuable information to support critical 
decision and prediction.  

However, frequent itemsets mining is a 
computationally expensive task due to its algorithm 
which turn an initially subset problem into an 
exponential growth of complexity. Even though that 

FIM algorithm may cause a huge computation cost, 
its usefulness in discovering hidden information lets 
FIM into getting tremendous popularity in the 
industry.  

The original motivation to generate frequent 
items is from the application of supermarket 
transactional database [4]. FIM is used by the 
supermarket company to find the items that are 
frequently by together with other items in a single 
customer’s transaction. Generating suggestion and 
recommendation helps in planning the business 
strategies and leads to gain more profit. Other fields 
that benefit from the application of FIM algorithm 
include bioinformatics and health environments [5].  
FIM is widely used in DNA analysis by detecting 
the behavior of chromosomal mutation in DNA 
cells [6]. The uses of FIM helps in diagnosing the 
breast cancer detection at the early stage, thus 
increase the survival rate of cancer patients. 
Another application of frequent itemsets mining is 
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to improve text summarization of biomedical paper. 
Researchers in biomedical area face difficulties to 
access the biomedical bibliographic text since it is 
consisting of huge databases with more than 25 
million references [7]. Various of different 
applications of FIM have proven that FIM plays an 
important role especially in the field of business 
analytics and bioinformatics.  

Among of the well-known existing state-of-the-
art FIM algorithm that have been frequently 
referred by many researchers are Apriori, FP-
Growth and Eclat [8-10]. The algorithm has been 
used and extended by other authors [2,4,11,12]. 
Even though that these algorithms have been widely 
used and applied, those algorithms still have several 
drawbacks especially in terms of the time 
performance and the usage of space [13]. Both of 
these issues can be solved using the Binary-based 
Technique Algorithm (BBT) [13]. This algorithm 
make use the benefit of bit wise operation for 
simplifying the process of generation frequent 
itemsets [13,14]. 

Even though that the BBT algorithm is proven to 
have a better performance than the existing state-of-
the-art algorithm, when it is applied in large scale of 
data, it still suffers with the problem of slow 
execution time. Applications that use the FIM 
algorithm typically consists of large volume of data 
and may fail to generate any output due to the 
explosion of the generated frequent itemsets. Since 
it is dealing with massive data, the existing FIM 
algorithm like Apriori, FP-growth and Eclat deal 
with many difficulties [15].  

The usefulness and benefits offered by FIM give 
the motivations to address the challenge of mining 
frequent itemsets in big data. Therefore, there is an 
important need to implement a further improved 
FIM algorithm that may address the issues of 
processing large databases. Researchers are looking 
forward towards improved FIM algorithms with 
high performance as a better alternative [16-19]. 

The aim of this research is to further enhance the 
performance of Binary-based Technique Algorithm 
(BBT) in terms of execution time when it is applied 
in big data environment by using a parallel 
approach. Therefore, we formulate a new Parallel 
Binary-based Algorithm (P-BBA) for mining 
frequent itemsets in big data that generate the 
results within an acceptable time frame. This 
algorithm is designed with a master/slave thread 
model to fit with distributed computing platform 
like Apache Sparks framework.  

The new proposed method allows the master 
thread to monitor and control the execution of the 
slave threads in order to generate frequent itemsets. 
It also has the capability to control the quantity of 
working threads to adapts with the environment of 
datasets in terms of capacity, density, complexity 
and the availability of the underlying computing 
resources. Well-known datasets that are used for 
frequent itemset mining problem will be used to 
measure the performance in term of execution time. 
2. PROBLEM STATEMENT  
 

