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ABSTRACT

This paper studies the problem of global practical output tracking for a class of high-order non-linear systems
with time-varying delays under the weaker conditions on the system nonlinearities. With the help of an
appropriate Lyapunov-Krasovskii functionals and by using the method of adding a power integrator, a
continuous state-feedback controller is successfully designed such that all the states of the resulting close
loop system are bounded while the output tracking error converges to an arbitrarily small residual set. A
numerical example demonstrates the effectiveness of the result.
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1. INTRODUCTION where X =(X,...,X,)" €R" and ueR are the
system state and the control input, respectively;

In this paper, we address the global output tracking % (t) = (X, (t),..., % (1)), X, (t) = x(1),

problem for a class of uncertain nonlinear systems ~ d;(t), i=1...,n,>0 are time-varying delays
with time-varying delay which is described by satisfying 0<d@®)<d,dt<a<l for
constants d, and 4. X(0)=¢,(0), 6<[-d,0]
o — : > X . . .
% ()= G, OX", + (X (), % (=, )., Xt —d. ), with d >max,, {d;} and ¢,(6) being specified
i=1...n-1 continuous initial function; The terms ¢;(-) are

%, (t)=g,tu ®)+ f, (X, 1), x t=d,{),..., ,(t=d,(t))), disturbed virtual control coefficients and f,(-)
y O=x® represent nonlinear perturbations that are continuous
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functions; p, e R}, = {B €[0,):p and g are
q

odd integers, p=q }; —— g;(t), i=1L..n, are
disturbed virtual control coefficients; f,(x,u)
i=1,..n, are unknown continuous nonlinear
functions.

It has been known that the problem of global
output tracking control of nonlinear systems is very
challenging and important problems in the field of
nonlinear control. During the past two decades, the
global output tracking control design for non-linear
systems has been extensively investigated. A number
of interesting results have been achieved over the
past years, see [1-11], as well as the references
therein. However, the aforementioned results do not
consider the effect of time delay. Time-delay
phenomenon exists universally in many practical
models, such as mechanical, chemical systems,
biological systems and electrical systems. The
existence of time-delay may bring about the
performance instability, or make the system crashed.
Therefore, the study of the problems of global
control design of time-delay nonlinear systems has
important practical significance. However, due to
there being no unified method being applicable to
nonlinear control design, this problem has not been
fully investigated and there are many significant
problems, which remain unsolved. In recent years,
by using the Lyapunov-Krasovsky method to deal
with the time-delay, control theory, and techniques
for stabilization problem of time-delay nonlinear
systems were greatly developed and advanced
methods have been made; see, for instance, [12-19]
and reference therein. In the case when the

nonlinearities contain time-delay, for the output

tracking problems, some interesting results also have
been obtained [20-24]. However, the contributions
only considered special cases such as p, equal one
or constant time-delay for the system (1) when the
case P, greater one. When the system under
consideration is time-varying delays non-linear, the
problem becomes more complicated and remain
unsolved. This motivates the research in this paper.
In this paper, under mild conditions on the system
nonlinearities involving time-varying delay, we will
be to solve the specified problem using of the
homogeneous domination technique [15], [25-28]
and a homogeneous Lyapunov-Krassovsky
functional. The main contributions of the paper can
be summarized as follows: First, by comparison with
the case in works [21-23], it is difficult to construct
the Lyapunov-Krassovsky functional for higher-
order nonlinear system (1). Therefore, we solve a
number of problems that arose during design and
analysis by creating a new Lyapunov-Krassovsky
functional for higher-order nonlinear systems and
adding the power integrator technique. Second, we
extend the result obtained in the work [24] to the case
where there is by a time-varying delay [29].

It should be noted that the proposed controller can
only work well when the entire state vector can be
measured. Therefore, a more interesting problem is
how to design a state feedback controller for the
systems studied in the paper to make the tracking
controller arbitrarily small after a finite time, while
keeping all closed-loop signals bounded, if only the
state vector is partially measurable, which is
currently under our further investigation.
Throughout this study, we use the following

notations.
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Notations. R* denotes the set of all the

nonnegative real numbers and R" denotes the real
n-dimensional space. A function f:R" >R is
saidtobe C*-function, if its partial derivatives exist
and are continuous up to order k, 1<k <o. A
C’ function means it is continuous. A C” function
means it is smooth, that is, it has continuous partial
derivatives of any order. The arguments of functions
(or functional) are sometimes omitted or simplified;

for instance, we sometimes denote a function

f(xt)by f(x), f() or f.

