
Journal of Theoretical and Applied Information Technology 
15th July 2021. Vol.99. No 13 
© 2021 Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3315 

 

 ENSEMBLE LEARNING BASED FEATURE REDUCTION 
AND SELECTION METHODS FOR NETWORK INTRUSION 

DETECTION SYSTEM 
 

1SARA TAMY, 2HICHAM BELHADAOUI, 3NABILA RABBAH, 4MOUNIR RIFI 

 1,2,4 Laboratory of Network, Computing, Telecommunications and Multimedia, ESTC, Hassan II 
University, BP. 8012, Casablanca, Morocco  

3Laboratory of Structural Engineering, Intelligent Systems and Electrical Energy, ENSAM, Hassan II 
University, BP. 20000, Casablanca, Morocco 

 E-mail: 1saratamy@yahoo.fr  
 
 

ABSTRACT 
 

The use of network intrusion detection systems based on machine learning algorithms is currently emerging 
as one of the most effective solutions for monitoring high dimensional network traffic and identifying 
anomalous flows with high accuracy. Integrating feature reduction/selection techniques is also essential to 
reduce the undserlying complexity of processing big data sets and detect intrusions in real time. The 
purpose of this paper is to investigate the possibility of using hybrid network intrusion detection system 
based feature reduction/selection techniques and ensemble algorithms. First, we compare the performance 
of six classifiers namely Naïve Bayes, Support Vector Machine, Simple Logistic Regression, JRip, Part and 
J48 using the NSL-KDD dataset. After analyzing the results, it is obvious that the algorithms take a lot of 
time to build the model. Therefore, we applied three dimensionality reduction methods namely: 
Information gain evaluation, correlation attribute evaluation and OneRule attribute evaluation, to detect 
intrusions in the minimum possible time without compromising accuracy. Then, we compared the 
performance of these methods based on the time taken to build the model, accuracy, error rate and other 
metrics to select the best one and associate it with Artificial Bee Colony algorithm. Based on the 
experimental results the three best classifiers are selected to be combined into a stacking model and a 
majority voting model. We then evaluate them using several detection measures including accuracy, 
precision, F-Measure, recall, time to build model, attack detection rate through true positive rate and false 
positive rate, and confusion matrices. The results are given and analyzed for each category of attack 
including R2L, Probes, DOS and U2R to identify the weaknesses of each algorithm, in order to make it 
more robust against new intrusions. Overall, no algorithm in the model of attack detection performed very 
well in detecting new U2R and R2L intrusions, nevertheless, the outcomes of our study demonstrate that 
stacking model, with J48 as the model learner and Part with JRip as the base classifiers, has allowed to 
increase the detection accuracy of R2L to 15. 20%, U2R up to 29.85%, Probes to 84.55%, DOS to 84.04% 
and an accuracy score of 91.17% for normal traffic, while reducing the time needed to build the model. 

Keywords: Machine Learning, Feature Reduction, Feature Selection, Ensemble Classifier, Naïve Bayes, 
Support Vector Machine, Simple Logistic, JRip, Part, J48, Network Intrusion Detection System 

 
1. INTRODUCTION  
 
      The digitization carried by the fourth industrial 
revolution is currently occurring in most 
organizations and companies, in order to provide a 
more reliable services to their customers and 
improve production processes. This transformation 
is mainly related strengthening connectivity and 
interaction between systems. However, this 
connectivity increases the vulnerabilities of 

networks and systems and makes them privileged 
targets for threats.  
       Cybersecurity is one of the core elements of 
industry 4.0 and digitalization. Therefore, it is 
essential to provide convenient solutions to 
cybersecurity issues. In concrete terms, to ensure an 
optimal level of security, companies have to apply 
the best cyber practices, such as the use of effective 
and optimized intrusion detection and prevention 
systems. 



Journal of Theoretical and Applied Information Technology 
15th July 2021. Vol.99. No 13 
© 2021 Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3316 

 

        Intrusion detection systems monitor and 
analyze the events in network traffic to detect, 
identify and predict attacks. Generally, IDSs can be 
classified, according to the target they will survey, 
in two categories: network intrusion detection 
systems (NIDS) and host intrusion detection 
systems (HIDS) [1], and they are designed based on 
different approaches, namely Scenarios-based 
approach in which the IDS attempts to match data 
collected from the system's information sources 
with data already known using database of 
signatures. and Behavioral approach: the IDS 
detects violations of the system's security policy by 
analyzing the behavior of users, then comparing it 
with a pattern of normal behavior, known as a 
profile [2]. 
       Building an efficient intrusion detection model 
is a challenging task, as the entire dataset contains a 
large number of redundant and irrelevant features. 
using all the features in the data to detect intrusions 
reduces the performance of learning and makes 
analysis difficult. Thus, applying feature reduction 
and selection methods to decrease the dataset 
dimensionality is required, in order to reduce the 
time taken for processing and to improve the 
detection rate and precision [3]. On the other hand, 
the use of ensemble classifier, that combine many 
algorithms, is also an important aspect of data 
mining that increases efficiency and performances. 
The main objective of this paper is to improve the 
network intrusion detection performance by 
applying the feature reduction and selection 
methods to different classification algorithms, 
namely: Naïve Bayes, Support Vector Machine, 
Simple logistic, JRip, Part and J48. The three best 
classifiers are then selected and combined in an 
ensemble learning. The experimental study is 
conducted on the NSL KDD dataset which is an 
advanced version of KDD CUP99. 
The main contributions of this paper are:  

 Assessment of different data mining 
algorithms on the NSL KDD dataset 
without applying feature 
selection/reduction methods. 

 Apply three dimensionality reduction 
methods namely information Gain 
evaluation, correlation attribute evaluation 
and OneRule attribute evaluation, to 
remove redundant and irrelevant features. 
The algorithms are ranked based on their 
performances using a different metrics like 
precision, recall, F-measure, time to build 
the model, etc. 

 Comparison of performances of these 
methods to select the best one and 

associated it with Artificial Bee Colony 
(ABC) optimization method. 

 Combining the three best algorithms in a 
stacking model and majority voting model. 

 Identification of the best performance 
based model for network intrusion 
detection system. 

 
Paper outline: 
The remainder of this article is organized 

as follows: Some recent works in this area is 
addressed in Section 2. Section 3 gives a detailed 
description of our proposed approach. Section 4 
discusses in detail the experimental outcomes based 
on the proposed machine learning schemes. Finally, 
Section 5 summarizes this study and identifies 
some future research directions. 

 
2. RELATED WORKS 
 
        The first concept of intrusion detection was 
proposed in 1980 by James P. Anderson [4]. He 
defined a model for monitoring user behavior in 
order to detect anomalies. Thereafter, a several 
works have been done in this field, the initial 
purpose was to protect the corporate network. 
Currently, with the fourth industrial revolution, 
Industry 4.0, connectivity is becoming more and 
more ubiquitous in our personal lives and enterprise 
activities, which requires a higher level of security 
than before. Thus the use of IDS based on machine 
learning techniques is considered as one of the 
main areas of research in cyber security. In this 
section, we present some approaches proposed to 
tackle the problem of detecting network attacks. 
       The paper [5] focuses on the importance of IDS 
and evaluates the performance of the 10 most 
popular machine learning algorithms using the 
NSL-KDD dataset and ranks them on the basis of 
their performance. The experimental analysis of the 
top four algorithms namely: Random Forest, 
PART, J48 and Bagging reveals that they take a 
long time to build the model. Therefore, they are 
chosen for an evaluation in combination with 
different selection and reduction feature methods. 
The experimental results show that the time to build 
model is significantly reduced using a small set of 
features without affecting accuracy. In this work, 
the top four algorithms performed well in terms of 
time to build the model with selection and 
reduction features, but Random Tree is the only 
algorithm that reaches good accuracy in a 
comparatively shorter time without using feature 
selection and reduction methods.   



Journal of Theoretical and Applied Information Technology 
15th July 2021. Vol.99. No 13 
© 2021 Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3317 

 

       In the paper [6], the authors examined some 
specific attacks in the NSL KDD intrusion 
detection dataset that can have an impact on IoT 
environment components. In addition, in order to 
detect attacks, they studied eleven machine learning 
algorithms namely: Decision Tree, XGBoost, 
Bagging Tree, Random Forest, Bayes Net, Support 
Vector Machine, Naïve Bayes, AdaBoost, 
Expectation Maximization, DBSCAN and K-
Means. In this study, authors demonstrated that 
tree-based and ensemble methods outperformed the 
other machine learning methods studied. 
Experimental results showed that XGBoost 
achieves the highest accuracy of 97%, a MCC 
(Matthews correlation coefficient) of 90.5%, and an 
AUC (area under the curve) of 99.6%. and they 
found also that the Expectation Maximization 
algorithm performs well in detecting attacks in the 
NSL KDD dataset and outperforms the accuracy of 
Naïve Bayes by 22.0%. 
        In [7], the authors designed a hierarchical 
intrusion detection system based on the original 
symmetric combination of the machine learning 
method with the knowledge based approach in 
order to support the detection of both the existing 
and the new types of network attacks. They 
evaluated the IDS using the KDD99 dataset.  
The objective of their work is to combine the 
Hierarchical Multi-Layer Model approach by 
employing multiple predictive models in order to 
detect intrusions at several levels in the taxonomy 
of attack types and then combining them with the 
knowledge generated from ontology's field specific 
knowledge. 
The predictive models distinguish normal 
connections from attacks and then predict classes 
and concrete attack types. While the knowledge 
model allows to navigate through the attack and to 
select the most relevant model to make a prediction 
on the selected level. 
The authors describe clearly the high complexity of 
the hierarchical and ensemble models in terms of 
training. Because each one is trained separately, the 
resource and time requirements for training are 
considerably higher compared to the other models,     
and if this approach is deployed in a real 
environment with dynamic and continuously 
changing data flows, the limitation will be 
significant. Thus, it is necessary to use either 
concept drift detection approaches, in order to add 
new classes, or make a periodic retraining of the 
models. Particularly in the case of ensemble 
learning, to update the predictive models at the 
earliest possible time, in order to prevent missing 
new attacks. For complex ensemble approaches, if a 