When considering big datasets, well-known 
existing frequent itemset mining (FIM) algorithm 
suffers with the problem of slow execution and may 
even fail to produce any output due to the explosion 
of generated frequent itemsets. The algorithm 
initially deals with a subset problem by default 
which turn into an exponential growth of 
complexity. The Binary-based Techniques 
Algorithm (BBT) make use the benefits of binary 
representation to simplify the process of identifying 
frequent pattern, thus reduce the total execution 
time as well as the memory consumption (Fageeri et 
al., 2014). However, when considering big datasets, 
it still suffers with the problem of low performance 
in terms of execution times. This is cause by its 
design that run in a single execution thread. With 
the mentioned problem, there is a need to further 
improve the Binary-based Technique Algorithm 
(BBT) to adapt with the architecture of distributed 
computing platform. For distributed computing 
platform, Apache Spark framework will be chosen 
instead of Map/Reduce framework due to its benefit 
of using in-memory processing and its capability to 
generate real-time analytics for big data. 
3. RESEARCH OBJECTIVES  
 

• To formulate a Master/Slave Parallel Binary-
based Algorithm for mining frequent itemset in big 
data environment. 

• To design and implement the proposed 
algorithm in a Master/Slave architecture in order to 
adapt with a distributed computing framework. 

• To validate the proposed algorithm using well-
known big datasets and conduct CPU profiling 
simulations and evaluate the performance in terms 
of total execution time. 
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4. LITERATURE REVIEW  
 

Frequent itemset mining (FIM) provide a 
valuable information to support critical decision and 
prediction. R Agrawal et al. [8] proposed an Apriori 
algorithm that use prune techniques and different 
candidate generation method to generate frequent 
itemsets. This method is able to reduce the number 
of candidate itemsets. It uses the level-wise search 
to explore (k + 1) itemsets to mine itemsets that 
have a high amount of frequency. However, the 
methods have complex generation of candidate 
itemsets and require a repetitive scanning 
throughout each different iteration.  

Han et al. [10] proposed an improved Apriori 
algorithm called FP-growth Algorithm. It solves 2 
bottle neck arise in Apriori algorithm. FP-Growth 
can be adapted in larger volume of database by 
generating the list of frequent items by creating its 
own data structure which is the FP-Tree from using 
a prune technique for infrequent items. FP-Growth 
is able to reduce the total execution time to process 
the output results but it needs the uses of more 
memory consumption. This approach is also more 
complicated and difficult to be implemented 
compared to the other approach. 

Zaki [9] proposed Eclat or also knows as 
Equivalence Class Transformation Algorithm which 
use the depth-first search strategy that create a 
vertical data format. The calculation of number of 
supports are much more efficient when the database 
transaction is represented in a vertical 
representation. What makes Eclat differ with 
Apriori algorithm is that the generation (k+1) 
itemsets is not require. Therefore, multiple scanning 
and unnecessary consumption of time and memory 
can be avoided. All items are saved in a list (TID 
list) while intersection-based approach is used for 
computation itemset’s support [20]. Every item 
inside the TID list have its own unique transaction 
identifiers (TIDs). 

Fageeri and Ahmad [13] proposed a new FIM 
algorithm called The Binary-based Techniques 
Algorithm (BBT). This new algorithm is proven to 
have a better performance than the previous three 
algorithms (Apriori, FP-Growth and Eclat). The 
authors highlighted the drawbacks of those previous 
algorithm especially in terms of their execution 
time performances and the uses of inefficient 
approach in the process of comparing the items. 
Those method scans every possible combination 
and calculate the occurrences of all those 
combinations. The requirement of multiple 
scanning leads to unnecessary consumption of time. 

The new BBT algorithm is reported to be able to 
tackle those issues. It uses the advantage of binary 
implementation to compare the frequency of items 
efficiently. Other algorithm requires a multiple 
scanning while BBT algorithm only scan the 
original database in a single cycle. The BBT 
algorithm is also not required to go through the 
unnecessary needs for sorting the datasets. BBT 
algorithm further improves the existing algorithm 
and remove issues that are arises in previous 
algorithms such as delays of execution time and 
high consumptions of memory. Furthermore, it also 
has another additional ability for decision support 
by scanning and generating the infrequent itemsets. 

