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ABSTRACT 

This paper studies the problem of global practical output tracking for a class of high-order non-linear systems 

with time-varying delays under the weaker conditions on the system nonlinearities. With the help of an 

appropriate Lyapunov-Krasovskii functionals and by using the method of adding a power integrator, a 

continuous state-feedback controller is successfully designed such that all the states of the resulting close 

loop system are bounded while the output tracking error converges to an arbitrarily small residual set. A 

numerical example demonstrates the effectiveness of the result. 

Keywords: Practical Output Tracking, State Feedback Control, Nonlinear Systems, Time-Varying Delays, 
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1. INTRODUCTION 

 

In this paper, we address the global output tracking 

problem for a class of uncertain nonlinear systems 

with time-varying delay which is described by 
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where T
1( , , ) n

nx x x R   and u R  are the 

system state and the control input, respectively; 

1( ) ( ( ), , ( )) ,T
i ix t x t x t  ( ) ( ),nx t x t  

( ), 1, , , 0id t i n  are time-varying delays 

satisfying 0 ( ) ,i id t d  ' ( ) 1i id t    for 

constants id  and .i 0( ) ( ), [ , 0]x d     

with  1max i n id d  and 0 ( )  being specified 

continuous initial function; The terms ( )ig   are 

disturbed virtual control coefficients and ( )if   

represent nonlinear perturbations that are continuous 
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functions; 1 { [0, ) :i odd

p
p R p

q
    and q  are 

odd integers, p q }; ––––– ( ),ig t 1,... ,i n  are 

disturbed virtual control coefficients; ( , )if x u

1,... ,i n  are unknown continuous nonlinear 

functions. 

  It has been known that the problem of global 

output tracking control of nonlinear systems is very 

challenging and important problems in the field of 

nonlinear control. During the past two decades, the 

global output tracking control design for non-linear 

systems has been extensively investigated. A number 

of interesting results have been achieved over the 

past years, see [1-11], as well as the references 

therein. However, the aforementioned results do not 

consider the effect of time delay. Time-delay 

phenomenon exists universally in many practical 

models, such as mechanical, chemical systems, 

biological systems and electrical systems. The 

existence of time-delay may bring about the 

performance instability, or make the system crashed. 

Therefore, the study of the problems of global 

control design of time-delay nonlinear systems has 

important practical significance. However, due to 

there being no unified method being applicable to 

nonlinear control design, this problem has not been 

fully investigated and there are many significant 

problems, which remain unsolved. In recent years, 

by using the Lyapunov-Krasovsky method to deal 

with the time-delay, control theory, and techniques 

for stabilization problem of time-delay nonlinear 

systems were greatly developed and advanced 

methods have been made; see, for instance, [12-19] 

and reference therein. In the case when the 

nonlinearities contain time-delay, for the output 

tracking problems, some interesting results also have 

been obtained [20-24]. However, the contributions 

only considered special cases such as ip  equal one 

or constant time-delay for the system (1) when the 

case ip  greater one. When the system under 

consideration is time-varying delays non-linear, the 

problem becomes more complicated and remain 

unsolved. This motivates the research in this paper. 

In this paper, under mild conditions on the system 

nonlinearities involving time-varying delay, we will 

be to solve the specified problem using of the 

homogeneous domination technique [15], [25-28] 

and a homogeneous Lyapunov-Krassovsky 

functional. The main contributions of the paper can 

be summarized as follows: First, by comparison with 

the case in works [21-23], it is difficult to construct 

the Lyapunov-Krassovsky functional for higher-

order nonlinear system (1). Therefore, we solve a 

number of problems that arose during design and 

analysis by creating a new Lyapunov-Krassovsky 

functional for higher-order nonlinear systems and 

adding the power integrator technique. Second, we 

extend the result obtained in the work [24] to the case 

where there is by a time-varying delay [29]. 

It should be noted that the proposed controller can 

only work well when the entire state vector can be 

measured. Therefore, a more interesting problem is 

how to design a state feedback controller for the 

systems studied in the paper to make the tracking 

controller arbitrarily small after a finite time, while 

keeping all closed-loop signals bounded, if only the 

state vector is partially measurable, which is 

currently under our further investigation. 

