
Journal of Theoretical and Applied Information Technology
31st July 2021. Vol.99. No 14
© 2021 Little Lion Scientific

 ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

 3517

P-BBA: A MASTER/SLAVE PARALLEL BINARY-BASED
ALGORITHM FOR MINING FREQUENT ITEMSETS IN BIG

DATA

ALIYA NAJIHA AMIR1 , HITHAM SEDDIG ALHASSAN ALHUSSIAN2 ,
SALLAM OSMAN FAGEERI3 , ROHIZA AHMAD4

1,2,4Department of Computer and Information Sciences, Universiti Teknologi Petronas, Malaysia

3Department of Information Systems, University of Nizwa, Sultanate of Oman
E-mail: 1aliya_19000192@utp.edu.my, 2seddig.alhussian@utp.edu.my,

3sallam@unizwa.edu.om, 2rohiza_ahmad@utp.edu.my

ABSTRACT

Frequent itemset mining is a data mining technique to discover the frequent patterns from a collection of
databases. However, it becomes a computational expensive task when it is used for mining large volume of
data. Hence, there is a necessity for a scalable algorithm that can handle bigger datasets. Binary-based
Technique Algorithm (BBT) can simplify the process of generating frequent patterns by using bit wise
operations and binary database representation. However, it still suffers with the problem of low
performance when dealing with high volume of data and a minimum values of support threshold to generate
the list of frequent itemset patterns. This is due to its design which run in a single thread of execution. This
research proposed a Parallel Binary-Based Algorithm (P-BBA) to solve the mentioned problem. The
proposed algorithm is designed with collaborative threads which simultaneously work together to generate
frequent itemsets in a big data environment. A master/slave architecture is used to fit the algorithm with
distributed computing platform. The obtained results showed significant reductions in execution time when
using the proposed parallel binary-based algorithm.
Keywords: Big Data mining, Distributed Framework, Frequent Itemsets Mining, Parallel Frequent Item

Mining

1. INTRODUCTION

Data mining is a powerful emerging technology
to discover hidden knowledge that can be in a form
of pattern, correlations, relationships, and anomalies
[1]. When going into the context of data mining,
Frequent itemset mining (FIM) is considered as the
core for association rule mining [2]. FIM is used to
find which particular set of items may contain high
number of occurrences from a list of database
transactions [3]. Information of frequent items
extracted from database is crucial to discover the
hidden patterns between data and relevant
association rules. The occurrence of itemsets
provide a valuable information to support critical
decision and prediction.

However, frequent itemsets mining is a
computationally expensive task due to its algorithm
which turn an initially subset problem into an
exponential growth of complexity. Even though that

FIM algorithm may cause a huge computation cost,
its usefulness in discovering hidden information lets
FIM into getting tremendous popularity in the
industry.

The original motivation to generate frequent
items is from the application of supermarket
transactional database [4]. FIM is used by the
supermarket company to find the items that are
frequently by together with other items in a single
customer’s transaction. Generating suggestion and
recommendation helps in planning the business
strategies and leads to gain more profit. Other fields
that benefit from the application of FIM algorithm
include bioinformatics and health environments [5].
FIM is widely used in DNA analysis by detecting
the behavior of chromosomal mutation in DNA
cells [6]. The uses of FIM helps in diagnosing the
breast cancer detection at the early stage, thus
increase the survival rate of cancer patients.
Another application of frequent itemsets mining is

Journal of Theoretical and Applied Information Technology
31st July 2021. Vol.99. No 14
© 2021 Little Lion Scientific

 ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

 3518

to improve text summarization of biomedical paper.
Researchers in biomedical area face difficulties to
access the biomedical bibliographic text since it is
consisting of huge databases with more than 25
million references [7]. Various of different
applications of FIM have proven that FIM plays an
important role especially in the field of business
analytics and bioinformatics.