Aggarwal and Han [15] discussed about the 
challenges and difficulties that are faced by FIM 
algorithm like Apriori, FP-growth and Eclat. These 
algorithms suffer with many difficulties due to the 
challenge of adapting with high volume of data. 
The current volume of data is increasing with the 
growing industries and increasing of internet user 
[21]. The massive amount of data also leads to the 
explosion of generated frequent itemsets. The initial 
Apriori algorithm consume a very long execution 
time when it is deal with high-scale candidate 
itemsets since candidate (k + 1) itemsets are 
constructed through the self-join of frequent k-
itemsets (R Agrawal et al., 1996; Yuan, 2017). High 
number of candidates itemsets also leads to 
exponential growth of those algorithms. Multiple 
scanning is needed for every iteration to generate 
the frequent itemsets [15, 22]. Therefore, 
researchers are looking forward towards improved 
FIM algorithms with high performance as a better 
alternative [16-19]. Executing FIM algorithms by 
using parallel approach with the implementation of 
multiple cluster nodes would address the time 
complexity problem [3]. 

Hazarika and Rahman [23] proposed a parallelize 
Eclat algorithm called MR_Eclat algorithm to 
further improve the performance of Eclat algorithm. 
The proposed method is scalable to large data set 
with less cost and better performance. The input 
data are divided among different nodes. MR_Eclat 
scan the database and transform to vertical 
database. The database will then go through the 
synchronous phase, asynchronous phase and 
reduction phase. Implementation of Hadoop helps 
in managing any failure of nodes in the cluster. 
MR_Eclat has proven to have a better performance 
than the non-parallel Eclat algorithm. However, 
MR_Eclat algorithm does not give any significant 
impact when working with small data sets. It might 
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give similar run time or worse 27 than the non-
Hadoop system for the same algorithm. 

Li et al. [24] proposed an improved FP-growth 
algorithm called Parallel FP-Growth (P-FP) 
algorithm by using the method of distributing the 
mining task into different partition of independent 
parallel tasks. The parallel FP-Growth algorithm is 
proven to have a better performance than the non-
parallel FP-growth algorithm. The uses of 
independent FP-tree based on the FP-growth 
algorithm gives a significant improvement in terms 
of runtime and memory which gives the benefit to 
exploits the limitations of GPU memory.  However, 
if the numbers of minimum support threshold is too 
low, P-FP algorithm could not handle the program. 
It also generates a long itemset for each sub 
transactions. The authors have also suggested to use 
the P-FP algorithm together with the 
implementation of distributed framework such as 
Hadoop MapReduce framework and Apache Spark 
framework for much better performance. The 
parallelism of most FIM algorithms can be 
efficiently achieved by using such framework [25]. 

Kourtesis et al. [26] proposed to execute Machine 
Learning algorithms on multicore architectures used 
the implementation of Hadoop MapReduce 
framework. It is proven that Hadoop MapReduce 
framework has the ability to automatically handling 
failure. The complexity of fault-tolerance can be 
efficiently handled using this feature. It simplifies 
the development of application in distributed 
environment and better parallel performance can be 
obtained as this framework provides a parallel 
design pattern. However, recent studies reveals that 
it is not efficient enough to implement MapReduce 
framework in parallelizing Apriori-based 
algorithms [19]. 

Qiu et al. [27] proposed a further Apriori 
algorithm called YAFIM (Yet Another Frequent 
Itemsets Mining) algorithm to to parallelize the 
Apriori algorithm using Apache Spark framework. 
This algorithm is an extended version of Apriori 
algorithm based on Apache Spark framework. This 
framework is chosen to cope with the overhead 
issue caused by the launch of new MapReduce jobs. 
The motivation of this approach is by the use of its 
in-memory-based data process, an iterative 
computing framework, compared to MapReduce 
which use a disk-based to process the dataset [28].  
The process of data using memory is much faster 
than using disk and it also reduce the memory usage 
[29]. Therefore, Spark’s performances outperform 
Hadoop’s performance especially when dealing 
with iterative computations. Spark framework could 

achieve up to 18× computation speedup in average 
for various benchmarks [30]. 