Throughout this study, we use the following 

notations. 
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Notations. R  denotes the set of all the 

nonnegative real numbers and nR  denotes the real 

𝑛-dimensional space. A function : nf R R  is 

said to be kC -function, if its partial derivatives exist 

and are continuous up to order , 1 .k k    A 

0C  function means it is continuous. A C function 

means it is smooth, that is, it has continuous partial 

derivatives of any order. The arguments of functions 

(or functional) are sometimes omitted or simplified; 

for instance, we sometimes denote a function 

( ( ))f x t by ( ),f x ( )f   or .f  

2. PROBLEM STATEMENT AND 

PRELIMINARIES 

The objective of the paper is to construct an 

appropriate controller such that the output of system 

(1) practically tracks a reference signal ( ).ry t  That 

is, for any pre-given tolerance 0   to design a 

state feedback controller of the form 

 

      ( ) ( ( ), ( ))ru t g x t y t                 (2)   

                                                              

such that for the all initial condition 

(i) All the trajectories of the 

closed-loop system (1) with state 

controller (2) are well-defined and 

globally bounded on [0, ).  

(ii) There exists a finite time 0T  , 

such that     

     

( ) ( ) , 0ry t y t t T                 (3) 

To construct a global practical output tracking 

controller for non-linear system (1), we introduce 

the following assumptions. 

Assumption 1.   

For 1, ,i n  , there are ( ), 1, 2ij ia x j   non-

negative smooth functions and decreasing constants 

1 2 0n       ( i
i

i

p

q
  , with an even integer 

ip  and iq  an odd integer),  such that 
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where ir  are defined as 1 11, 0,i i i ir r p r      

1, , .i n     

Assumption 2.   

For 1, ,i n  , there are positive constants 1ib and 

2ib  such that 

 

1 2( )i i ib g t b   

 

Assumption 3.   

The reference signal ( )ry t  is continuously 

differentiable. Moreover, there is a known constant 

M > 0, such that 

 ( ) ( ) , 0,r ry t y t M t      

 

This section cites some definitions and technical 

lemmas, which are used in the main body of this 

investigation. 

Next, we will present several useful Lemmas 

borrowed from [10], [12], [13] and [18], which will 
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play an important role in our later controller design.  

Lemma 1.   

For all ,x y R  and a constant 1p  , the following 

inequalities hold: 

(i) 12 ,
p p p px y x y    

   
11 11 1

2
p

pp pp px y x y x y


      

 if 1
oddp R  then 

(ii) 12 ,
p p p px y x y    

1 1 1 1

2 .
p

p p p px y x y


    

Lemma 2.  

For given positive real numbers m, n and a positive 

function       a (x, y), there exists a positive 

function c (x, y), such that 

 

( , ) ( , )

( , )
( , )

m n m n

m
m nn

m nn

a x y x y c x y x

n m
a x y y

n m m n c x y








 
     

 

Lemma 3.   

For any positive real numbers ,x y  and 1,m   the 

following inequality holds 
1

1
.

mm
x m

x y
m y


      

   
 

3. CONTINUOUSLY DIFFERENTIABLE 

STATE FEEDBACK CONTROLLER DESIGN  

In this section, we shall construct a continuously 

differentiable state feedback tracking controller 

which is addressed in a step-by-step manner for 

system (1). 

Theorem 1.  

Under Assumptions 1-3, the global practical output 

tracking problem of system (1) can be solved by a 

continuously state feedback controller of the form 

(2). 

Proof:   

Let 1 1( ) ( ) ( )rz t x t y t   and given 

( ) ( ), 2, , .i iz t x t i n    Then we have 

1
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(4) 

Let oddR   be a constant satisfying 

 
1
max ,i i

i n
r 

 
   where i  and ir  are defined 

by Assumption 1. 