model of domain knowledge is used, updates of the 
structure of model have to be applied to add new 
types of attacks to the taxonomy. 
       In paper [8], the authors proposed a machine 
learning-based security model, the IntruDTree 
(Intrusion Detection Tree), which considers the 
ranking of security features according to their 
importance, and then builds a tree based 
generalized intrusion detection model with the 
selected important features. 
In the first step the authors proceed with the 
preparation of data which includes both encoding 
and scaling feature of the intrusion dataset. Then, 
they showed the score of importance for each 
attribute in the given dataset to reduce the irrelevant 
features. Therefore, this can help to make a data-
driven generalized of security model using a 
reduced feature set. 
 This model was compared with several popular 
traditional machine learning methods, namely: 
naive bayes, k-nearest neighbor, logistic regression 
and support vector machines. The results show its 
effectiveness in terms of prediction accuracy, also, 
reducing dimensions of the features allows to 
minimize the computational complexity of the 
model. However, they used an intrusion data set 
composed of two class categories: normal and 
anomaly and did not apply their model for each 
category of anomaly or intrusion. 
 
        From the previous works cited above, it can be 
seen that intrusion detection systems are largely 
used to detect and predict intrusions in networks, 
for protecting them from attacks and vulnerabilities.                             
Currently, machine learning techniques are widely 
employed to construct an effective IDS, such as 
classification, attribute selection, ensemble methods 
and several others.  
       The majority of previous works have examined 
machine learning algorithms to predict and detect 
network intrusions. Nevertheless, these researches 
have mainly focused on the specific impacts of 
different machine learning methods. In these works, 
the authors use either feature reduction methods, 
optimization methods, or ensemble learning 
techniques. There is no comprehensive framework 
that includes all these techniques for network 
intrusion detection systems, hence our motivation 
to propose a hybrid approach that combines feature 
reduction/selection methods, and ensemble 
classifiers. On the other hand, in our previous work 
[9-10-11], different machine learning algorithms 
were tested, and then the particle swarm 
optimization method was applied in a hybrid 
approach, in the same context of intrusion detection 



Journal of Theoretical and Applied Information Technology 
15th July 2021. Vol.99. No 13 
© 2021 Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3318 

 

in the industry 4.0 environment, and we have 
achieved a very interesting and motivating results. 
However, we have never applied ensemble learning 
models, and from the research we have done, which 
is cited in the section 3.3, the ensemble learning   
approaches provide new advantages such as 
improving detection accuracy and reducing error 
rate. 
       In this research paper, we have applied the 
following algorithms: Naïve Bayes, Support Vector 
Machine, Simple Logistic regression, JRip, Part and 
J48, as they are the most popular and used ones, 
also by the fact that certain of them (Naïve Bayes, 
Support Vector Machine and J48) have been 
evaluated in our previous studies [9-10-11], and 
they have shown good performances.  
       The choice of the suitable methods is essential 
to build an effective IDS, for this purpose we will 
test the three feature reduction methods, that are 
currently most used in the research works, in order 
to integrate the most efficient one in our approach. 
Then we will join it with Artificial Bee Colony 
(ABC) algorithms to optimize feature selection. We 
have chosen to apply the ABC algorithm in our 
approach as it has been largely used and adapted to 
solve optimization problems in many fields of 
application. Moreover, ABC is simple, easy to be 
implemented and it is capable of producing 
extremely good results with low computational cost 
[12]. Afterwards we will combine the three best 
classifiers into an ensemble classifier to improve 
the classification efficiency and achieve more 
effective results. 
       To evaluate our model, we will use the KDD 
NSL dataset, since it has solved some of the 
problems inherent in the KDD'99 dataset, and it is 
considered to be an effective benchmark dataset 
that helps researchers and scientists to evaluate 
different intrusion detection algorithms. 
 
3. PROPOSED APPROACH 
 
3.1 Machine Learning Algorithms used for 
Anomaly Detection:  
For our study we will use the following classifiers: 
3.1.1 Naïve Bayes  
        A Naïve Bayes (NB) is a simplified and 
widely used Bayesian probability model. This 
classifier is based on a strong hypothesis of 
independence. This means that the probability of an 
attribute does not affect the probability of another. 
The NB classifier often performs well, and has been 
effective in several practical applications, like 
system performance management, medical 
diagnosis and text classification [13]. 

 
3.1.2 Support Vector Machine  
       Support vector machine (SVM) is one of the 
most used and powerful algorithm nowadays, this 
classifier is part of supervised learning methods, 
under which various types of data from different 
subjects are trained. In a large dimensional space, 
the SVM sets up one or multiple hyperplanes. The 
hyperplane that optimally separates the data into 
different classes with the largest partition is 
considered the best one. To assess the margins 
between hyperplanes, a nonlinear classifier 
implements several kernel functions [14-15]. The 
concept is to maximize the margin between the 
closest points of the classes to find the optimal 
hyperplane of separation between two classes. 
Consider the case of a linear discriminant function 
obtained by linear combination of the input vector 
[16], 
x=(x1,x2,..xn)Y, and weight vector w=(w1,w2,.. wn)Y: 

f(x)= wYx+w0.                           (1) 
The hyperplane will satisfy: 
x is class 1 if wYx+w0≥ 0; 
x is class -1 if wYx+w0 < 0. 
while f(x)=0 is a separating hyperplane. 
       Usually, a classification task mainly involves 
dividing the data into two sets, namely training and 
test data sets. In the latter, the class label will be 
defined as "target variable" and the attributes will 
be defined as features or "observed variables" [17]. 
 
3.1.3 Simple Logistic Regression 
       Simple Logistic Regression (SL) creates the 
best fitting model to build a relationship or 
dependence between the features and class variable. 
For a given test case involving only two classes: 0 
and 1, it essentially predicts a value between 0 and 
1 as the probability that the class is 1 for a specific 
observation. The simple logistic model is only 
appropriate for the binary classification, but it can, 
with some effort, be extended to multi-class 
purposes. A linear expression for x is formed as 
follows: 

Øy=Ø0+Ø1y1+Ø2y2+…….Ønxn              (2) 
Where and y are vectors [ Ø0,Ø1,Ø2,Ø3….Øn] and 
[y0,y1,y2,y3…….yn] respectively [18]. 
 
3.1.4 JRip 
       JRip classifier uses the repeated incremental 
pruning to provide method of error reduction.  It 
includes the association rules with the error 
reduction delimitation. JRip divides the dataset into 
incremental and pruning sets, by generating rules 
for a subset of the training samples and removing 



Journal of Theoretical and Applied Information Technology 
15th July 2021. Vol.99. No 13 
© 2021 Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3319 

 

all samples covered by these rules for the training 
set over all samples [19]. 
 
3.1.5 Partial Decision List  
       Partial Decision List (Part) is a decision list 
algorithm based on a partial decision tree, 
combining the advantages of C4.5 classifier and 
PIPPER. for all instances a pruned decision tree is 
built, by constructing a rule for the leaf node 
corresponding to the largest coverage, then 
eliminating the tree and continuing [20]. 
 
3.1.6 J48 
       C4.5 (J48) is a popular algorithm in 
classification and data mining, developed by Ross 
Quinlan. it is employed to create a decision tree. 
This algorithm uses The gain ratio technique as a 
criterion for dividing the data set. Some 
standardization methods are implemented on the 
information gain through a value of " split 
information" [20]. 
 
3.2 Ranking and Determining Feature 
Importance 
       Feature selection methods reduce the size of 
the sample set, the features are ranked and those 
that are most appropriate for application in the 
machine learning algorithm are filtered out while 
irrelevant features are removed.  Thus, the 
performance of the learning algorithms is 
improved. In our approach, we applied and tested 
correlation attribute evaluation, information Gain 
attribute evaluation and OneR attribute evaluation 
to choose the best one and combine it with ABC 
algorithm. 
 
3.2.1 Correlation-based Attribute Ranking 
        CFS is a simple filtering algorithm that 
evaluates subsets composed of vectors of attributes, 
using a correlation-based heuristic evaluation 
function. The evaluation function favors subsets 
that are correlated with the class label 
independently of each other. The CFS method 
considers that irrelevant features have to be ignored 
because they will have a low correlation with the 
class, while redundant features have to be 
eliminated because they will be highly correlated 
with one or more of the remaining features. 
Based on this concept, the criteria used to evaluate 
a set of characteristics can be expressed as follows: 
 

 

 
Where M is the ranking criterion for evaluating the 
feature set containing K features, it presents the 
correlation between the feature set and the 
dependent class. avg(corrfc) is the average feature-
class correlation, and avg(corrff) is the average 
feature-feature correlation [21]. 
 
3.2.2 Information Gain Attribute Evaluation 
       Information gain (InfoGain) is a widely used 
measure in the areas of machine learning and 
information theory. It is a feature selection method 
based on scoring techniques for the rating or 
weighting of continuous attributes that are 
discredited using maximum entropy.  
The information gain of feature X is given in the 
following equation:  
 

InfoGain(X) = F(Y) - F(Y |X)        (4) 
 

Where F(Y) is the entropy of Y and F(Y |X) is the 
conditional entropy of Y for given X. The level of 
importance of a feature is determined by the 
magnitude of the decrease in the class entropy 
when considered individually with the 
corresponding feature [22]. 
 