The best performance of FIM algorithm could be 
achieve by using parallelization together with the 
implementation of Apache Spark Framework. With 
these findings, there is a need to implement the 
stated method for BBT algorithm as BBT algorithm 
is proved to have the best performance compared to 
the previous FIM algorithm (Apriori, FP-Growth 
and Eclat). 
5. METHODOLOGY  
 

The implementation of Frequent itemset mining 
(FIM) in data mining is crucial to discover the 
hidden patterns between data and relevant 
association rules to support critical decision and 
prediction. Among of the popular algorithms that 
have been widely use and applied are Apriori, FP-
Growth and Eclat. However, Binary-based 
Technique algorithm (BBT) are proven to have a 
better performance than the previous algorithm 
through the implementation of binary and bit wise 
operations. Even though that the BBT algorithm is 
able to solve the issues arise in the previous 
algorithm, it stills suffer with the problem of slow 
execution time when dealing with high volume of 
data. The usefulness and benefits offered by FIM 
algorithm give the motivations to address the 
challenge of mining frequent itemsets in big data.  

The main factor that leads to this problem is 
because of the design of the previous FIM 
algorithm that only run in a single thread of 
execution. It is proven that application which 
consist with high volume of data can be effectively 
deal with parallel approach [23,24]. Executing FIM 
algorithms by using parallel approach with the 
implementation of multiple cluster nodes would 
address the time complexity problem [3]. This 
alternative has also leads to explosion of parallel 
computing platforms such as Hadoop MapReduce 
framework and Apache Spark framework. Among 
of many available type of framework, recent studies 
have found that an attempt to parallelize Apriori 
algorithms based on the Spark frameworks could 
achieve up to 18× computation speedup in average 
for various benchmarks compared to Hadoop 
framework [30]. 

In this proposed model, the Binary-based 
Technique Algorithm (BBT) is chosen to address 
the challenge of mining frequent itemsets in big 
data context as the performance of BBT algorithm 
outperform the previous FIM algorithm due to the 
use of binary and bit wise operations. The main 
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objective is to solve the time complexity problem 
cause by huge load of data to be process. Executing 
FIM algorithms by using parallel approach with the 
implementation of multiple cluster nodes would 
address the time complexity problem. Therefore, a 
parallel approach is used to improve the 
performance of BBT algorithm. The formulation of 
this new proposed algorithm can be further 
improved with the implementation of parallel 
computing framework such as Spark framework 
and Hadoop framework. Apache Spark framework 
is chosen as it could achieve up to 18× computation 
speedup than Hadoop framework. Therefore, this 
new proposed algorithm is design in a master/slave 
model to fit in the architecture of Apache Spark 
framework. In conclusion, we proposed a new 
parallel Binary-based Technique algorithm 
implemented with master/slave architecture for 
mining frequent itemsets in big data.   

 
 
 
 
 
 
 
 
 
 

 
Figure 1: Contribution area from the execution flow 

 
The figure shows the execution flow and the 

phases involve in Binary-based Technique 
algorithm (BBT) to generate the frequent itemsets. 
The process begins with the read of data from the 
dataset and generate a binary representation. Next, 
the frequency of all items is calculated and any 
items that passed the minimum supports threshold 
is stored. Then the system finds the frequency of 
itemset of size 2 and size larger than 2. Finally, the 
frequency of itemsets is extracted to form a 
knowledge. 

The aim of this research study is to improve the 
performance of Binary-based Technique algorithm 
(BBT) in terms of execution time. Based on the 
figure, the highlighted part took a long time to 
execute due to the challenges of processing a huge 

amount of data which cause a time complexity 
problem. When finding the frequency of itemset 
size 2 and size larger than 2, a long process is 
required to compare the occurrence of items 
through each candidate itemsets. Therefore, the role 
of this proposed algorithm is to use the parallel 
approach by decomposing this part into sub-
problem that can be executed in parallel. The 
parallel approach and master/slave architecture 
based on Apache Spark framework is selected to 
improve the performance of the BBT algorithm in 
terms of execution time. 