2. PROBLEM STATEMENT
PRELIMINARIES

AND

The objective of the paper is to construct an
appropriate controller such that the output of system
(1) practically tracks a reference signal y, (t). That
is, for any pre-given tolerance & >0 to design a

state feedback controller of the form

u(t) = g(x(,y, (V) 2

such that for the all initial condition

(1) All the trajectories of the

closed-loop system (1) with state
(2) are well-defined and

globally bounded on [0, +0).

controller

(i1) There exists a finite time T >0,
such that
ly® -y, (0] <&, V=T >0 (3)

To construct a global practical output tracking

controller for non-linear system (1), we introduce

the following assumptions.

Assumption 1.

For i=1...,n, there are a;(X), j=1,2 non-
negative smooth functions and decreasing constants

Pi

7,27,2---27,20 (r; =—, with an even integer
G;

p; and @; anoddinteger), such that

[ £ (KO, X (t=d, (D)...... % (L=, (D)

it7i

n+|xi<t—d,-(t)>|ri7]+an<x>

<a,(x >'Z(|x,- ®)
=

where T,

aredefinedas =1 r,p, =r+7 >0,
i=1...,n

Assumption 2.

For i=1,...,n, there are positive constants b, and

b., such that
b, <g,(t)<h,

Assumption 3.

The reference signal Y, (t) is continuously
differentiable. Moreover, there is a known constant

M > 0, such that

ly, ®]+]y,®|<M,  Vte[0,)
This section cites some definitions and technical
lemmas, which are used in the main body of this

investigation.

Next, we will present several useful Lemmas

borrowed from [10], [12], [13] and [18], which will
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play an important role in our later controller design.

Lemma 1.

Forall X,y e R andaconstant p>1,the following

inequalities hold:

) Ix+y|" 32"‘]|x°+y°|,
oo M 1
()2 <e+lyfp <2 (|x]+]y])®
if peR;, then
(ii) Ix—y|" szp'l|x"—y°|,
1 1 p-L 1
XP—yP|<2® |x-ylp.
Lemma 2.

For given positive real numbers m, n and a positive
function a (X, y), there exists a positive

function ¢ (X, ), such that

m+n

ax, Y|X"|y[" <cx, y)|x

n ax,y) " |y

m
+
n+m((m+n)c(x, y)J

m+n

Lemma 3.

For any positive real numbers X,y and m=>1, the

following inequality holds
(xjm(m—ljml
X<Yy+|—| |[—| .
m y

3. CONTINUOUSLY DIFFERENTIABLE
STATE FEEDBACK CONTROLLER DESIGN

In this section, we shall construct a continuously

differentiable state feedback tracking controller

which is addressed in a step-by-step manner for

system (1).

Theorem 1.

Under Assumptions 1-3, the global practical output
tracking problem of system (1) can be solved by a
continuously state feedback controller of the form
(2).

Proof:

Let z,(t)=x()—V,(t) and given
z,(t)=x(t),i=2,...,n. Then we have

2,(t)=9,)z) O+ fi(z,O+Y, ),
z,(t—d, () +y, (t—d, (1) -y, (t),Vb’ —4ac
2,()=9,(0z]) + f,(Z;(1),z,(t-d, (V) + Y, (t=d, (D)),
z,(t—d, (1), ..., z;(t=d;t), j=2,...,n—1,
2,(t)y=g,Ou™ O+ f,(Z;V), z,(t=d, () + Y, (t=d, (1)),
z,(t—d, (1), ..., z;(t—d; (1))
y =z, +y, (1)

“)

Let peR,, beaconstant satisfying

p>max{r +7,}, where 7; and I, are defined

1<i<n

by Assumption 1.

Initial step. Choose the Lyapunov—Krasovskii

functional
V1(21)=U1(21)+W1(21) (5)
where
2p—1-1
— 1 2p-1 _ 4 ?,T *f g
UI(ZI)_Zp—TI z, _.L;[S -z ds,
z; =0 and

—————————
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Nt s
W, (z,) :_.Ld,mes ‘227 (s)ds +

1-4
n—1

+
1- 4,

t s-t,2p
J‘[_dzme Z,” (S)ds.