3.2.3 OneR attribute evaluation 
        One Rule (OneR) is a simple classification 
algorithm that assesses features based on error rate. 
This algorithm uses an accurate rule with a very 
simple approach, it creates a rule for each feature in 
the dataset and then selects the rule with the lowest 
error rate. It can handle categorical features, thus if 
the features have numerical values, it uses a simple 
method to split the set of values into several distinct 
intervals. It deals with missing values by treating 
"missing" as a legitimate value [23]. 
       In the first step of the study we demonstrate the 
importance score of each feature in the NSL KDD 
dataset using the three filter methods mentioned 
above. From Table 1 we observe that the values of 
the importance score of all features are not the same 
for the given dataset and can be varied depending 
on the filter method used. For example the feature 
dst_host_same_srv_rate has the score of 
0.57626629 using the information gain evaluation 
method while it has a score of 0.62451using the 
correlation attribute evaluation method. Table 1 
shows the values of the10 best ranked features with 
their importance score in a descending order, where 
the score values are ranked from the highest to the 
lowest number. 

 
 



Journal of Theoretical and Applied Information Technology 
15th July 2021. Vol.99. No 13 
© 2021 Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3320 

 

Table 1:Top 10 ranked features with corresponding importance score values for NSLKDD dataset using filter methods. 
Atribute evaluator 
& search method 

Ranking Feature selected Score value 

CorrelationAttributeEval 
+Ranker 

01 
02 
03 
04 
05 
06 
07 
08 
09 
10 

29 same_srv_rate 
39 dst_host_srv_serror_rate 

38 dst_host_serror_rate 
25 serror_rate 

26 srv_serror_rate 
33 dst_host_srv_count 

34 dst_host_same_srv_rate 
4   flag 

12 logged_in 
23 count 

0.69958 
0.65511 
0.65256 
0.65103 
0.64978 
0.62863 
0.62451 
0.60828 
0.6049 

0.53715 
InfoGainAttributeEval 

+Ranker 
01 
02 
03 
04 
05 
06 
07 
08 
09 
10 

5 src_bytes 
3 service 

30 diff_srv_rate 
4 flag 

6 dst_bytes 
29 same_srv_rate 

35 dst_host_diff_srv_rate 
23 count 

33 dst_host_srv_count 
34 dst_host_same_srv_rate 

1.03221019 
0.86007429 
0.73046279 
0.70572521 
0.66215121 
0.66015685 
0.64983015 
0.60058163 
0.59783364 
0.57626629 

OneRAttributeEval+ 
Ranker 

01 
02 
03 
04 
05 
06 
07 
08 
09 
10 

5 src_bytes 
3 service 

30 diff_srv_rate 
4 flag 

29 same_srv_rate 
35 dst_host_diff_srv_rate 

25 serror_rate 
6 dst_bytes 

38 dst_host_serror_rate 
34 dst_host_same_srv_rate 

92.6032 
86.967 

86.5717 
85.5199 
85.0778 
83.2583 
81.523 

81.4397 
81.3825 
80.9793 

 
3.2.4 Artificial Bee Colony Algorithm 
       Artificial Bee Colony (ABC) is an intelligent 
swarm algorithm proposed by Karaboga [24], and it 
has been extensively applied in several areas to 
solve optimization issues. The ABC algorithm is a 
novel metaheuristic based on the natural behavior 
of bees when foraging for food. 
       Bees use a very efficient mechanism of 
movement for searching food. They use a set of 
wriggling dances as a means of communication 
with each other. These processes allow the bees to 
share information about the quantity of nectar, 
direction and distance found by the different 
members. 
       The Artificial Bee Colony Algorithm is 
composed of three types of bees: Employed Bees 
(EB), Onlooker Bees (OB) and Scout Bees (SB). 
First, the positions of food source are determined, 
and each EB is allocated to a food source and 
transmit the nectar information to the OB. OBs wait 
for the return of the EB to the dance field to  
 
observe their dance and collect information about 
the nectar sources they have found. According to 

the information provided by the EBs, the OBs 
exploit the food sources and their surroundings 
until the food sources are completely exhausted. 
The EB of depleted food source becomes a scout, 
and tries to make changes to its current position to 
discover randomly a new food source, and to 
change its status again from scout to EB. 
       After determining the new location of each 
food source, another process of the ABC algorithm 
begins. The entire of this process is iterated 
repeatedly until the final condition is satisfied. 
Information about nectar determines the quality of 
the available solution of a food source. A greater 
amount of nectar enhances the probability of 
choosing a particular food source by bees [25-26]. 
In the ABC algorithm, the food source position 
corresponds to a possible solution for the 
optimization problem and the nectar quantity of a 
food source represents the quality of the related 
solution. 
The principal steps of the algorithm are as follows 
[27]: 
 
  - Start the process and initialize the population of 
solutions using the following equation: 



Journal of Theoretical and Applied Information Technology 
15th July 2021. Vol.99. No 13 
© 2021 Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3321 

 

Yij =Ymin,j+rand(0,1)(Ymax,j –Ymin,j )         (5) 
Where Yij presents the food source values, 
i=1,…..S/2, S is the size of colony, j=1,….V, V is 
the variable number which will be optimized.  
- Assess the population using a pre-defined    
function. 
- Reiterate the following process until achieve    the 
maximum iteration. 
- Generate and evaluate new solutions Nij in the 
neighborhood of Yij for the EBs using the equation 
mentioned below: 

Nij= Yij + Øij (Yij-Ykj)                                  (6) 
here Øij presents a random value in the range of 
[1,1]. 
- Perform the process of selection between Yi and 
Ni. 
- Determine the fitness measurements of the 
solutions. 
- Generate and evaluate new solutions Ni for OBs 
using the solutions Yi given in the previous section. 
- Apply the process of selection between Yi and Ni 
for the OBs. 
- Replace SB with a new randomly generated 
solution using equation (5). 
- Memorize the optimal position of the food source 
obtained so far. 

The flowchart of the ABC algorithm is shown in 
Figure1. 

 

 
Figure.1 The flowchart of the ABC algorithm 

 
        In our scenario, the features selected by the 
ABC algorithm are: src_bytes, service, 
diff_srv_rate, flag, same_srv_rate, serror_rate, 
dst_bytes, dst_host_serror_rate, with population 
size of 30 and the number of iterations is 20. 
 
3.3 Ensemble learning 
       An ensemble classifier is an approach that 
involves combining multiple machine learning 
algorithms to improve the performance of the 
classification, and to make a more effective and 
efficient technique. In ensemble methods, a 
problem is divided into smaller sub-problems that 
are easy to be analyzed and solved. The main 
advantage of this approach is that it achieves more 
accurate results than using a single algorithm [28]. 
       In this article, after selecting the three best 
algorithms we combined them using two different 
ensemble classifier techniques called majority 
voting and stacking. We then evaluated them and 
analyzed the results in order to choose our 
definitive model to build a hybrid and efficient 
NIDS. 
 
 



Journal of Theoretical and Applied Information Technology 
15th July 2021. Vol.99. No 13 
© 2021 Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3322 

 

3.3.1 Majority Voting  
       Majority voting was considered as one of the 
most popular and useful voting techniques. As the 
combination of several classifiers has several 
advantages, such as improving robustness, 
achieving better accuracy and providing very high 
generalization. Majority voting has been utilized by 
several researchers who use base classifiers to 
achieve better outcomes. Voting for a class is done 
by each base classifier, and the final class label is 
the one which gets more than half of the votes. If 
no class label receives more than half of the votes, 
the majority voting method makes no prediction, or 
the option of one of the base classifiers is selected 
[29]. 
        Many algorithms in the literature construct a 
majority vote from different kinds of voters. 
Boosting algorithms such as  AdaBoost,  typically 
combine decision stumps. Whereas random forests 
iteratively build more complex decision trees and 
then use a vote, which gives the same weight to all 
votes. The last layer of a neural network can also be 

seen as a majority vote, whose voters are defined 
by the structure of the network. Finally, kernel 
machines algorithms such as support vector 
machines can also be seen as algorithms returning a 
majority voting, since they return a classifier 
formed by a weighted sum of kernel functions [30]. 
 
3.3.2 Stacking 
       Stacking is one of the ensemble methods that 
have been successful in a variety of issues and have 
shown that it is able to tackle several machine 
learning challenges such as recall bias and 
accuracy. This process involves combining multiple 
classifiers to improve efficiency. The classifiers are 
combined step by step, in which the output of the 
first classifier is given as input of the second one. 
The stacking approach is implemented in two steps: 
The first one is a base learner in which the dataset 
is used on different models. A new dataset is 
acquired and its instances are used for prediction. In 
the second step, the new dataset is considered as 
input and the model gives the final output [31]. 

Figure 2. The proposed architecture

4. EXPERIMENT 
 
4.1. NSL-KDD intrusion dataset 
       In this experience, we use the NSL KDD 
dataset, which was provided to solve some issues in 
KDD99 dataset, in that its training and test sets had 
a massive number of redundant records. Thus the 
classification algorithms may therefore be biased 
by these redundant records, preventing them from 
classifying the remaining records [32]. 

There is a set of data files proposed by the 
Canadian Institute for Cybersecurity, in this 
experiment we have used: 
  - KDDTrain+.ARFF which contains the complete 
NSL KDD train set including binary labels in 
ARFF format. 
  - KDDTrain+.TXT which contains the complete 
NSL KDD train set with labels for attack type and 
difficulty level in CSV format. 