Initial step. Choose the Lyapunov–Krasovskii 

functional 

1 1 1 1 1 1( ) ( ) ( )V z U z W z                  (5) 

where 

1 1

1
1 1 1

1

2

2
1 1 1 1

1
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r

z r r
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U z z s z ds

 
  

 

  

 




 
      

  

1 0z   and  
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With the help of Assumptions 1 and 3 and Lemma 2, 

we have (which is positive definite, proper, and 1C  

due to the fact that 1 1 12 2r     .  Then, the 

time derivative of 1 1( )V z along the trajectory of (1) 

is) 
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Further, it follows from Assumptions 1 (ii), 2 and 

Lemmas 1-3 that  
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and 0   is any real constant. Since 11 1( )ra z y  

and 12 1( )ra z y  are smooth functions and ( )ry t  

is bounded, so we can choose 1 1 11 1( ) ( ).rz a z y    

Design the virtual controller 1*
2

pz  as 

1 1

1 1

1 1

1 1 2 1 2 1

1

*
2 1 1 1

11 1 2

1 1 1 1 1 1

1 1
( )

1 1

( ) ( )

r

p r

r
r r p r p

n n
z n z z

b

z z z




 
  


 

  






 
        

 
     

 



 

with a smooth function 
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then we have 
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Inductive step.  Suppose at step, there exist a 

series of smooth functions 1( , , ) 0,i iz z 

1, , 1i k  , with the following virtual controllers 
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We claim that (8) also holds at Step k. To prove this 

claim, consider the Lyapunov function  
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The function  i iU z  can be shown to be 1,C

proper and positive definite with the following 

property: for 1, , 1,j i   
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and there is a known constant 0,L   such that 
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Proofs of these properties proceed just in the same 

way as in the proofs for [20, propositions 1 and 2] 

and [21], where the set of positive odd integers is 
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considered instead of oddR  which is used in this 

paper. 

With these properties, we obtain 
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for a virtual controller *
1
ip

iz   to be determined later. 

In order to proceed further, a bounding estimate for 

each term in the right-hand side of (14) is needed. 

The terms in (14) can be estimated using the 

Propositions 1-3 in the Appendix. 

Substituting the results of the Propositions 1-3 into 

(14), we arrive at 
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where  

1 2 3( ) ( ( ) ( ) ( ) )i i i i i i i iz h z h z h z     
 

is a smooth positive function. 

Therefore, if we take the virtual control *
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then, we obtain 
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which proves the inductive argument.  

At the nth step, by applying the feedback control 
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with the 1,C proper and positive definite 

Lyapunov–Krasovskii functional  nV z  

constructed via the inductive procedure, we arrive at  
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Inequality (21) will be shown that the state ( )z t  of 

closed-loop system (4)-(17) is well-defined on 

 0, and globally bounded. To prove this, first 

introduce the following set 
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(22) 

 

and let ( )z t  be the trajectory of (4) with an initial 

state (0).z  If ( )z t  , then it follows from (21) 

that 
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(23) 

 

This implies that, as long as ( )z t  , ( ( ))nV z t  is 

strictly decreasing with time t, and hence ( )z t  must 

enter the complement set nR   in a finite time 

0T  and stay there forever.  Therefore, (23) leads 

to 
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0

2
1

( ( )) ( (0)) ( ( )) 0, 0,

2
( ( )) 2 , [ , )

i

t

n n n

i
n

V z t V z V z t dt t T

V z t nn n t T


 






   

   

 

  

(24) 

which shows ,nV L  and so do 1z and .kW  By 

1 1 rz x y   and ,ry L  we conclude 1x L  

as well.  Noting  

   
1 1 1 1

1 1 1*
2 1 1 1 1 1 1( )

r r

p r rx x n x x x
 

 
 

      

and 1 1( )x  is smooth function of 1x , we have 

1*
2 .px L   

Since 2W L and (13), we have *
2 2( )x x L   

and 2 .x L  Inductively, we can prove 

, 3, 4,...,ix L i n  and so do ( ).x t   

Thus, the solution ( )x t  of the system (4) is well-

defined and globally bounded on  0, .  