With the help of Assumptions 1 and 3 and Lemma 2,

we have (which is positive definite, proper, and C'
due to the fact that 2p—7, 22r,+7,. Then, the
time derivative of V,(z,) along the trajectory of (1)
is)

Vi(z) =z g, ®z + f (7, )+

+Y, (0,7, (t=d, () +, (t-d; (V) -

n t
-y, ()] e 'z’ (s)ds +
-4 t—djl‘(t) 1
t
Ml I ez (s)ds |+ n
1- t=d, (1) 1-

x(277 (0 -e Oz (t-d, (0)1-d, (1)) +

n—1,,, 02 _
N (27 (-2 (t-d, ()1 -d, (1))

Further, it follows from Assumptions 1 (ii), 2 and

Lemmas 1-3 that

2p-n N 2p-7n-N
j f “p f P “p
Viz)<gz, ot +gz t (D -zt )+
2p-1-n

+a11(zl +yr)zl ’

o+ La
(|zl|n+|zl(t—d1(t))| : j+

+[2"a“(z1 +yr)MT +M +a,(z +yr)]

2p7nh n

z, —W1(21)+_1_/1‘ 2" +

. n-—1 lep_e-dlmn(l_—dl(t))zfp(t—d](t))

-4, -4

_e_dz(owz”(t—d )<
-4, ‘ T

Sglzl ’ Z;pl _Wl(zl)_eid(n_l)*

*(207 (t—d, () + 277 (t—d, (1)) +

2p-1,—1
n n-1 . R
+zf”[1_/11 +q+al(21)]+9121 o

[a](z])]zp—f.—n

>
71 +h

52p—z| -

where &,(z,)=

ath

0!1(21)2£2“an(21+yr)'\/| M ta,(z+Y,)

and 0 >0 isany real constant. Since a,,(z,+VY,)
and a,(z,+Yy,) aresmooth functions and Y, (t)
is bounded, so we can choose ¢,(z,)2=a,,(z, +Y,).

Design the virtual controller z,” as

. 1 n n-l ah
" :——[n+ + +071(21)Jz1 o=
b11 1-4 1-4,
n+h
ath P\ p LT
:_ﬁl(zl) r (ZFJ :_ﬂl(zl) ? glp

with a smooth function
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r where
1 n n-1 _ Lh
B(z)=| —| n+—+——+a,(2) , and
b11 1- 2’1 1- /lz

i-1 i-1
V(Z)=SU Z)+3W,
then we have i (7) JZ:; i) ,Z:; '
2p—Ni—%i

V,(z) <—nz}” —e (n=1)(z} (t—d, (1) + 2 (t—d, (1)) - Ui(Z)=IZ{S“ —Zi”J ds

-W,(z)+g,z, " (2 -z")+6

(6) and

Inductive step. Suppose at step, there exist a W n

= I[ e & (s)ds +
series of smooth functions f(z,,...,z,) >0, 1=4 " (10)

nel ot o
1_j’|+] JAt_dm('[)e gi (S)ds

i=1,...,k—1, with the following virtual controllers +

The function U;(Z) can be shown to be C',

E *B
7, =0, &=121 -7 proper and positive definite with the following
. n 2 2 property: for j=1,...,i—1,
2, =-¢"p(z), 6 =1 —1,"
Z :_f,ﬁﬂi—l(fi)v g :Zirl _Zir' > P
2p-1 -7 a a[zl f ]
N 2 *P P
7 Mi_ 2p-f Gt ds
oz, P % oz,
such that (11)
2p—Ni—7
. ] i1 ou. P *P P 2p—ri-7
Vi, (Z)<-(n-i+2)> & a—'z zf -z" =& 7 (12)
j=1 Z;

—(n—i+1)'Z((§f(t—dj(t))+§f(t—dj+1(t)))
j=1

2p=t iy and there is a known constant L >0, such that
+0i6 7 (ZipH -z )+ (iI-1o.