Journal of Theoretical and Applied Information Technology 
15th July 2021. Vol.99. No 13 
© 2021 Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3323 

 

  - KDDTest+.ARFF that represents the complete 
NSL KDD test set including binary labels in ARFF 
format. 
  - KDDTest+.TXT that represents the complete 
NSL KDD test set with labels for attack type and 
difficulty level in CSV format [32]. 
The dataset contains 42 attributes (Table3), with 
125973 instances in KDDTrain+.ARFF   and 22544 
instances in KDDTest+.ARFF itemized in Table2, 
which represents the number of records for each 
attack category, namely: R2L (Remote to Local 
Attack), Probing Attack, DoS (Denial of Service) 
and U2R (User to Root Attack). 
 
Table 2: Number of records in the train and test sets 
Class NSL KDD Train+ NSL KDD Test+ 
Normal 67343 

(53.45%) 
9711 

(43.07%) 
R2L 995 

(0.79%) 
2887 

(12.81%) 
Probes 11656 

(9.25%) 
2421 

(10.74%) 
DOS 45927 

(36.47%) 
7458 

(33.08%) 
U2R 52 

(0.04%) 
67 

(0.30%) 
 
       Some unknown attacks that are not in the 
training set are assigned to the test set to evaluate 
the detection capability of these attacks, as shown 
in Table 4. 
Table3:NSLKDD Dataset attributes 

 
Featu
re No 

Feature name 
Featu
re No 

Feature name 

1 duration 22 is_guest_login 

2 protocol_type 23 count 

3 service 24 srv_count 

4 flag 25 serror_rate 

5 src_bytes 26 srv_serror_rate 

6 dst_bytes 27 rerror_rate 

7 land 28 srv_rerror_rate 

8 wrong_fragment 29 same_srv_rate 

9 urgent 30 diff_srv_rate 

10 hot 31 srv_diff_host_rate 

11 
num_failed_logi

ns 
32 dst_host_count 

12 logged_in 33 dst_host_srv_count 

13 
num_compromis

ed 
34 

dst_host_same_srv_r
ate 

14 root_shell 35 
dst_host_diff_srv_rat

e 

15 su_attempted 36 dst_host_same_src_ 

16 num_root 37 
dst_host_srv_diff_ho

st_rate 

17 
num_file_creati

ons 
38 dst_host_serror_rate 

18 num_shells 39 
dst_host_srv_serror_r

ate 

19 
num_access_file

s 
40 dst_host_rerror_rate 

20 
num_outbound_

cmds 
41 

dst_host_srv_rerror_r
ate 

21 is_host_login 42 Class 

Table 4: List of attack in NSL KDD Train+ and NSL 
KDD Test+   

Attack 
Caterogy 

Attack type which 
exist in both NSL 
KDD Train+ and 
NSL KDD Test+ 

Attack which is only 
in NSL KDD Test+ 

R2L ftp_write, 
guess_passwd, 
imap, multihop, 

phf, warezmaster 

Httptunnel, named, 
sendmail, 

snmpgetattack, 
snmpguess, worm, 

xlock, xsnoop 
Probes Ipsweep, nmap, 

portsweep, satan 
Mscan, saint

DOS Back, land, 
neptune, pod, 

smurf, teardrop 

apache2, mailbomb, 
processtable, 

udpstorm 
U2R buffer_overflow, 

loadmodule, 
rootkit, perl 

Ps, sqlattack, xterm

       The experiment is performed on a computer 
with an Intel(R) Core™ i7 - 2760QM CPU, 16GB 
of RAM, and Windows 10 Professional operating 
system. 
       In order to evaluate the performance of the 
proposed approach, we have conducted several 
simulations using the Weka (Waikato Environment 
for Knowledge Analysis) software tools. which is a 
set of machine learning algorithms designed to 
facilitate the application of machine learning 
methods to solve challenging real world problems. 
It is supplied with tools for data preparation, 
classification, clustering, regression, association 
rule mining and visualization [33]. 
 
4.2. Results and discussion 
       Our approach reduces the dimensionality 
considerably and eliminates the irrelevant features 
from the dataset, for this purpose we will first 
identify the ten most important features by using 
three approaches namely correlation attribute 
evaluation, Information Gain attribute evaluation 
and OneR attribute evaluation. Table 1 shows the 
names of the best features selected by each method 
for the NSL-KDD dataset, next we select the best 



Journal of Theoretical and Applied Information Technology 
15th July 2021. Vol.99. No 13 
© 2021 Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3324 

 

technique and consider its result as the initial values 
of the ABC optimization approach. Finally, we 
select the three best algorithms and combine them 
into a stacking model and a majority voting model 
to improve significantly the predictive performance 
of the NIDS afterwards we evaluate them using 
several measures of detection, including accuracy, 
precision, detection rate, F-Measure, recall, time to 
build model, confusion matrix, attack detection rate 
through true positive rate and false positive rate. 
The metrics used are described as follows: 

                           (7) 

                                     (8)  

                                      (9)                                                                              

                                        (10)                                                                             

     (11)  

where: 
TP (True Positive): when predicted network attack 
is in fact an attack, 
TN (True Negative): when predicted normal record 
is in fact normal record, 
FN (False Negative): when predicted normal record 
is in fact an attack, 
FP (False Positive): when predicted network attack 
is in fact a normal record. 
       In the first step, we evaluate the efficiency of 
all classifiers in terms of time to build the model, 
correctly classified instances, incorrectly classified 
instances and accuracy. The results are presented in 
Table5 without optimization, Table6 optimized by 
Correlation attribute evaluation, Table 7 optimized 
by Information Gain attribute evaluation, Table 8 

optimized by OneR attribute evaluation and Table 9 
optimized by OneR attribute evaluation and ABC 
algorithm. 
        As we can see from Table 5, the algorithms 
consume a lot of time to build the model, SL 
consumes 1538.93 seconds followed by SVM with 
406,4 seconds, JRip with 250,46 seconds, then Part 
which tikes 45,62 seconds, J48 tikes 32,67 seconds 
and finally NB takes the shortest time 0,75seconds, 
which is unacceptable in the field of intrusion 
detection. In order to tackle this issue, we have 
applied the feature selection and reduction methods 
cited above, and from the obtained results (as 
shown in Tables 6,7 and 8) we can clearly select the 
method OneR since it gives the most efficient and 
optimal results and combine it with ABC method to 
optimize the results again (Table9). 
       In terms of accuracy, we can notice that the 
correlation attribute evaluation method did not give 
optimized results for any classifier, whereas 
information gain method allowed to optimize the 
detection of intrusions from 71.21% to 71.30 for 
NB, from 76.40% to 76.97% for JRip, and from 
75.25% to 75.93% for J48. The OneR method has 
not only reduced the time to build the model but 
also improved the accuracy of the algorithms, 
which increased from 74.64% to 77.15% for SL, 
and from 75.25% to 76.70% for J48. 
       From the results shown in table 9, we can see 
that the classifiers optimized by OneR and ABC 
methods give more efficient results both for the 
time to build the model and for the efficiency of the 
algorithms, as it improved the precision of JRip and 
J48, which have achieved an accuracy score of 
77.99% and 78.47% respectively. 

 
Table5.Classifiers Performance without optimization 

Classifiers NB SL SVM Part JRip J48 

Time to build 
model (s) 

0,75 1538.93 406,4 45,62 250,46 32,67 

Correctly 
Classified 
instances 

16053 
 (71.21%) 

16826 
(74.64%) 

17388 
(77.13%) 

17389 
(77.13%) 

17224 
(76.40 %) 

16966      
(75.25 %) 

Incorrectly 
classified 
instance 

6491 
( 28.79%) 

5718 
(25.36%) 

5156 
( 22.87%) 

5155 
(22.87) % 

5320       
(23.60 %) 

5578       
(24.75 %) 

 
 
 
 
 
 
 
 



Journal of Theoretical and Applied Information Technology 
15th July 2021. Vol.99. No 13 
© 2021 Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3325 

 

Table6.Classifiers performance optimized by Correlation Attribute Evaluation 
Classifiers NB SL SVM Part JRip J48 

Time to build 
model (s) 

0,19 62,54 1169,54 22,7 147,71 5,09 

Correctly 
classified 
instances 

12846 
(56,98%) 

14628 
(64,89%) 

14751 
(65,43%) 

15710 
(69,69%) 

15746 
(69,85%) 

15927 
(70,65%) 

Incorrectly 
classified 
instance 

9698 
(40,02%) 

7916 
(35,11%) 

7793 
(34,57%) 

6834 
(30,31%) 

6798 
(30,15%) 

6617 
(29,35%) 

 
Table7.Classifiers performance optimized by Information Gain Attribute Evaluation 

Classifiers NB SL SVM Part JRip J48 

Time to build 
model (s) 

0,22 484,4 681,76 9,2 145,84 5,24 

Correctly 
classified 
instances 

16076 
(71,30%) 

16779 
(74,43%) 

16826 
(74,64%) 

16811 
(74,57%) 

17352 
(76,97%) 

17117 
(75,93%) 

Incorrectly 
classified instance 

6468 
(28,70%) 

5765 
(25,57%) 

5718 
(25,36%) 

5733 
(25,43%) 

5192 
(23,03%) 

5427 
(24,07%) 

 
 

 
 

Table8.Classifiers performance optimized by OneR Attribute Evaluation 
Filter Method NB SL SVM Part JRip J48 

Time to build 
model (s) 

0,22 468,48 305,01 7,16 118,33 4,16 

Correctly 
classified 
instances 

15864 
(70,37%) 

17392 
(77,15%) 

17308 
(76,77%) 

17123 
(75,95%) 

17083 
(75,78%) 

17291 
(76,70%) 

Incorrectly 
classified 
instance 

6680 
(29,63%) 

5152 
(22,85%) 

5236 
(23,23%) 

5421 
(24,05%) 

5461 
(24,22%) 

5253 
(23,30%) 

 
Table9.Classifiers optimized by OneR Attribute Evaluation and ABC method 

Classifiers NB SL SVM Part JRip J48 
Time to build 

model (s) 
0,14 296,76 228 5,7 84,48 3,23 

Correctly 
classified 
instances 

15965 
(70,82%) 

17078 
(75,76%) 

16579 
(73,54%) 

17269 
(76,60%) 

17581 
(77,99%) 

17689 
(78,47%) 

Incorrectly 
classified 
instance 

6579 
(29,18%) 

5466 
(24,24%) 

5965 
(26,46%) 

5275 
(23,40%) 

4963 
(22,01%) 

4855 
(21,53%) 

  
       To verify the effectiveness of our model, we 
evaluate the precision measures of normal traffic 
and each category of attack based on the values of 
TP rate, FP rate, precision, recall and F-Measure. 
Tables 10,11,12,13,14 and 15 provide the 
performance comparison of NB, SL, SVM, Part, 
JRip and J48 respectively. 
We can see that the best results are those generated 
by the Classifiers optimized by OneR and ABC 
methods. JRip, Part and J48 show the best results 
compared to the other classification algorithms.  