Among of the well-known existing state-of-the-
art FIM algorithm that have been frequently
referred by many researchers are Apriori, FP-
Growth and Eclat [8-10]. The algorithm has been
used and extended by other authors [2,4,11,12].
Even though that these algorithms have been widely
used and applied, those algorithms still have several
drawbacks especially in terms of the time
performance and the usage of space [13]. Both of
these issues can be solved using the Binary-based
Technique Algorithm (BBT) [13]. This algorithm
make use the benefit of bit wise operation for
simplifying the process of generation frequent
itemsets [13,14].

Even though that the BBT algorithm is proven to
have a better performance than the existing state-of-
the-art algorithm, when it is applied in large scale of
data, it still suffers with the problem of slow
execution time. Applications that use the FIM
algorithm typically consists of large volume of data
and may fail to generate any output due to the
explosion of the generated frequent itemsets. Since
it is dealing with massive data, the existing FIM
algorithm like Apriori, FP-growth and Eclat deal
with many difficulties [15].

The usefulness and benefits offered by FIM give
the motivations to address the challenge of mining
frequent itemsets in big data. Therefore, there is an
important need to implement a further improved
FIM algorithm that may address the issues of
processing large databases. Researchers are looking
forward towards improved FIM algorithms with
high performance as a better alternative [16-19].

The aim of this research is to further enhance the
performance of Binary-based Technique Algorithm
(BBT) in terms of execution time when it is applied
in big data environment by using a parallel
approach. Therefore, we formulate a new Parallel
Binary-based Algorithm (P-BBA) for mining
frequent itemsets in big data that generate the
results within an acceptable time frame. This
algorithm is designed with a master/slave thread
model to fit with distributed computing platform
like Apache Sparks framework.

The new proposed method allows the master
thread to monitor and control the execution of the
slave threads in order to generate frequent itemsets.
It also has the capability to control the quantity of
working threads to adapts with the environment of
datasets in terms of capacity, density, complexity
and the availability of the underlying computing
resources. Well-known datasets that are used for
frequent itemset mining problem will be used to
measure the performance in term of execution time.
2. PROBLEM STATEMENT

When considering big datasets, well-known
existing frequent itemset mining (FIM) algorithm
suffers with the problem of slow execution and may
even fail to produce any output due to the explosion
of generated frequent itemsets. The algorithm
initially deals with a subset problem by default
which turn into an exponential growth of
complexity. The Binary-based Techniques
Algorithm (BBT) make use the benefits of binary
representation to simplify the process of identifying
frequent pattern, thus reduce the total execution
time as well as the memory consumption (Fageeri et
al., 2014). However, when considering big datasets,
it still suffers with the problem of low performance
in terms of execution times. This is cause by its
design that run in a single execution thread. With
the mentioned problem, there is a need to further
improve the Binary-based Technique Algorithm
(BBT) to adapt with the architecture of distributed
computing platform. For distributed computing
platform, Apache Spark framework will be chosen
instead of Map/Reduce framework due to its benefit
of using in-memory processing and its capability to
generate real-time analytics for big data.
3. RESEARCH OBJECTIVES

• To formulate a Master/Slave Parallel Binary-
based Algorithm for mining frequent itemset in big
data environment.

• To design and implement the proposed
algorithm in a Master/Slave architecture in order to
adapt with a distributed computing framework.

• To validate the proposed algorithm using well-
known big datasets and conduct CPU profiling
simulations and evaluate the performance in terms
of total execution time.

Journal of Theoretical and Applied Information Technology
31st July 2021. Vol.99. No 14
© 2021 Little Lion Scientific

 ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

 3519

4. LITERATURE REVIEW

Frequent itemset mining (FIM) provide a
valuable information to support critical decision and
prediction. R Agrawal et al. [8] proposed an Apriori
algorithm that use prune techniques and different
candidate generation method to generate frequent
itemsets. This method is able to reduce the number
of candidate itemsets. It uses the level-wise search
to explore (k + 1) itemsets to mine itemsets that
have a high amount of frequency. However, the
methods have complex generation of candidate
itemsets and require a repetitive scanning
throughout each different iteration.