®)

2p—ti—7i
U2L(z-27) =« (13)
We claim that (8) also holds at Step k. To prove this

claim, consider the Lyapunov function ) o
Proofs of these properties proceed just in the same

VA(Z) =V, (Z)+U,(Z)+W, ©) way as in the proofs for [20, propositions 1 and 2]

and [21], where the set of positive odd integers is

—————————
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considered instead of R, which is used in this

paper.
With these properties, we obtain

vi(Ei)s—(n—i+z)i§:§f—
j=1

—e ¢ (n-i +1)i(§f(t—di(t))+§j2(t—diﬂ(t)))_
j=1

i1
_ij + gi—léri—l r
j=1

(Zipll _Zi*pul)_;’_

+(i—1)§—VVi+n1_|+1

&+

g (N=i+1(1-d, ()
1-4

n—i
1-4

i+1

oo (N=DA-dy, ()
1-4

i+1

égiz

é:iz (t - di (t)) -

E(t-d,, )+

2p-fi—7i

*p ] *p
+0:6 7 7, +06 7 -+
2p-ti—7i

+& 7

2p-fi—7i

i1 54
f(z+ yr,zz,...,zi)+ZLz‘j
=1 O,

(14)

for a virtual controller z;” to be determined later.
In order to proceed further, a bounding estimate for
each term in the right-hand side of (14) is needed.
The terms in (14) can be estimated using the

Propositions 1-3 in the Appendix.

Substituting the results of the Propositions 1-3 into

(14), we arrive at

Vi(z)3—<n—i+1)_iZ§f

et (=Y (& -d, )+ & t-d, 1)
j=1

2p—ti—Ti 2p—ri—%i

_Zi:WJ"'giézi 7ol +eg (Ziﬁl_zm)
in

+ _n—|+1+ n-| +a,(z) |& +io
l_/l 1_/1’”1

(15)

where

() (= hy(Z)+h,(Z) +h,(Z))

is a smooth positive function.

Therefore, if we take the virtual control 7z, as

SiPi i _
zh ==& 7 LI P P P L S L
' bn 1-4 1-4,
fiv1Pi fi+1Pi
+0'/|(Z|))}__§i ? A(Z) ? B
(16)

then, we obtain
Vi(z)< —(n—i+1)z':§f
j=1

et =Y (£ -d, )+ E(t-d,., (1)
j=1

—Zi:Wj+gi§i (2% —z0)+io

i+1 i+1
j=I

which proves the inductive argument.

At the nth step, by applying the feedback control

The1 Pn Tn+1 P

uh ==& 7 B0 (2) (17)
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and positive definite
Vo (2)

constructed via the inductive procedure, we arrive at

with the C', proper

Lyapunov—Krasovskii functional

V”(Z)S_iéz—iwﬁrné' (18)
i=1 i=1
where
V,@)=YU,@)+ YW, and
i=l i-1
; L P
;Wi :; 1-4 It—dl(t)e t§iz(s)ds
i (19)
3 n-t ! S—t £2
+§1_ﬂ1+1 J.tidm(t)e 5' (S)ds
Moreover, we have
2p-ti-7
4 *L
@yl 2|
f 2p—fi-7
-1 2 Llp| 2 #P P
<2707 -z |4 -zt
s(2)laf (20)
2p—]7l
7 , 27 T
<A-SD)lel + —=
Sl + 2
2,0—171
s|;|2+fi_L__£L
So,
2
Su,@) <Yl n i,
i=1 =1 Yo}
Therefore,

V'n(z)s—zn:;Z —Zn:wi +né

2p71

2% 1
i +no

s-_z”:ui —Z":wi +n Q1)

zl,l

TI

2% 1
=V (D) +n"—T4ns
P

Inequality (21) will be shown that the state z(t) of
closed-loop system (4)-(17) is well-defined on
[0,+ ) and globally bounded. To prove this, first

introduce the following set

zl,l
T

2% ¢
Q=110 eR"|V,()2n"—T 12051,
P

(22)

and let z(t) be the trajectory of (4) with an initial
state z(0). If z(t) e Q, then it follows from (21)

that

20,

V, (z(t) <V, (2() + n2 T ns<—ns <0,

(23)

This implies that, as long as z(t) e Q, V, (z(t)) is
strictly decreasing with time t, and hence z(t) must
enter the complement set R"—Q in a finite time
T > 0 and stay there forever. Therefore, (23) leads

to
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. 4. AN ILLUSTRATIVE EXAMPLE
V, (2®)-V, (2(0) = [ V, (zt)dt <0, te[o,T) NILLUS v