 
 
 
 
 
 
 
 

 
Figure 2: Pseudocode of the Master Parallel Binary-
based algorithm. 

 
 
 
 
 
 
 
 
 
 
 

Table 1: Definition of the variables. 
The master algorithm starts by preparing the list 

of itemsets by calling the getItemSet procedure (line 
2) and then proceeds to create the binary 
representation of the database by calling 
buildBinaryDB procedure (line 3). The result of 
these two procedures is demonstrated by Fig. 3 
below.  
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Figure 3: Generation of database binary representation 
[13]. 

Any required calculation to find the frequency of 
itemsets will only be based in binary. All items in 
the database are consist of digit 1 and 0 that 
represent the occurrence of the corresponding 
items. 

Before creating the parallel threads and execute 
them, the master needs to calculate the list of 
frequent itemsets of size 1. This is done by calling 
the procedure generateFrequentItemSets (line 4). 
The result of executing this procedure is 
demonstrated by Fig. 4. 

 
 
 
 
 
 
 
 
 

Figure 4: Process of calculation the frequency of each 
item [13]. 

Once the list of frequent itemsets of size 1 has 
been calculated, the master will create multiple 
threads and divide the binary database into equal 
portions. The pseudo code of the procedure is listed 
in Fig. 5 as shown below. The above procedure is 
done by calling the procedure createMultipleThread 
(line 6). The total numbers of lines of dataset will 
be divided by the number of specified threads. With 
this method, each thread will process an equal line 
of database.  

 
 

 
 
 
 
 
 
 
 
 

 

Figure 5: Pseudocode of the parallel threads. 
Once all threads have been assigned their 

respective portions, each thread will start 
calculating the list of frequent itemsets of size > 1 
based on its designated portion. Fig. 6 below 
demonstrate how each thread calculates the list of 
itemsets of size > 1. 

 
 
 
 
 
 
 
 
 

Figure 6: Frequency analysis of frequent itemset size > 
1. 

Each thread compares the same masked 
frequentItemSet_n with the respective lines of 
binary database. All assigned threads are executed 
simultaneously and then integrate the results after 
all threads finish its task. Once the result is 
generated, the next step is to compare the number of 
support and store only the element that have the 
frequency higher than the minimum support into the 
frequentItemSets_n list. The same procedure and 
method are repeated for the next set of itemsets in 
the frequentItems_n list. Itemsets that consist of a 
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high value of frequency provides a valuable 
information. The next phase is generating and 
displaying the output results through the 
printResults procedure which print the total 
execution time and extract the association rule.  
6. EXPERIMENTAL RESULTS  
 

This section presents the experimental result 
based on the proposed Parallel Binary-based 
algorithm (P-BBA). The objective of P-BBA 
algorithm is to improve the performance of Binary-
based Technique Algorithm (BBT) by 
implementing multiple execution thread. This 
experiment evaluates the performance and observe 
the comparison in terms of total execution time. In 
this context, the meaning of total execution time is 
the time taken for the program to complete the 
execution and generate output results. 

The result of this experiment is evaluated using a 
set of well-known datasets for frequent itemset 
mining problem provided by FIMI repository. 
Results of execution time is generated for 
T10I4D100K datasets, one of the popular datasets 
used to evaluate the performance of mining 
frequent itemsets. It is generated by IBM Market-
Basket Synthetic Data Generator. 

Results of total execution time is generated by 
using 2 different variable which are the number of 
threads and the range of support.   

Range of support varies started with the range of 
0.08 until 0.05. For each range of support, the total 
execution time is generated with different numbers  

 
 
 
 
 
 
 
 
 
 
 
 
 

of threads started with the uses of 1 thread until the 
uses of 10 threads. This variable is taken to observe 
and compare on how different number of threads 
may impact the total execution time. The result is 
demonstrated in the Table 2 as shown below. 

Table 2: Total execution time based on dataset 
T10I4D100K. 