Han et al. [10] proposed an improved Apriori
algorithm called FP-growth Algorithm. It solves 2
bottle neck arise in Apriori algorithm. FP-Growth
can be adapted in larger volume of database by
generating the list of frequent items by creating its
own data structure which is the FP-Tree from using
a prune technique for infrequent items. FP-Growth
is able to reduce the total execution time to process
the output results but it needs the uses of more
memory consumption. This approach is also more
complicated and difficult to be implemented
compared to the other approach.

Zaki [9] proposed Eclat or also knows as
Equivalence Class Transformation Algorithm which
use the depth-first search strategy that create a
vertical data format. The calculation of number of
supports are much more efficient when the database
transaction is represented in a vertical
representation. What makes Eclat differ with
Apriori algorithm is that the generation (k+1)
itemsets is not require. Therefore, multiple scanning
and unnecessary consumption of time and memory
can be avoided. All items are saved in a list (TID
list) while intersection-based approach is used for
computation itemset’s support [20]. Every item
inside the TID list have its own unique transaction
identifiers (TIDs).

Fageeri and Ahmad [13] proposed a new FIM
algorithm called The Binary-based Techniques
Algorithm (BBT). This new algorithm is proven to
have a better performance than the previous three
algorithms (Apriori, FP-Growth and Eclat). The
authors highlighted the drawbacks of those previous
algorithm especially in terms of their execution
time performances and the uses of inefficient
approach in the process of comparing the items.
Those method scans every possible combination
and calculate the occurrences of all those
combinations. The requirement of multiple
scanning leads to unnecessary consumption of time.

The new BBT algorithm is reported to be able to
tackle those issues. It uses the advantage of binary
implementation to compare the frequency of items
efficiently. Other algorithm requires a multiple
scanning while BBT algorithm only scan the
original database in a single cycle. The BBT
algorithm is also not required to go through the
unnecessary needs for sorting the datasets. BBT
algorithm further improves the existing algorithm
and remove issues that are arises in previous
algorithms such as delays of execution time and
high consumptions of memory. Furthermore, it also
has another additional ability for decision support
by scanning and generating the infrequent itemsets.

Aggarwal and Han [15] discussed about the
challenges and difficulties that are faced by FIM
algorithm like Apriori, FP-growth and Eclat. These
algorithms suffer with many difficulties due to the
challenge of adapting with high volume of data.
The current volume of data is increasing with the
growing industries and increasing of internet user
[21]. The massive amount of data also leads to the
explosion of generated frequent itemsets. The initial
Apriori algorithm consume a very long execution
time when it is deal with high-scale candidate
itemsets since candidate (k + 1) itemsets are
constructed through the self-join of frequent k-
itemsets (R Agrawal et al., 1996; Yuan, 2017). High
number of candidates itemsets also leads to
exponential growth of those algorithms. Multiple
scanning is needed for every iteration to generate
the frequent itemsets [15, 22]. Therefore,
researchers are looking forward towards improved
FIM algorithms with high performance as a better
alternative [16-19]. Executing FIM algorithms by
using parallel approach with the implementation of
multiple cluster nodes would address the time
complexity problem [3].

Hazarika and Rahman [23] proposed a parallelize
Eclat algorithm called MR_Eclat algorithm to
further improve the performance of Eclat algorithm.
The proposed method is scalable to large data set
with less cost and better performance. The input
data are divided among different nodes. MR_Eclat
scan the database and transform to vertical
database. The database will then go through the
synchronous phase, asynchronous phase and
reduction phase. Implementation of Hadoop helps
in managing any failure of nodes in the cluster.
MR_Eclat has proven to have a better performance
than the non-parallel Eclat algorithm. However,
MR_Eclat algorithm does not give any significant
impact when working with small data sets. It might

Journal of Theoretical and Applied Information Technology
31st July 2021. Vol.99. No 14
© 2021 Little Lion Scientific

 ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

 3520

give similar run time or worse 27 than the non-
Hadoop system for the same algorithm.