       The average precision value of the best 
performance without optimization is for SVM with 
80.90%, then J48 with 80.50%, followed by JRip 
with 80.40% then Part with 77.80%, NB occupies 
the fifth position in detection precision with76%, 
and the SL algorithm offers the least percentage of 
precision (74.80%). After the optimization by 
OneR and ABC methods, we find the best precision 
performance for JRip with 81.60% then Part with 
79.30%, followed by J48 witch achieves 74.20%. 
NB, SL and SVM offer the least amount of 
precision percentage. 



Journal of Theoretical and Applied Information Technology 
15th July 2021. Vol.99. No 13 
© 2021 Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3326 

 

       With this model, Part improves the detection of 
R2L attacks by 20%, JRip enhances the detection of 
Probes attacks from 64.80% to 85.10%, DOS from 
95.50% to 97.20%, and U2R from 80.00% to 
88.90%, J48 increases the detection of DOS from 
95.10% to 97.00%, and U2R from 69.20% to 
80.00%. Nevertheless, each of these algorithms has 
some weaknesses in detecting other categories of 
attacks, as clearly demonstrated by the detailed 
results produced in the tables 10,11,12,13,14 and 15 

which indicate that Part produces a TP rate of 
4.40% for R2L and 19.40% for U2R, JRip has a 
rate of 11.70% for R2L, 69.40% for Probes and 
23.90% for U2R, while J48 gives the lowest TP rate 
for R2L with 1.20% and a score of 11.90% for 
U2R. To overcome this limitation and to improve 
the accuracy and the TP rate of all categories of 
attacks, we have used two ensemble classifiers and 
we will present the obtained results in the next 
section. 

 
Table10. Performance Comparison of NB based on Different Methods 

 Class TP Rate FP Rate Precision Recall 
F-

Measure 

NB without optimization 

normal 86,90% 23,90% 73,30% 86,90% 79,50% 

R2L 10,00% 1,30% 52,40% 10,00% 16,80% 

Probes 81,60% 3,20% 75,40% 81,60% 78,30% 

DOS 71,10% 4,10% 89,60% 71,10% 79,30% 

U2R 70,10% 8,40% 2,40% 70,10% 4,70% 

Weighted Avg. 71,20% 12,20% 76,00% 71,20% 71,10% 

NB optimized by 
InfoGainAttributeEval 

normal 88,90% 32,00% 67,70% 88,90% 76,90% 

R2L 39,70% 4,00% 59,30% 39,70% 47,60% 

Probes 59,30% 4,00% 64,00% 59,30% 61,60% 

DOS 65,00% 1,80% 94,80% 65,00% 77,10% 

U2R 14,90% 2,20% 2,00% 14,90% 3,50% 

Weighted Avg. 71,30% 15,30% 75,00% 71,30% 71,40% 

NB optimized by 
OneRAttributeEval 

normal 96,60% 41,10% 64,00% 96,60% 77,00% 

R2L 0,10% 0,10% 10,00% 0,10% 0,20% 

Probes 57,70% 2,20% 76,10% 57,70% 65,60% 

DOS 68,10% 1,80% 94,80% 68,10% 79,30% 

U2R 6,00% 2,90% 0,60% 6,00% 1,10% 

Weighted Avg. 70,40% 18,60% 68,40% 70,40% 66,50% 

NB optimized by 
CorrelationAttributeEval 

normal 84,10% 23,40% 73,10% 84,10% 78,20% 

R2L 45,50% 6,20% 52,10% 45,50% 48,60% 

Probes 54,30% 21,80% 23,10% 54,30% 32,40% 

DOS 27,50% 2,50% 84,70% 27,50% 41,50% 

U2R 3,00% 3,20% 0,30% 3,00% 0,50% 

Weighted Avg. 57,00% 14,00% 68,70% 57,00% 57,10% 

NB optimized by 
OneRAttributeEval and 

ABC 

normal 97,00% 42,00% 63,60% 97,00% 76,90% 

R2L 0,10% 0,10% 10,50% 0,10% 0,10% 

Probes 51,90% 0,80% 88,10% 51,90% 65,30% 

DOS 70,80% 2,40% 93,70% 70,80% 80,70% 

U2R 0,00% 2,90% 0,00% 0,00% 0,00% 

Weighted Avg. 70,80% 19,00% 69,20% 70,80% 66,80% 
 
 
 



Journal of Theoretical and Applied Information Technology 
15th July 2021. Vol.99. No 13 
© 2021 Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3327 

 

Table11. Performance Comparison of SL based on Different Methods 

 Class TP Rate FP Rate Precision Recall 
F-

Measure 

SL  without optimization 

normal 93,00% 37,30% 65,40% 93,00% 76,80% 

R2L 3,80% 0,50% 53,90% 3,80% 7,20% 

Probes 72,20% 1,30% 86,80% 72,20% 78,80% 

DOS 79,30% 3,70% 91,30% 79,30% 84,90% 

U2R 28,40% 0,00% 67,90% 28,40% 40,00% 

Weighted Avg. 74,60% 17,50% 74,80% 74,60% 70,70% 

SL optimized by 
InfoGainAttributeEval 

normal 92,50% 36,70% 65,60% 92,50% 76,80% 

R2L 13,10% 0,70% 73,90% 13,10% 22,20% 

Probes 57,20% 1,30% 84,50% 57,20% 68,20% 

DOS 81,00% 4,50% 90,00% 81,00% 85,20% 

U2R 0,00% 0,00% 0,00% 0,00% 0,00% 

Weighted Avg. 74,40% 17,50% 76,60% 74,40% 71,40% 

SL optimized by 
OneRAttributeEval 

normal 97,20% 35,00% 67,80% 97,20% 79,90% 

R2L 15,50% 0,60% 78,10% 15,50% 25,80% 

Probes 60,10% 1,10% 87,00% 60,10% 71,10% 

DOS 81,10% 2,10% 95,00% 81,10% 87,50% 

U2R 0,00% 0,00% 0,00% 0,00% 0,00% 

Weighted Avg. 77,10% 16,00% 80,00% 77,10% 74,30% 

SL optimized by 
CorrelationAttributeEval 

normal 93,60% 43,80% 61,80% 93,60% 74,40% 

R2L 0,00% 0,00% 0,00% 0,00% 0,00% 

Probes 21,60% 3,40% 43,20% 21,60% 28,80% 

DOS 67,30% 10,70% 75,70% 67,30% 71,20% 

U2R 0,00% 0,00% 0,00% 0,00% 0,00% 

Weighted Avg. 64,90% 22,80% 56,30% 64,90% 58,70% 

SL optimized by 
OneRAttributeEval and 

ABC 

normal 97,30% 37,50% 66,30% 97,30% 78,80% 

R2L 0,00% 0,50% 1,00% 0,00% 0,10% 

Probes 65,30% 1,30% 86,10% 65,30% 74,30% 

DOS 81,10% 2,00% 95,30% 81,10% 87,60% 

U2R 0,00% 0,00% 0,00% 0,00% 0,00% 

Weighted Avg. 75,80% 17,00% 69,50% 75,80% 70,90% 
 
 
 

Table12. Performance Comparison of SVM based on Different Methods 

 Class 
TP 

Rate FP Rate Precision Recall 
F-

Measure 

SVM without optimization 

normal 95,80% 35,60% 67,10% 95,80% 78,90% 

R2L 10,10% 0,30% 84,60% 10,10% 18,10% 

Probes 67,30% 1,80% 82,20% 67,30% 74,00% 

DOS 82,40% 1,10% 97,30% 82,40% 89,20% 

U2R 35,80% 0,00% 68,60% 35,80% 47,10% 

Weighted Avg. 77,10% 15,90% 80,90% 77,10% 73,90% 



Journal of Theoretical and Applied Information Technology 
15th July 2021. Vol.99. No 13 
© 2021 Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3328 

 