2p_
T

1
7i 11 1

X (t) = X7 <t>+%x§ (t—d, (1)),

V. (z() <m? +2n8, te[T,o)

7

(24) X, (1) :lﬁ(m%xz (Her® (26)

t)=x(t
which shows V, €L, and so do z,and W,. By y(® =x(0

z,=X+Yy, and y, el®, we conclude x eL”

as well. Noting

where: d(t) = %(1 +sin(t)); g, =9g,(1)=1 -

h+7 h+7

X =—x " (n+,;1(xl))=_x1" ﬁl(xl)

disturbed virtual control coefficients.
~ . . 1 l 1
and &, (X) is smooth function of X , we have f=—x}(t—-d(), f,=-x()e*Y. We choose
X el”. 7 6
Since W, e L” and (13), we have (X,-x;)el — _4 that together with r =1 and
and x,el”. Inductively, we can prove 7

X €L”, i=3,4,..,nand so dox(t). p=2 p=1, implies that
Thus, the solution X(t) of the system (4) is well- 7 3
4
defined and globally bounded on |0,+ ). =
sy [0+) fn_1+2 ner, 7 ss
Next, it will be shown that = P, T3 7 = p, - 7 49
5

it is easy to obtain
ly®O-y, 0=z -y, t)]<e, VE=T>0.

25) 1 11 11
=5 (00)(pf +-do Jrau®)

11
7
X2

|1, g%(H X} +e”® )(|xl|l71 +|xl(t—d(t))|171 +

}

This is easily shown from (13), (24) and by tuning

the parameter o as follows +ay, (X,)

r

Y®) -y, (O] =[x O] <V, (x@®) <n 2 ong < g,
I

: Clearly, Assumption 1 and 2 are satisfied with

Therefore, for any £ > 0, there is globally practical a, - l Morcover,  noting that

output-tracking such that (25) holds. >

' 1 1 o
This completes the proof of Theorem 1. d(t) = gcost < s <1 the controller proposed in this

paper is applicable.

—————————
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By choosing and J>0 V real const.
p=2(p=max{r +7;1, +7,;1 +7,} = WA i u il 1
7 7T — _Rl4 7)) -2 7T — _ 14 7.)- 14
{11 11 83} 83 2 ﬂl (1) 1 ﬁl (l) §1 s
=maxy—;—;— =—
77 49) 49 1 )
where f,(z)) :—(2+—+dl(zl)} Then we
bn 1_/11
Vi(z) =U,(z)+W,(z) have
e 2 A 2 Vi(z) <=2z e (z}(t—d, () -W,(z,)+
7 7 7s7 727 17 11 11
= 2 — —_ "1 . - = *_o
Ul(zl)_g(s ) * o= 24 247 +2 (2] =3,7)+o
0
2, =0 &= -1’
2 3
W (z)=—— [ e'z'(s)ds ,=-¢ ()  &=7-7]
1_11 t=d, (t)
o v
N Vi(z2) <28 =& (t —dl(t))+§114 (227 -z, J+5

7z
Vl(Zl) = 2; +W1(21)

17 7

. — i L *Z
Va(z3) <= (& + &)+ 841 -2,°)+25

. 7o V=V (7 -
Vi) =27 +Wi(z,) VZ(Zz) V1(21)+U2(Zz)+WZ
17 11 : —
L el —d
=z {ZZ +f (z,O)+y, (0,7 (t-d )+ Va(22) <287 —e &7 (t—d, (1)
7o (L
, 5t +W, +&M(z) —-2,7 )+6-W, +&)4 2% +
+yr (t_d](t)))_yr (t):| _1_ J- e57tzl4(s)ds w 7 < 17 ouU
A o +EM 23 -2 |+EM (2 +Y,,2)+ 622 2,
1
2 z/(t)—-e V7 (t—l—lsintj(l—lcostj
) 6 6 6
Where,
4
2¥2-1-2,, - -
. 17,1 o aUzz_ 7[(52_2*2) 27dsa(zz)
Vl(zl)S Z17 227 _W1(Z1)_e (Zl (t_dl(t))) 821 2 7 2 821
+z; L+;+o~:l(zl) +z:77(z;7]—z;%)+5 17 % o7 5(222)
-4 1-2, =——[(s" -2 )rds——=
147 0z,
aUZ _ 2 *2 ﬂ _ ﬂ
oz, =(z -z =
§
~ [er (z))]" t
where &,(z)) =%, U, >L(z,-z,)"
517

4 u
,(2) 2[27%(21 +y, M7 +M +a,(z, +yr)j

—————————
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Vi(z) <28 —e & (t—d, (1) -W,
LA IR VA
+§1]4 Z27 +§114 (Zz7 _Z;Z )+