Li et al. [24] proposed an improved FP-growth
algorithm called Parallel FP-Growth (P-FP)
algorithm by using the method of distributing the
mining task into different partition of independent
parallel tasks. The parallel FP-Growth algorithm is
proven to have a better performance than the non-
parallel FP-growth algorithm. The uses of
independent FP-tree based on the FP-growth
algorithm gives a significant improvement in terms
of runtime and memory which gives the benefit to
exploits the limitations of GPU memory. However,
if the numbers of minimum support threshold is too
low, P-FP algorithm could not handle the program.
It also generates a long itemset for each sub
transactions. The authors have also suggested to use
the P-FP algorithm together with the
implementation of distributed framework such as
Hadoop MapReduce framework and Apache Spark
framework for much better performance. The
parallelism of most FIM algorithms can be
efficiently achieved by using such framework [25].

Kourtesis et al. [26] proposed to execute Machine
Learning algorithms on multicore architectures used
the implementation of Hadoop MapReduce
framework. It is proven that Hadoop MapReduce
framework has the ability to automatically handling
failure. The complexity of fault-tolerance can be
efficiently handled using this feature. It simplifies
the development of application in distributed
environment and better parallel performance can be
obtained as this framework provides a parallel
design pattern. However, recent studies reveals that
it is not efficient enough to implement MapReduce
framework in parallelizing Apriori-based
algorithms [19].

Qiu et al. [27] proposed a further Apriori
algorithm called YAFIM (Yet Another Frequent
Itemsets Mining) algorithm to to parallelize the
Apriori algorithm using Apache Spark framework.
This algorithm is an extended version of Apriori
algorithm based on Apache Spark framework. This
framework is chosen to cope with the overhead
issue caused by the launch of new MapReduce jobs.
The motivation of this approach is by the use of its
in-memory-based data process, an iterative
computing framework, compared to MapReduce
which use a disk-based to process the dataset [28].
The process of data using memory is much faster
than using disk and it also reduce the memory usage
[29]. Therefore, Spark’s performances outperform
Hadoop’s performance especially when dealing
with iterative computations. Spark framework could

achieve up to 18× computation speedup in average
for various benchmarks [30].

The best performance of FIM algorithm could be
achieve by using parallelization together with the
implementation of Apache Spark Framework. With
these findings, there is a need to implement the
stated method for BBT algorithm as BBT algorithm
is proved to have the best performance compared to
the previous FIM algorithm (Apriori, FP-Growth
and Eclat).
5. METHODOLOGY

The implementation of Frequent itemset mining
(FIM) in data mining is crucial to discover the
hidden patterns between data and relevant
association rules to support critical decision and
prediction. Among of the popular algorithms that
have been widely use and applied are Apriori, FP-
Growth and Eclat. However, Binary-based
Technique algorithm (BBT) are proven to have a
better performance than the previous algorithm
through the implementation of binary and bit wise
operations. Even though that the BBT algorithm is
able to solve the issues arise in the previous
algorithm, it stills suffer with the problem of slow
execution time when dealing with high volume of
data. The usefulness and benefits offered by FIM
algorithm give the motivations to address the
challenge of mining frequent itemsets in big data.

The main factor that leads to this problem is
because of the design of the previous FIM
algorithm that only run in a single thread of
execution. It is proven that application which
consist with high volume of data can be effectively
deal with parallel approach [23,24]. Executing FIM
algorithms by using parallel approach with the
implementation of multiple cluster nodes would
address the time complexity problem [3]. This
alternative has also leads to explosion of parallel
computing platforms such as Hadoop MapReduce
framework and Apache Spark framework. Among
of many available type of framework, recent studies
have found that an attempt to parallelize Apriori
algorithms based on the Spark frameworks could
achieve up to 18× computation speedup in average
for various benchmarks compared to Hadoop
framework [30].

In this proposed model, the Binary-based
Technique Algorithm (BBT) is chosen to address
the challenge of mining frequent itemsets in big
data context as the performance of BBT algorithm
outperform the previous FIM algorithm due to the
use of binary and bit wise operations. The main

Journal of Theoretical and Applied Information Technology
31st July 2021. Vol.99. No 14
© 2021 Little Lion Scientific

 ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

 3521

objective is to solve the time complexity problem
cause by huge load of data to be process. Executing
FIM algorithms by using parallel approach with the
implementation of multiple cluster nodes would
address the time complexity problem. Therefore, a
parallel approach is used to improve the
performance of BBT algorithm. The formulation of
this new proposed algorithm can be further
improved with the implementation of parallel
computing framework such as Spark framework
and Hadoop framework. Apache Spark framework
is chosen as it could achieve up to 18× computation
speedup than Hadoop framework. Therefore, this
new proposed algorithm is design in a master/slave
model to fit in the architecture of Apache Spark
framework. In conclusion, we proposed a new
parallel Binary-based Technique algorithm
implemented with master/slave architecture for
mining frequent itemsets in big data.