Next, it will be shown that 

 

1( ) ( ) ( ) ( ) , 0.r ry t y t z t y t t T            

(25) 

 

This is easily shown from (13), (24) and by tuning 

the parameter   as follows  

1 1
1

1

( ) ( ) ( ) ( ( )) 2 .r n

r
y t y t x t V x t n n

r


 


       

Therefore, for any 0,   there is globally practical 

output-tracking such that (25) holds.  

This completes the proof of Theorem 1.    

                                   

4. AN ILLUSTRATIVE EXAMPLE 

2

11 1.
7 3

1 2 1 1

7.
( )5

2 2
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1
( ) ( ) ( ( )),
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1
( ) ( ) ( )

6
( ) ( )

x t

x t x t x t d t

x t u t x t e

y t x t


  




 






        (26) 

where:  1
( ) 1 sin( ) ;

6
d t t   1 2( ) ( ) 1g t g t  - 

disturbed virtual control coefficients. 

2

1
( )3

1 1 2 2

1 1
( ( )), ( ) .

7 6
x tf x t d t f x t e    We choose 

1 2

4

7
    that together with 1 1r  and 

1

11
,

7
p  2

7
,

5
p   implies that 

1 1
2

1

1 2
1,

3

r
r

p

 
    2 2

3
2

4
1 557

7 49
5

r
r

p

 
   , 

it is easy to obtain 

 

 2

11 11
2

7 7
1 1 1 1 12 1

1111 11
2 77 7

2 1 1 1 2

22 2

1
1 ( ( )) ( ),

2

1
1 ( ( ))

5

( )

x

f x x x t d t a x

f x e x x t d t x

a x

      
 

 
        

 


 

Clearly, Assumption 1 and 2 are satisfied with 

11 21

1 1
, .

2 5
a a   Moreover, noting that 

1 1
( ) cos 1

6 6
d t t


    the controller proposed in this 

paper is applicable.  
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By choosing 
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and 0   real const. 
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7 714 14 14
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4
4

1
7
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4 1
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14 1129
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11 11 11
*

7 7 7
2 1 1 1 1 1 1(2 ( )) ( )x x x x x       

1 2

1
( ) ( ) ( ) ( ( )) 4 ,

1129ry t y t x t V x t         

for any 0   

0,0023   the tracking error obtained is about 

0.01; 0.025   then the tracking error reduces to 

about 0.025. 

5. CONCLUSION 

This paper studied the problem of global practical 

output tracking for a class of high-order non-linear 

systems with time-varying delays under the weaker 

conditions on the system nonlinearities. With the 

help of an appropriate Lyapunov-Krasovskii 

functionals and by using the method of adding a 

power integrator, a continuous state-feedback 

controller is successfully designed such that all the 

states of the resulting close loop system are bounded 

while the output tracking error converges to an 

arbitrarily small residual set. A numerical example 

demonstrates the effectiveness of the result. 

Appendix  

Proposition 1:  There exists a positive constant 1kh  

such that 
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follows from Lemma 1 that 
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By Lemma 2, Assumption 2 and (A1), and noting 

1 1 1,k k k kr p r      it can be seen that 
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       (A2) 

for a positive constant 1.kh  Proposition 1 is proved. 

Proposition 2:  There exists a positive smooth 

function 2 ( )k kh x  and any real number 0   such 

that 
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Proof:  Using Lemma 1, Assumptions 1 and (7), it 
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(A5) 

  

for smooth, positive nonzero functions 
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for a smooth function 2 ( ) 0k kh z   and any real 

number 0  . Proposition 2 is proved. 

Proposition 3:  There exists a positive smooth 

function 3 ( )k kh x  and any real number 0   such 

that 
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By (7), (11), (A5), (A7) and Assumption 1-2, we 
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Noting that 1j j j jp r r     and ,j k   by using 

Lemma 2, we have (see (A9))  
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(A9) 

where kb  and 3 ( )k kh z are non-negative smooth 

functions. Proposition 3 is proved. 
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