2
+
[1—11
17 7 7

Va(2) < (8 +& )~ W, +W,) + & (2 ~27)+25

+071(71)]§12+5

TR
22 :_é:l b_2+1_ﬂ1+q +al(Zl) =
11

11 11

= 5114 ﬂ114 (71 )
u nou
u’ :_63114@14(2)
7 L
)

V,(2) S (& + &) =W, +W,)+25

where V,(2) = (U,(Z)) +U,(2,)) +W, +W,
t

I e ' EX(s)ds

W +W, = ——
] ’ 1_/111411(1)

U, (z)+U,(Z)<[§

Pl fraea e
? 14

2 2 1
<&+ +———
617 +12 89632
4
14 1
VZ(Z(t))<2'27 ﬁ+45SE+45

Ll 11

X7 ==X (2+& (X)) =

_Xjﬂl(xl)

1
YO -y, O =[x O <V (x(®) < o +d5 <,

forany £>0

0 =0,0023 the tracking error obtained is about

0.01; 6 =0.025 then the tracking error reduces to
about 0.025.

5. CONCLUSION

This paper studied the problem of global practical
output tracking for a class of high-order non-linear
systems with time-varying delays under the weaker
conditions on the system nonlinearities. With the
help of an appropriate Lyapunov-Krasovskii
functionals and by using the method of adding a
power integrator, a continuous state-feedback
controller is successfully designed such that all the
states of the resulting close loop system are bounded
while the output tracking error converges to an
arbitrarily small residual set. A numerical example

demonstrates the effectiveness of the result.

Appendix
Proposition 1:  There exists a positive constant h,,

such that

2PN ~ Tk 1 2p 2p
h+7, Peot oy Prat _ ghtn h+7,
St (Xk Xy )S 3§k—l +h, G

Proof:  Due to the fact that p > max {r,+7}and

I .
P, =N +7_,, wehave % <1. So, it

follows from Lemma 1 that

Tk Pt i Pyt

(xlf’/rk) P _(x:/’/rk) P

Tk Pt

(kakl _X:Pkl)s

l_rkpkfl Y L | p
2 2
<207 X =X
JERAUSE N Pt
<2 f|&] e
~ T Pt
= hk1|§k| L

(AT)
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By Lemma 2, Assumption 2 and (A1), and noting

P, =N +7._,, itcanbe seen that

2PNt ~ Tt

O (DG 7 (kak?1 - X;pkil )

2PN~k ~

TPt
<b, |"§k-1| P h,, |§k| ©

1
< §§k2—1 + hk]§k2

(A2)

for a positive constant h,,. Proposition 1 is proved.
Proposition 2:  There exists a positive smooth

function h,,(X,) andany real number & >0 such

that
fk g (t) fk ()
1k—1 5 1 k 5
SZZQ (t)+EZ§j (t-d;®)+
i=1 i=1
1 k-1 5 _ 5 1
+EZ§,- (t=d;,, ©) +h, (Z O)s, (©) 50
j=1
where
f ()= (z,O)+Yy, (1), z,(),...,7, (1),
z,(t—d,@®)+y, (t—-d (@), z,&—-d,(1),...,
7, (t-d, (1)
Proof: Using Lemma 1, Assumptions 1 and (7), it

can be rewritten as (for 1=2,..,k)

[T Ol <b, (z, D)+, (1), 2,(t),..., 7, (1)

r2+7rz I +7y
w7 (O] j

|:(|Zl O+, (t)|r%rl +|z,®

i+n
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rk:krk)}+
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~ k U
<b,(Z, <t)>2(|§,— O+ B,.1&, ) J +
j=1
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- k
+b, (Z W)Y (¢ t—d; ) +
j=1
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(A5)
for smooth, positive nonzero  functions
¥ty
B (XX )= B P (X% ), i=12,..,1 and

B (X5 s X, )-

By Lemmas 2-3 and (A5), with

2P—ﬁ—f|+ P _ 2p
r+7, r+z, r+7,
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number & > 0. Proposition 2 is proved.
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Proposition 3:  There exists a positive smooth b o
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where B; =4 _,---f;, j=L...,i—1. Then, for Lemma 2, we have (see (A9))

j=1L...,i—1, wehave

T (@B oy
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By (7), (11), (AS), (A7) and Assumption 1-2, we
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it
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NEM] s 45, (7 1)
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where Bk and h(Z,) are non-negative smooth

functions. Proposition 3 is proved.
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