Figure 1: Contribution area from the execution flow

The figure shows the execution flow and the

phases involve in Binary-based Technique
algorithm (BBT) to generate the frequent itemsets.
The process begins with the read of data from the
dataset and generate a binary representation. Next,
the frequency of all items is calculated and any
items that passed the minimum supports threshold
is stored. Then the system finds the frequency of
itemset of size 2 and size larger than 2. Finally, the
frequency of itemsets is extracted to form a
knowledge.

The aim of this research study is to improve the
performance of Binary-based Technique algorithm
(BBT) in terms of execution time. Based on the
figure, the highlighted part took a long time to
execute due to the challenges of processing a huge

amount of data which cause a time complexity
problem. When finding the frequency of itemset
size 2 and size larger than 2, a long process is
required to compare the occurrence of items
through each candidate itemsets. Therefore, the role
of this proposed algorithm is to use the parallel
approach by decomposing this part into sub-
problem that can be executed in parallel. The
parallel approach and master/slave architecture
based on Apache Spark framework is selected to
improve the performance of the BBT algorithm in
terms of execution time.

Figure 2: Pseudocode of the Master Parallel Binary-
based algorithm.

Table 1: Definition of the variables.
The master algorithm starts by preparing the list

of itemsets by calling the getItemSet procedure (line
2) and then proceeds to create the binary
representation of the database by calling
buildBinaryDB procedure (line 3). The result of
these two procedures is demonstrated by Fig. 3
below.

Journal of Theoretical and Applied Information Technology
31st July 2021. Vol.99. No 14
© 2021 Little Lion Scientific

 ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

 3522

Figure 3: Generation of database binary representation
[13].

Any required calculation to find the frequency of
itemsets will only be based in binary. All items in
the database are consist of digit 1 and 0 that
represent the occurrence of the corresponding
items.

Before creating the parallel threads and execute
them, the master needs to calculate the list of
frequent itemsets of size 1. This is done by calling
the procedure generateFrequentItemSets (line 4).
The result of executing this procedure is
demonstrated by Fig. 4.

Figure 4: Process of calculation the frequency of each
item [13].

Once the list of frequent itemsets of size 1 has
been calculated, the master will create multiple
threads and divide the binary database into equal
portions. The pseudo code of the procedure is listed
in Fig. 5 as shown below. The above procedure is
done by calling the procedure createMultipleThread
(line 6). The total numbers of lines of dataset will
be divided by the number of specified threads. With
this method, each thread will process an equal line
of database.

Figure 5: Pseudocode of the parallel threads.
Once all threads have been assigned their

respective portions, each thread will start
calculating the list of frequent itemsets of size > 1
based on its designated portion. Fig. 6 below
demonstrate how each thread calculates the list of
itemsets of size > 1.

Figure 6: Frequency analysis of frequent itemset size >
1.

Each thread compares the same masked
frequentItemSet_n with the respective lines of
binary database. All assigned threads are executed
simultaneously and then integrate the results after
all threads finish its task. Once the result is
generated, the next step is to compare the number of
support and store only the element that have the
frequency higher than the minimum support into the
frequentItemSets_n list. The same procedure and
method are repeated for the next set of itemsets in
the frequentItems_n list. Itemsets that consist of a

Journal of Theoretical and Applied Information Technology
31st July 2021. Vol.99. No 14
© 2021 Little Lion Scientific

 ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

 3523

high value of frequency provides a valuable
information. The next phase is generating and
displaying the output results through the
printResults procedure which print the total
execution time and extract the association rule.
6. EXPERIMENTAL RESULTS

This section presents the experimental result
based on the proposed Parallel Binary-based
algorithm (P-BBA). The objective of P-BBA
algorithm is to improve the performance of Binary-
based Technique Algorithm (BBT) by
implementing multiple execution thread. This
experiment evaluates the performance and observe
the comparison in terms of total execution time. In
this context, the meaning of total execution time is
the time taken for the program to complete the
execution and generate output results.