SVM optimized by 
InfoGainAttributeEval 

normal 92,50% 37,30% 65,30% 92,50% 76,60% 

R2L 11,00% 0,10% 92,40% 11,00% 19,60% 

Probes 60,00% 1,10% 86,40% 60,00% 70,80% 

DOS 81,40% 4,50% 89,90% 81,40% 85,40% 

U2R 0,00% 0,00% 0,00% 0,00% 0,00% 

Weighted Avg. 74,60% 17,70% 79,00% 74,60% 71,40% 

SVM optimized by 
OneRAttributeEval 

normal 96,70% 35,90% 67,10% 96,70% 79,20% 

R2L 13,70% 0,10% 95,90% 13,70% 24,00% 

Probes 62,60% 1,30% 85,30% 62,60% 72,20% 

DOS 80,60% 2,30% 94,60% 80,60% 87,00% 

U2R 0,00% 0,00% 0,00% 0,00% 0,00% 

Weighted Avg. 76,80% 16,40% 81,60% 76,80% 73,70% 

SVM optimized by 
CorrelationAttributeEval 

normal 92,50% 42,40% 62,30% 92,50% 74,50% 

R2L 0,00% 0,00% 0,00% 0,00% 0,00% 

Probes 28,70% 4,00% 46,40% 28,70% 35,50% 

DOS 68,00% 10,30% 76,60% 68,00% 72,00% 

U2R 0,00% 0,00% 0,00% 0,00% 0,00% 

Weighted Avg. 65,40% 22,10% 57,20% 65,40% 59,70% 

SVM optimized by 
OneRAttributeEval and 

ABC 

normal 90,20% 32,30% 67,90% 90,20% 77,50% 

R2L 0,10% 0,10% 8,30% 0,10% 0,10% 

Probes 70,50% 7,60% 52,70% 70,50% 60,30% 

DOS 81,90% 1,80% 95,70% 81,90% 88,30% 

U2R 0,00% 0,00% 0,00% 0,00% 0,00% 

Weighted Avg. 73,50% 15,30% 67,70% 73,50% 69,10% 
 

Table13. Performance Comparison of Part based on Different Methods 

 Class 
TP 

Rate FP Rate Precision Recall 
F-

Measure 

Part without optimization 

normal 97,40% 34,60% 68,10% 97,40% 80,10% 

R2L 3,80% 0,40% 60,00% 3,80% 7,20% 

Probes 69,50% 2,00% 80,70% 69,50% 74,70% 

DOS 82,10% 1,60% 96,30% 82,10% 88,60% 

U2R 32,80% 0,00% 78,60% 32,80% 46,30% 

Weighted Avg. 77,10% 15,70% 77,80% 77,10% 72,90% 

Part optimized by 
InfoGainAttributeEval 

normal 96,60% 35,80% 67,10% 96,60% 79,20% 

R2L 5,60% 0,10% 89,40% 5,60% 10,50% 

Probes 65,70% 3,90% 67,00% 65,70% 66,30% 

DOS 76,10% 2,00% 94,90% 76,10% 84,40% 

U2R 6,00% 0,10% 15,40% 6,00% 8,60% 

Weighted Avg. 74,60% 16,50% 79,00% 74,60% 70,50% 

Part optimized by 
OneRAttributeEval 

normal 91,30% 28,80% 70,60% 91,30% 79,60% 

R2L 5,70% 0,10% 89,10% 5,70% 10,70% 

Probes 75,90% 7,20% 56,00% 75,90% 64,50% 

DOS 83,80% 1,70% 96,00% 83,80% 89,50% 



Journal of Theoretical and Applied Information Technology 
15th July 2021. Vol.99. No 13 
© 2021 Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3329 

 

U2R 14,90% 0,00% 76,90% 14,90% 25,00% 

Weighted Avg. 76,00% 13,80% 79,80% 76,00% 72,30% 

Part optimized by 
CorrelationAttributeEval 

normal 92,50% 40,60% 63,30% 92,50% 75,10% 

R2L 2,10% 0,90% 25,10% 2,10% 3,90% 

Probes 63,70% 3,80% 66,80% 63,70% 65,20% 

DOS 68,70% 4,50% 88,40% 68,70% 77,30% 

U2R 0,00% 0,00% 0,00% 0,00% 0,00% 

Weighted Avg. 69,70% 19,50% 66,90% 69,70% 65,50% 

Part optimized by 
OneRAttributeEval and 

ABC 

normal 91,20% 29,20% 70,30% 91,20% 79,40% 

R2L 4,40% 0,20% 80,00% 4,40% 8,40% 

Probes 85,90% 6,20% 62,40% 85,90% 72,30% 

DOS 83,00% 1,60% 96,30% 83,00% 89,20% 

U2R 19,40% 0,00% 65,00% 19,40% 29,90% 

Weighted Avg. 76,60% 13,80% 79,30% 76,60% 72,60% 
 

Table14. Performance Comparison of JRip based on Different Methods 

 Class 
TP 

Rate FP Rate Precision Recall 
F-

Measure 

JRip without optimization 

normal 93,10% 32,30% 68,60% 93,10% 79,00% 

R2L 9,70% 0,10% 94,30% 9,70% 17,60% 

Probes 65,50% 4,30% 64,80% 65,50% 65,10% 

DOS 84,60% 2,00% 95,50% 84,60% 89,70% 

U2R 11,90% 0,00% 80,00% 11,90% 20,80% 

Weighted Avg. 76,40% 15,00% 80,40% 76,40% 73,00% 

JRip optimized by 
InfoGainAttributeEval 

normal 97,20% 36,20% 67,00% 97,20% 79,40% 

R2L 7,80% 0,00% 97,00% 7,80% 14,40% 

Probes 66,60% 2,00% 80,30% 66,60% 72,80% 

DOS 81,30% 1,00% 97,60% 81,30% 88,80% 

U2R 9,00% 0,00% 100,00% 9,00% 16,40% 

Weighted Avg. 77,00% 16,10% 82,50% 77,00% 73,30% 

JRip optimized by 
OneRAttributeEval 

normal 97,10% 36,20% 67,00% 97,10% 79,30% 

R2L 1,40% 0,10% 80,40% 1,40% 2,80% 

Probes 64,40% 1,60% 83,00% 64,40% 72,60% 

DOS 81,00% 3,20% 92,60% 81,00% 86,40% 

U2R 14,90% 0,00% 90,90% 14,90% 25,60% 

Weighted Avg. 75,80% 16,80% 79,00% 75,80% 71,00% 

JRip optimized by 
CorrelationAttributeEval 

normal 96,10% 45,70% 61,40% 96,10% 74,90% 

R2L 2,00% 0,10% 73,40% 2,00% 3,90% 

Probes 52,70% 2,90% 69,00% 52,70% 59,80% 

DOS 68,10% 2,20% 93,80% 68,10% 78,90% 

U2R 0,00% 0,00% 0,00% 0,00% 0,00% 

Weighted Avg. 69,80% 20,80% 74,30% 69,80% 65,30% 

JRip optimized by 
OneRAttributeEval and 

normal 96,50% 34,50% 67,90% 96,50% 79,70% 

R2L 11,70% 0,30% 84,30% 11,70% 20,60% 



Journal of Theoretical and Applied Information Technology 
15th July 2021. Vol.99. No 13 
© 2021 Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3330 

 

ABC 
Probes 69,40% 1,50% 85,10% 69,40% 76,50% 

DOS 82,80% 1,20% 97,20% 82,80% 89,40% 

U2R 23,90% 0,00% 88,90% 23,90% 37,60% 

Weighted Avg. 78,00% 15,40% 81,60% 78,00% 74,90% 
 

Table15. Performance Comparison of J48 based on Different Methods 

 Class TP Rate FP Rate Precision Recall 
F-

Measure 

J48 without optimization 

normal 97,00% 36,50% 66,80% 97,00% 79,10% 

R2L 6,20% 0,00% 95,70% 6,20% 11,70% 

Probes 65,50% 2,90% 72,90% 65,50% 69,00% 

DOS 77,40% 2,00% 95,10% 77,40% 85,30% 

U2R 13,40% 0,00% 69,20% 13,40% 22,50% 

Weighted Avg. 75,30% 16,70% 80,50% 75,30% 71,30% 

J48 optimized by 
InfoGainAttributeEval 

normal 96,90% 32,00% 69,60% 96,90% 81,00% 

R2L 1,20% 0,00% 87,20% 1,20% 2,30% 

Probes 83,20% 6,00% 62,60% 83,20% 71,50% 

DOS 75,80% 0,80% 98,00% 75,80% 85,50% 

U2R 6,00% 0,00% 80,00% 6,00% 11,10% 

Weighted Avg. 75,90% 14,70% 80,50% 75,90% 71,20% 

J48 optimized by 
OneRAttributeEval 

normal 97,10% 31,70% 69,90% 97,10% 81,30% 

R2L 1,70% 0,00% 94,10% 1,70% 3,30% 

Probes 67,00% 4,00% 67,10% 67,00% 67,00% 

DOS 82,90% 2,50% 94,30% 82,90% 88,30% 

U2R 9,00% 0,10% 24,00% 9,00% 13,00% 

Weighted Avg. 76,70% 14,90% 80,60% 76,70% 71,90% 

J48 optimized by 
CorrelationAttributeEval 

normal 91,90% 37,50% 65,00% 91,90% 76,10% 

R2L 1,70% 0,10% 69,40% 1,70% 3,40% 

Probes 62,20% 4,20% 64,00% 62,20% 63,10% 

DOS 73,00% 6,30% 85,20% 73,00% 78,70% 

U2R 0,00% 0,00% 0,00% 0,00% 0,00% 

Weighted Avg. 70,60% 18,70% 72,00% 70,60% 66,00% 

J48 optimized by 
OneRAttributeEval and ABC 

normal 96,20% 27,20% 72,80% 96,20% 82,90% 

R2L 1,20% 0,50% 27,30% 1,20% 2,30% 

Probes 82,60% 5,30% 65,00% 82,60% 72,70% 

DOS 84,50% 1,30% 97,00% 84,50% 90,30% 

U2R 11,90% 0,00% 80,00% 11,90% 20,80% 

Weighted Avg. 78,50% 12,80% 74,20% 78,50% 73,80% 
      
       
       In order to improve the performance 
measurement of the classifier, the simulation error 
is also addressed in this research. For this purpose, 
we evaluate the effectiveness of the classifiers in  

 
 
terms of mean absolute error and root mean squared 
error. The results are presented in Figures 3,4,5,6 
and 7. 