 
 
 
 
 
 
 
 
 
Graph 1 presents the result of total execution 

time of the proposed Parallel Binary-based 
Algorithm (P-BBA) when it is executed across 
different range of support with different numbers of 
threads. Total execution time refers to the 
calculated amount of time for the program to be 
executed completely and produce an output result 
of frequent itemsets. Based on the above graph 1, it 
clearly shows that the algorithm achieves its best 
performance when 4-5 numbers of thread is used 
during the execution. For each type of support, the 
slowest execution time occurs either when it is 
using only 1 or 10 number of threads, which is the  

 
 
 
 
 
 
 
 
 
 
 
 
 Graph 1: The results of total execution time of P-BBA algorithm based on dataset T10I4D100K. 
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highest numbers of threads. Using only 1 number of 
threads will always resulted in slower execution 
time than using 2 number of threads. When the 
numbers of threads increase, the total execution 
time will become much faster. The load of work 
have been shared together equally by multiple 
threads. This experiment has proved that the total 
execution time for generating the frequent itemsets 
become faster when using multiple execution thread 
rather than running it in only 1 whole single 
execution.  

However, for each type of range of support, there 
will always be a certain point where the graph 
become constant or started to gradually increase. 
This is due to the limitation of available resources 
numbers of threads. The programs reach its 
optimum utilization when it is executed using 4 or 5 
numbers of threads. In conclusion, the program 
could not achieve its optimum performances if the 
numbers of threads used is larger than the available 
numbers of thread resources. This situation is cause 
by the queuing and waiting for a non-available 
thread that resulted a delay during the program 
execution. The results from the above graph 1 also 
provide the good optimum number of threads to be 
implemented when executing the program. 
7. EFFICACY OF THE PROPOSED 

ALGORITHM  
 

The performance of BBT algorithm is able to 
outperform the other previous FIM algorithm 
through the use of its binary and bit wise operation. 
However, it still suffers with the time complexity 
problem when processing huge amount of data. The 
main factor of this problem is due to its design 
which only run in a single thread of execution. The 
parallel approach and multiple execution are chosen 
to improve the performance of BBT algorithms. 
The proposed parallel approach also uses the 
master/slave architecture to fit in with Apache 
Spark framework. 

The results of applying multiple cluster node  
have shown an improvement in the total execution 
time to generate the frequent itemsets. 

The novelty of the current works lies in the fact 
that the result from the uses of parallel approach 
and master/slave architecture together with the 
implementation of bit wise operation for mining 
frequent items has been proven.   

With this improvement of time performance, the 
proposed algorithm can be applied to generate 
frequent itemsets in big data environment. 

8. CONCLUSIONS AND FUTURE WORK  
 

This paper presented a proposed Parallel Binary-
based Algorithm (P-BBA), an improved frequent 
itemset mining algorithm in terms of execution time 
based on the Binary-based Technique Algorithm 
(BBT). The demonstrated experimental results 
proves that uses of multiple thread in the process of 
generating frequent itemsets can shorten the total 
execution time compared to using only single 
thread of execution. The master/slave architecture 
helps in coordinating numbers of threads to work 
together collaboratively in order to reduce the 
processing time. Compared to the previous existing 
frequent itemset mining algorithms, this new 
solution can be declared as another better 
alternative to counter the issues in processing a 
massive amount of data in the big data application. 
Therefore, the application of this alternative method 
is able to adapt with the current revolution of big 
data as most of business industries are moving 
towards digitalization of data.  

The proposed method has proven to have a better 
performance in terms of execution time. However, 
there is still some potential area to be discovered to 
further enhance the performance of the proposed 
algorithm. Among of the future work is the 
implementation P-BBA algorithm with GPUs. Even 
though that the implementation of parallel 
execution has improved the performance, GPUs can 
be implemented to further improve the performance 
in terms of the execution time. It also uses the 
master/slave model that divide the entire database 
into partitions and splits the partition into numbers 
of GPU worker. GPU provides a higher number 
core compared to CPU. Therefore, more available 
numbers of threads can be implemented for the 
program. The higher the number of threads and 
parallel execution to be implemented, the faster the 
execution time to generate output.  
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