The result of this experiment is evaluated using a
set of well-known datasets for frequent itemset
mining problem provided by FIMI repository.
Results of execution time is generated for
T10I4D100K datasets, one of the popular datasets
used to evaluate the performance of mining
frequent itemsets. It is generated by IBM Market-
Basket Synthetic Data Generator.

Results of total execution time is generated by
using 2 different variable which are the number of
threads and the range of support.

Range of support varies started with the range of
0.08 until 0.05. For each range of support, the total
execution time is generated with different numbers

of threads started with the uses of 1 thread until the
uses of 10 threads. This variable is taken to observe
and compare on how different number of threads
may impact the total execution time. The result is
demonstrated in the Table 2 as shown below.

Table 2: Total execution time based on dataset
T10I4D100K.

Graph 1 presents the result of total execution

time of the proposed Parallel Binary-based
Algorithm (P-BBA) when it is executed across
different range of support with different numbers of
threads. Total execution time refers to the
calculated amount of time for the program to be
executed completely and produce an output result
of frequent itemsets. Based on the above graph 1, it
clearly shows that the algorithm achieves its best
performance when 4-5 numbers of thread is used
during the execution. For each type of support, the
slowest execution time occurs either when it is
using only 1 or 10 number of threads, which is the

 Graph 1: The results of total execution time of P-BBA algorithm based on dataset T10I4D100K.

Journal of Theoretical and Applied Information Technology
31st July 2021. Vol.99. No 14
© 2021 Little Lion Scientific

 ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

 3524

highest numbers of threads. Using only 1 number of
threads will always resulted in slower execution
time than using 2 number of threads. When the
numbers of threads increase, the total execution
time will become much faster. The load of work
have been shared together equally by multiple
threads. This experiment has proved that the total
execution time for generating the frequent itemsets
become faster when using multiple execution thread
rather than running it in only 1 whole single
execution.

However, for each type of range of support, there
will always be a certain point where the graph
become constant or started to gradually increase.
This is due to the limitation of available resources
numbers of threads. The programs reach its
optimum utilization when it is executed using 4 or 5
numbers of threads. In conclusion, the program
could not achieve its optimum performances if the
numbers of threads used is larger than the available
numbers of thread resources. This situation is cause
by the queuing and waiting for a non-available
thread that resulted a delay during the program
execution. The results from the above graph 1 also
provide the good optimum number of threads to be
implemented when executing the program.
7. EFFICACY OF THE PROPOSED

ALGORITHM

The performance of BBT algorithm is able to
outperform the other previous FIM algorithm
through the use of its binary and bit wise operation.
However, it still suffers with the time complexity
problem when processing huge amount of data. The
main factor of this problem is due to its design
which only run in a single thread of execution. The
parallel approach and multiple execution are chosen
to improve the performance of BBT algorithms.
The proposed parallel approach also uses the
master/slave architecture to fit in with Apache
Spark framework.

The results of applying multiple cluster node
have shown an improvement in the total execution
time to generate the frequent itemsets.

The novelty of the current works lies in the fact
that the result from the uses of parallel approach
and master/slave architecture together with the
implementation of bit wise operation for mining
frequent items has been proven.

With this improvement of time performance, the
proposed algorithm can be applied to generate
frequent itemsets in big data environment.