 



Journal of Theoretical and Applied Information Technology 
15th July 2021. Vol.99. No 13 
© 2021 Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3331 

 

        
Figure3. Simulation error without optimization 

 

 
Figure4. Simulation error optimized by Correlation 

Attribute Evaluation 

Figure5. Simulation error optimized by OneR Attribute 
Evaluation 

 
 

  
Figure6. Simulation error optimized by Information Gain 

Attribute Evaluation 
 

 
Figure7. Simulation error optimized by OneR and ABC 

Methods 
 
        To assess the performance of our proposed 
ensemble classifier, several experiments have been  
carried out using different classification algorithms. 
First, a stacking method is chosen, we use two  
algorithms as base learners and an algorithm as a 
stacking model learner. We use various 
combinations of the three best classifiers namely: 
Part, JRip and J48. The predicted classifications 
from the base learners will become the input 
variables in a stacking model learner.  
The stacking model learner will experiment with 
learning from data how to combine the different 
models' predictions to reach high classification 
precision. The experiment results of the stacking 
algorithm are given in Table 16. 
        In the second step, the ensemble classifier 
based on majority voting is proposed, constructed 
with the same three classifiers. the detailed results 
are given in Table 17, and a performance 
comparison based time to build model, correctly 
classified instances, incorrectly classified instances, 
mean absolute error and root mean squared error is 
presented in Table 18 and Figure 8. 

 
 
 
 
 

 



Journal of Theoretical and Applied Information Technology 
15th July 2021. Vol.99. No 13 
© 2021 Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3332 

 

Table16.The performance of stacking algorithm optimized by OneR and ABC 
 

Base 
 Learner 

Stacking Model 
Learner 

Class TP Rate FP Rate Precision Recall F-Measure 

JRip 

J48 

normal 91,20% 27,00% 71,90% 91,20% 80,40% 

R2L 15,20% 0,50% 83,10% 15,20% 25,70% 

Probes 84,60% 5,80% 63,60% 84,60% 72,60% 

Part 

DOS 84,00% 1,20% 97,10% 84,00% 90,10% 

U2R 29,90% 0,00% 80,00% 29,90% 43,50% 

Weighted Avg. 78,20% 12,70% 80,80% 78,20% 75,70% 

Part 

Jrip 

normal 91,20% 31,00% 69,00% 91,20% 78,60% 

R2L 4,50% 0,20% 80,70% 4,50% 8,50% 

Probes 82,50% 6,10% 62,10% 82,50% 70,80% 

J48 

DOS 82,30% 1,20% 97,10% 82,30% 89,10% 

U2R 11,90% 0,00% 100,00% 11,90% 21,30% 

Weighted Avg. 76,00% 14,40% 79,20% 76,00% 72,10% 

JRip 

Part 

normal 96,10% 26,10% 73,60% 96,10% 83,40% 

R2L 11,70% 0,30% 84,30% 11,70% 20,50% 

Probes 75,80% 6,60% 58,10% 75,80% 65,80% 

J48 

DOS 81,80% 1,20% 97,10% 81,80% 88,80% 

U2R 23,90% 0,00% 88,90% 23,90% 37,60% 

Weighted Avg. 78,20% 12,40% 81,10% 78,20% 75,10% 
 

Table17.Performance based Majority voting of JRip, Part and J48   
  

Class TP Rate FP Rate Precision Recall F-Measure 

normal 96,30% 31,60% 69,70% 96,30% 80,90% 

R2L 1,00% 0,40% 26,10% 1,00% 2,00% 

Probes 82,20% 3,40% 74,50% 82,20% 78,20% 

DOS 82,50% 1,20% 97,20% 82,50% 89,20% 

U2R 19,40% 0,00% 86,70% 19,40% 31,70% 

Weighted Avg. 77,80% 14,40% 73,80% 77,80% 73,10% 

 
Table18. Performance Comparison of ensemble methods 

 

Evaluation criteria Majority voting Stacking by Part Stacking by Jrip Stackin by J48 

Time to build model (s) 90,23 835,74 111,17 94,93 

Correctly classified instances 
17539 

(77,80%) 
17623 

(78,17%) 
17129 

(75,98%) 
17628 

(78,20%) 

Incorrectly classified instance 
5005 

(22,20%) 
4921 

(21,83%) 
5415 

(24,01%) 
4916 

(21,80%) 

 



Journal of Theoretical and Applied Information Technology 
15th July 2021. Vol.99. No 13 
© 2021 Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3333 

 

 
Figure8. Simulation error for ensemble methods 

 
Confusion matrix 
       Confusion matrix is a useful tool for 
visualization, it allows to evaluate classifiers using 
the four basics values namely, TP, FP, TN and FN.  
Each row of confusion matrix shows the rates in a 
real class while each column represents the 
predictions. 
From confusion matrices (Tables 19, 20, 21 and 
22), we can clearly see that none of classifiers in 
the attack detection model performed very well in 
the detection of new R2L and U2R intrusions. The 
stacking model with J48 as a model learner and two 
other algorithms (Part and JRip) as base classifiers 
gives the best results compared to the others 
ensemble classifiers. It allows to increase the 
detection accuracy of R2L attacks to 15.20%, U2R 
to 29.85% while maintaining a detection accuracy 
of normal traffic of 91.17%, probes attacks of 
84.55% and DOS with 84.04%. 
 

Table19.Confusion matrix of Stacking by J48 

normal R2L Probes DOS U2R 

8854 4 777 76 0 normal 

2091 439 351 1 5 R2L 

184 83 2047 107 0 Probes 

1146 0 44 6268 0 DOS 

45 2 0 0 20 U2R 

 
Table20.Confusion matrix of Stacking by JRip 

normal R2L Probes DOS U2R 

8859 2 779 71 0 normal 

2406 130 351 0 0 R2L 

290 24 1997 110 0 Probes 

1233 0 90 6135 0 DOS 

54 5 0 0 8 U2R 

 
 
 
 
 

Table21.Confusion matrix of Stacking by Part 

normal R2L Probes DOS U2R 

9337 3 295 76 0 normal 

1843 337 705 0 2 R2L 

419 60 1835 107 0 Probes 

1039 0 321 6098 0 DOS 

51 0 0 0 16 U2R 

 
 
Table22.Confusion matrix of majority voting 

normal R2L Probes DOS U2R 

9355 3 280 73 0 normal 

2547 30 308 0 2 R2L 

244 82 1989 106 0 Probes 

1214 0 92 6152 0 DOS 

54 0 0 0 13 U2R 

 
       We tested the proposed classifiers namely: 
Naïve Bayes, Support Vector Machine, Simple 
Logistic Regression, JRip, Part and J48, optimized 
by OneR attribute evaluation and ABC method, and 
then selected the three best classifiers to combine 
them using ensemble models (the stacking and the 
majority voting models) for the detection and 
classification of network intrusions according to 
their category. Table 23 compares our proposed 
classification approach with the results of previous 
research. Based on the existing methods and 
experimental findings, we observe that our 
optimized model performs better than other models 
alone for the prediction and classification of 
network intrusions. We cannot compare it to all the 
previous works since we did not use the same 
dataset, and even for the works based on NSL KDD 
dataset most of them did not use the data with the 
attack category label. Our model shows that no 
algorithm is very efficient in the detection of U2R 
and R2L attacks, however it has improved the 
accuracy of detection of these types of intrusion 
while reducing the time to build the model. 
 
 
 
 
 
 
 
 
 
 
 
 



Journal of Theoretical and Applied Information Technology 
15th July 2021. Vol.99. No 13 
© 2021 Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3334 

 

Table 23: Performance of different methods 
Model Techniques Data set Accuracy 

Appraoch 
[5] 

J48 

NSL-KDD 

99.79% 
Random 
Forest 

99.91% 

Bagging 99.84% 
PART 99.83% 

Appraoch 
[6] 

XGBoost NSL-KDD 97% 

Appraoch 
[7] 

Machine 
learning & 
Knowledge 

based 
approach 

KDD 99 99.80% 

Appraoch 
[8] 

Feature 
encoding, 
Feature 

scaling & 
Features 
selection 

Cybersecurity 
dataset 

98% 

Appraoch 
[9] 

Random 
Forest 10% Random 

Sample Gas 
Pipeline 

99.30% 

J48 99.16% 
SVM 94.20% 

Naive Bayes 94.15% 
Appraoch 

[10] 
Naïve Bayes 

KDD 99 
98.9% 

RandomTree 100% 

Appraoch 
[11] 

Hybrid 
Technique 

(PSO + RF) 
Gas Pipeline 99.30% 

Our 
proposed 

model 

OneR, ABC 
and stacking 

model 
NSL-KDD 80.80% 

 
5. CONCLUSION AND FUTURE WORK 
 
       Many machine learning techniques have been 
applied to improve the efficiency of NIDSs, 
however, the existing intrusion detection algorithms 
are still challenged to perform well. In this article, 
we propose a new intrusion detection approach 
based on feature reduction/selection methods to 
deal with highly dimensional network traffic, and 
ensemble learning techniques to improve the 
detection accuracy. First, we have evaluated the 
Naïve Bayes, Support Vector Machine, Simple 
Logistic regression, JRip, Part and J48 algorithms 
using NSL KDD dataset. The experimental results 
show that these classifiers consume a lot of time to 
build the model, however it becomes necessary to 
remove irrelevant and redundant features and select 
the most important ones. Thus, we have tested three 
dimensionality reduction methods namely: 
information gain evaluation, correlation attribute 
evaluation and OneRule attribute evaluation. After 
the comparative analysis of the results, we have 
selected the best technique which is OneR attribute 
evaluation, and we have associated it with Artificial 

Bee Colony method, which has clearly allowed the 
algorithms to decrease the time of building the 
model, as well as to improve the efficiency of 
detection of Probes and DOS attacks. The challenge 
was to optimize the efficiency of detection of U2R 
and R2L intrusions. For this purpose, we have 
selected the three best classifiers and we have 
combined them in a stacking model, and another 
model based on majority voting. After this study we 
can conclude that no algorithm performs very well 
in detection of U2R and R2L attacks. However, the 
results of our research show that the stacking 
model, using J48 as the model learner and JRip 
with Part as the base classifiers, has improved the 
detection accuracy of R2L to    15. 20%, U2R to 
29.85%, Probes to 84.55%, DOS to 84.04% and for 
normal traffic an accuracy score of 91.17%, while 
minimizing the time required to build the model. 
       Our outcomes will help future authors and 
searchers to figure out the appropriate feature 
reduction/selection schemes required to conceive 
effective machine learning approaches.  
Still passionate about cybersecurity and artificial 
intelligence, in our future work, we will propose a 
convenient framework based on deep learning for 
network intrusion detection systems. 
 