8. CONCLUSIONS AND FUTURE WORK

This paper presented a proposed Parallel Binary-
based Algorithm (P-BBA), an improved frequent
itemset mining algorithm in terms of execution time
based on the Binary-based Technique Algorithm
(BBT). The demonstrated experimental results
proves that uses of multiple thread in the process of
generating frequent itemsets can shorten the total
execution time compared to using only single
thread of execution. The master/slave architecture
helps in coordinating numbers of threads to work
together collaboratively in order to reduce the
processing time. Compared to the previous existing
frequent itemset mining algorithms, this new
solution can be declared as another better
alternative to counter the issues in processing a
massive amount of data in the big data application.
Therefore, the application of this alternative method
is able to adapt with the current revolution of big
data as most of business industries are moving
towards digitalization of data.

The proposed method has proven to have a better
performance in terms of execution time. However,
there is still some potential area to be discovered to
further enhance the performance of the proposed
algorithm. Among of the future work is the
implementation P-BBA algorithm with GPUs. Even
though that the implementation of parallel
execution has improved the performance, GPUs can
be implemented to further improve the performance
in terms of the execution time. It also uses the
master/slave model that divide the entire database
into partitions and splits the partition into numbers
of GPU worker. GPU provides a higher number
core compared to CPU. Therefore, more available
numbers of threads can be implemented for the
program. The higher the number of threads and
parallel execution to be implemented, the faster the
execution time to generate output.
9. ACKNOWLEDGEMENT

This research is being supported by the
university, UTP through the Yayasan Universiti
Teknologi Petronas (YUTP) grant: 015LC0-286.

Journal of Theoretical and Applied Information Technology
31st July 2021. Vol.99. No 14
© 2021 Little Lion Scientific

 ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

 3525

REFRENCES:

[1] Yan H, Yang N, Peng Y, Ren Y. Data mining

in the construction industry: Present status,
opportunities, and future trends. Automation in
Construction. 2020 Nov 1;119:103331.

[2] Gang WX. A Summary of Research on
Frequent Itemsets Mining Technology.
Procedia Computer Science. 2018 May
1;131(C):841-6.

[3] Djenouri Y, Djenouri D, Belhadi A, Cano A.
Exploiting GPU and cluster parallelism in
single scan frequent itemset mining.
Information Sciences. 2019 Sep 1;496:363-77.

[4] Pramod S, Vyas OP. Survey on frequent item
set mining algorithms. International journal of
computer applications. 2010;1(15):86-91.

[5] Zou Q, Li XB, Jiang WR, Lin ZY, Li GL, Chen
K. Survey of MapReduce frame operation in
bioinformatics. Briefings in bioinformatics.
2014 Jul 1;15(4):637-47.

[6] Sinha A, Sahoo B, Rautaray SS, Pandey M.
Improved framework for breast cancer
prediction using frequent itemsets mining for
attributes filtering. In2019 International
Conference on Intelligent Computing and
Control Systems (ICCS) 2019 May 15 (pp.
979-982). IEEE.

[7] Rouane O, Belhadef H, Bouakkaz M. Combine
clustering and frequent itemsets mining to
enhance biomedical text summarization. Expert
Systems with Applications. 2019 Nov
30;135:362-73.

[8] Agrawal R, Mannila H, Srikant R, Toivonen H,
Verkamo AI. Fast discovery of association
rules. Advances in knowledge discovery and
data mining. 1996 Feb 1;12(1):307-28.

[9] Zaki MJ. Scalable algorithms for association
mining. IEEE transactions on knowledge and
data engineering. 2000 May;12(3):372-90.

[10] Han J, Pei J, Yin Y, Mao R. Mining frequent
patterns without candidate generation: A
frequent-pattern tree approach. Data mining
and knowledge discovery. 2004 Jan;8(1):53-87.

[11] Agapito G, Guzzi PH, Cannataro M. Parallel
and distributed association rule mining in life
science: A novel parallel algorithm to mine
genomics data. Information Sciences. 2018 Jul
26.

[12] Han J, Haihong E, Le G, Du J. Survey on
NoSQL database. In2011 6th international
conference on pervasive computing and
applications 2011 Oct 26 (pp. 363-366). IEEE.

[13] Fageeri SO, Ahmad R, Baharudin BB. Bbt: An
efficient association rules mining algorithm
using binary-based technique. International
Journal of Advancements in Computing
Technology. 2014 Jul 1;6(4):14.

[14] Fageeri SO, Ahmad R. An efficient log file
analysis algorithm using binary-based data
structure. Procedia-Social and Behavioral
Sciences. 2014 May 15;129:518-26.

[15] Aggarwal CC, Bhuiyan MA, Al Hasan M.
Frequent pattern mining algorithms: A survey.
InFrequent pattern mining 2014 (pp. 19-64).
Springer, Cham.

[16] Suneel CV, Prasanna K, Kumar MR. Frequent
data partitioning using parallel mining item sets
and MapReduce. International Journal of
Scientific Research in Computer Science,
Engineering and Information Technology.
2017;2(4).

[17] Shirke D, Varshney D. Parallel Mining of
Frequent Itemsets in Hadoop Cluster Having
Heterogeneous Nodes. International Journal.
2017 Jul;5(7).

[18] Xun Y, Zhang J, Qin X. Fidoop: Parallel
mining of frequent itemsets using mapreduce.
IEEE transactions on Systems, Man, and
Cybernetics: systems. 2015 Jun 15;46(3):313-
25.

[19] Bharathi T, Krishnakumari P. A comparative
analysis on efficiency of contemporary
association rule mining algorithm. In2016 3rd
International Conference on Advanced
Computing and Communication Systems
(ICACCS) 2016 Jan 22 (Vol. 1, pp. 1-9). IEEE.

[20] Robu V, dos Santos VD. Mining frequent
patterns in data using apriori and eclat: A
comparison of the algorithm performance and
association rule generation. In2019 6th
International Conference on Systems and
Informatics (ICSAI) 2019 Nov 2 (pp. 1478-
1481). IEEE.

[21] Khan N, Alsaqer M, Shah H, Badsha G, Abbasi
AA, Salehian S. The 10 Vs, issues and
challenges of big data. InProceedings of the
2018 international conference on big data and
education 2018 Mar 9 (pp. 52-56).

[22] Yuan X. An improved Apriori algorithm for
mining association rules. InAIP conference
proceedings 2017 Mar 13 (Vol. 1820, No. 1, p.
080005). AIP Publishing LLC.

[23] Hazarika M, Rahman M. Mapreduce based
eclat algorithm for association rule mining in
datamining: Mr _ Eclat. International Journal
of Computer Science and Engineering. 2014
Jan;3(1):19-28.

Journal of Theoretical and Applied Information Technology
31st July 2021. Vol.99. No 14
© 2021 Little Lion Scientific

 ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

 3526

[24] Li H, Wang Y, Zhang D, Zhang M, Chang EY.
Pfp: parallel fp-growth for query
recommendation. InProceedings of the 2008
ACM conference on Recommender systems
2008 Oct 23 (pp. 107-114).

[25] Salah S, Akbarinia R, Masseglia F. Data
placement in massively distributed
environments for fast parallel mining of
frequent itemsets. Knowledge and Information
Systems. 2017 Oct;53(1):207-37.

[26] Kourtesis D, Alvarez-Rodríguez JM,
Paraskakis I. Semantic-based QoS management
in cloud systems: Current status and future
challenges. Future Generation Computer
Systems. 2014 Mar 1;32:307-23.

[27] Qiu H, Gu R, Yuan C, Huang Y. Yafim: a
parallel frequent itemset mining algorithm with
spark. In2014 IEEE International Parallel &
Distributed Processing Symposium Workshops
2014 May 19 (pp. 1664-1671). IEEE.

[28] Gassama AD, Camara F, Ndiaye S. S-FPG: A
parallel version of FP-Growth algorithm under
Apache Spark™. In2017 IEEE 2nd
International Conference on Cloud Computing
and Big Data Analysis (ICCCBDA) 2017 Apr
28 (pp. 98-101). IEEE.

[29] Shoro AG, Soomro TR. Big data analysis:
Apache spark perspective. Global Journal of
Computer Science and Technology. 2015 Feb
21.

[30] Mavridis I, Karatza H. Performance evaluation
of cloud-based log file analysis with Apache
Hadoop and Apache Spark. Journal of Systems
and Software. 2017 Mar 1;125:133-51.