REFRENCES 
 
[1] SINGH, Amrit Pal et SINGH, Manik Deep. 

“Analysis of Host-Based and Network-Based 
Intrusion Detection System”. International 
Journal of Computer Network & Information 
Security, 2014, vol. 6, no 8. 

[2] TAMY, Sara, NABILA, Rabbah, MAHMOUD 
ALMOSTAFA, Rabbah, et al. “Study of 
Strategies for Real-Time Supervision of 
Industrial Network Security”. Smart 
Application and Data Analysis for Smart Cities 
(SADASC'18), 2018. 

[3] CAI, Jie, LUO, Jiawei, WANG, Shulin, et al. 
“Feature selection in machine learning: A new 
perspective”. Neurocomputing, 2018, vol. 300, 
p. 70-79. 

[4] Anderson J. P., “Computer security threat 
monitoring and surveillance,” Technical 
Report, Fort Washington, Pennsylvania, USA, 
1980. 

[5] : “Intrusion Detection using Machine Learning 
and Feature Selection”, I. J. Computer Network 
and Information Security, 2019, 4, 43-52 
Published Online April 2019 in MECS 
(http://www.mecs-press.org/) 

[6] LIU, Jixin, KANTARCI, Burak, et ADAMS, 
Carlisle. “Machine learning-driven intrusion 



Journal of Theoretical and Applied Information Technology 
15th July 2021. Vol.99. No 13 
© 2021 Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3335 

 

detection for contiki-NG-based IoT networks 
exposed to NSL-KDD dataset”. In : 
Proceedings of the 2nd ACM Workshop on 
Wireless Security and Machine Learning. 
2020. p. 25-30.  

[7] SARNOVSKY, Martin et PARALIC, Jan. 
“Hierarchical intrusion detection using 
machine learning and knowledge model”. 
Symmetry, 2020, vol. 12, no 2, p. 203. 

[8] SARKER, Iqbal H., ABUSHARK, Yoosef B., 
ALSOLAMI, Fawaz, et al. “Intrudtree: a 
machine learning based cyber security 
intrusion detection model”. Symmetry, 2020, 
vol. 12, no 5, p. 754. 

[9] TAMY, Sara, BELHADAOUI, Hicham, 
RABBAH, Mahmoud Almostafa, et al. An 
“evaluation of machine learning algorithms to 
detect attacks in SCADA network”. In : 2019 
7th Mediterranean Congress of 
Telecommunications (CMT). IEEE, 2019. p. 1-
5 

[10] TAMY¹, Sara, BELHADAOUI, Hicham, 
RABBAH¹, Mahmoud Almostafa, et al. “Select 
the Best Machine Learning Algorithms for 
Prediction and Classification of Intrusions 
using KDD99 Intrusion Detection 
Dataset”. Indian Journal of Science and 
Technology, 2019, vol. 12, p. 37. 

[11] SARA TAMY, HICHAM BELHADAOUI, 
NABILA RABBAH,MOUNIR RIFI. “cyber 
security based machine learning algorithms 
applied to industry 4.0 application case: 
development of network intrusion detection 
system using hybrid method”. Journal of 
Theoretical and Applied Information 
Technology,2020, Vol.98, No 12 

[12] KARABOGA, Dervis, GORKEMLI, Beyza, 
OZTURK, Celal, et al. “A comprehensive 
survey: artificial bee colony (ABC) algorithm 
and applications”. Artificial Intelligence 
Review, 2014, vol. 42, no 1, p. 21-57 

[13] MUKHERJEE, Saurabh et SHARMA, 
Neelam. “Intrusion detection using naive 
Bayes classifier with feature 
reduction”. Procedia Technology, 2012, vol. 4, 
p. 119-128. 

 [14] Lopez Perez, R., Adamsky, F., Soua, R., & 
Engel, T. “Forget the Myth of the Air Gap: 
Machine Learning for Reliable Intrusion 
Detection in SCADA Systems”. EAI Endorsed 
Transactions on Security and Safety.2019 

[15] ALJARAH, Ibrahim, ALA’M, Al-Zoubi, 
FARIS, Hossam, et al. “Simultaneous 
feature selection and support vector 
machine optimization using the 

grasshopper optimization 
algorithm”.Cognitive Computation, 2018, 
vol. 10, no 3, p. 478-495. 

[16] SALEH, Ahmed I., TALAAT, Fatma M., et 
LABIB, Labib M. “A hybrid intrusion 
detection system (HIDS) based on prioritized 
k-nearest neighbors and optimized SVM 
classifiers”. Artificial Intelligence Review, 
2019, vol. 51, no 3, p. 403-443  

[17] HALIMAA, Anish et 
SUNDARAKANTHAM, K. “Machine 
learning based intrusion detection system”. In: 
2019 3rd International conference on trends in 
electronics and informatics (ICOEI). IEEE, 
2019. p. 916-920. 

[18] GHOSH, Partha et MITRA, Rajarshee. 
“Proposed GA-BFSS and logistic regression 
based intrusion detection system”. 
In: Proceedings of the 2015 Third 
International Conference on Computer, 
Communication, Control and Information 
Technology (C3IT). IEEE, 2015. p. 1-6. 

[19] HUSSAIN, Jamal et LALMUANAWMA, 
Samuel. “Feature analysis, evaluation and 
comparisons of classification algorithms based 
on noisy intrusion dataset”. Procedia 
Computer Science, 2016, vol. 92, p. 188-198. 

[20] ABDULLAH, Manal, ALSHANNAQ, A., 
BALAMASH, A., et al. “Enhanced intrusion 
detection system using feature selection 
method and ensemble learning algorithms”. 
International Journal of Computer Science and 
Information Security (IJCSIS), 2018, vol. 16, 
no 2, p. 48-55. 

[21] Hall, M.A. “Correlation-Based Feature 
Selection for Machine Learning”; The 
University of Waikato: Hamilton, New 
Zealand, 1999 

[22] KARIMI, Zahra, KASHANI, Mohammad 
Mansour Riahi, et HAROUNABADI, Ali. 
“Feature ranking in intrusion detection dataset 
using combination of filtering 
methods”. International Journal of Computer 
Applications, 2013, vol. 78, no 4. 

[23] AL JANABI, Kadhim BS et KADHIM, Rusul. 
Data reduction techniques: “a comparative 
study for attribute selection 
methods”. International Journal of Advanced 
Computer Science and Technology, 2018, vol. 
8, no 1, p. 1-13 

[24] KARABOGA, Dervis. “ An idea based on 
honey bee swarm for numerical optimization”. 
Technical report-tr06, Erciyes university, 
engineering faculty, computer engineering 
department, 2005. 



Journal of Theoretical and Applied Information Technology 
15th July 2021. Vol.99. No 13 
© 2021 Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3336 

 

[25] SHUNMUGAPRIYA, P. et KANMANI, S.     
“A hybrid algorithm using ant and bee colony 
optimization for feature selection and 
classification (AC-ABC Hybrid)”. Swarm and 
Evolutionary Computation, 2017, vol. 36, p. 
27-36. 

[26] WANG, Jun, LI, Taihang, et REN, Rongrong. 
“A real time IDSs based on artificial bee 
colony-support vector machine algorithm”. 
In: Third International Workshop on Advanced 
Computational Intelligence. IEEE, 2010. p. 91-
96. 

[27] MAHMOD, Mahmod S., ALNAISH, Zakaria 
A. Hamed, et AL-HADI, Ismail Ahmed A. 
“Hybrid intrusion detection system using 
artificial bee colony algorithm and multi-layer 
perceptron”. International Journal of 
Computer Science and Information Security, 
2015, vol. 13, no 2, p. 1. 

[28] CHOUDHARY, Roshani et SHUKLA, 
Sanyam. “A clustering based ensemble of 
weighted kernelized extreme learning machine 
for class imbalance learning”. Expert Systems 
with Applications, 2021, vol. 164, p. 114041 

[29] ALOTAIBI, Bandar et ELLEITHY, Khaled. 
“A majority voting technique for wireless 
intrusion detection systems”. In: 2016 IEEE 
Long Island Systems, Applications and 
Technology Conference (LISAT). IEEE, 2016. 
p. 1-6 

[30] ROY, Jean-Francis. “ Apprentissage 
automatique avec garanties de généralisation à 
l'aide de méthodes d'ensemble maximisant le 
désaccord”. 2018 

 [31] VINUTHA, H. P. et POORNIMA, B. “An 
ensemble classifier approach on different 
feature selection methods for intrusion 
detection”. In: Information systems design and 
intelligent applications. Springer, Singapore, 
2018. p. 442-451. 

[32]  https://www.unb.ca/cic/datasets/nsl.html 
[33]  https://www.cs.waikato.ac.nz/ml/weka/ 
 
 
 


