
Journal of Theoretical and Applied Information Technology
15th July 2021. Vol.99. No 13
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3253

DESIGN AND EVALUATION OF A MOBILE 3D ARCADE
GAME WITH MESH CLIPPING

YOUNGSIK KIM

Dept. of Game and Multimedia Engineering, Korea Polytechnic University, Republic of Korea

E-mail: kys@kpu.ac.kr

ABSTRACT

To cut a polygon of the 3D mesh object from a computer, it is necessary to create a plane using the plane
equation, calculate the distance between the point and the plane, and calculate the intersection point and the
plane. In this paper, we propose a 5-step mesh clipping method to cut polygons in a 3D game. The proposed
method consists of (1) plane generation, (2) point separation according to the distance between vertex and
plane of polygon, (3) intersection of plane and polygon, (4) separation of the triangle using intersection, and
(5) creation of cross-section. The proposed method is applied to the mobile 3D arcade games. Experiments
are conducted to measure the variation of the frame rate (Frame Per Second (FPS)) according to the type of
objects displayed during the game. Moreover, computer experiments have verified that the mesh clipping
effect is natural and accurate. It can be confirmed that noticeable frame deterioration does not occur when
the cube is cut. On the other hand, if they have a monster with a more significant number of triangles and
vertices, they may notice a slight frame drop. Also, we confirmed that the effect of the degradation of
rendering speed on game progress is insignificant when applying the proposed mesh clipping to 3D games.

Keywords: Mobile 3D Arcade Game, Mesh Clipping, Computer Simulation, Rendering Speed, Unity3D

1. INTRODUCTION

As 3D modeling and simulation
technology and computer graphics technology have
been advanced in recent years, game technologies
based on these technologies have been applied in
various industrial fields. Interactive multimedia
content, sensory entertainment systems, virtual
worlds, 3D training systems, and the like. The
shape of things on a computer is polygon.

The mesh formation and processing
technique that expresses the shape of objects is
essential as the underlying technology.

Recently, in the Virtual Reality (VR) game
market, it is easy to find a game against an
opponent using a controller as a sword [1]. Among
them, games such as Fruit Ninja VR [2] in Figure 1
(a) and Beat Saber [3] in Figure 1 (b) are genres
that can directly cut objects and enjoy hitting
feeling. The fact that smartphone games, such as
Fruit Ninja VR [2] and Bet Saber [3], have been
released to the market and similar games continue
to be released suggest that people like this intuitive
interactive game approach.

The mesh cutting technique of the 3D
model makes it possible to observe the inside of the
shape closely in real-time so that it can be widely
used in various fields.

(a) Fruit Ninja VR [2]

(b) Beat Saber [3]

Figure 1. 3D Games with Object Cutting.

For example, there have been cases of applications
in the fields of medical research, mechanical

Journal of Theoretical and Applied Information Technology
15th July 2021. Vol.99. No 13
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3254

design, geological exploration and architectural
design, including virtual surgery [4,5].

The 3D game to be designed and verified
in this paper is also similar to the two games in
Figure 1. It is a game that follows the road and cuts
the objects coming out, and enjoys a sense of
hitting. In this paper, we implement mesh clipping
that divides object, which is the most prominent
feature of such game, and keeps each part of the
divided objects. Moreover, mesh clipping is applied
to the mobile 3D Arcade game and verified through
experiments. For the mesh to be cut according to
the shape input by the user on the game screen,
creating a virtual plane is required. Create a plane
using the previous position and the current position
of the straight line the player entered. After the
plane is created, it is determined whether each point
of the mesh is before or after the plane based on this
plane, separated and stored. Then, the intersection
of the plane and the mesh is obtained to create the
section. It is generated by dividing each mesh
through the points divided by the plane reference
and the created cross section.

Related work [7] introduces clipping and
explains the principle and meaning of plane
equations. We are also approaching how to clone a
mesh. In the related work [9], clipping is
approached more theoretically, and briefly
summarizing what kind of clipping is done, and
then explaining it in detail is explained. The
clipping problem is usually solved without
considering the differences between Euclidean
space and the space represented by homogeneous
coordinates. For some constructions, this leads to
errors in picture generation which show up as lines
marked invisible when they should be visible.
Previous research [11] examined these cases and
presented techniques for correctly clipping the line
segments.

In [12], a new family of clipping
algorithms was described. These algorithms can
clip polygons against irregular convex plane-faced
volumes in three dimensions, removing the parts of
the polygon that lie outside the volume. In two
dimensions, the algorithms permit clipping against
irregular convex windows.

Barycentric coordinates are used to define
all vertices: original, intermediate, and final
intersection points. The use of barycentric
coordinates results in less storage space. A circular
buffer is used during the clipping process to store
input and output polygons. The use of the circular

buffer also results in reduced storage requirements
[13].

The Unity3D game engine is an integrated
authoring tool for creating other interactive content
such as 3D video games, architectural
visualizations, and real-time 3D animations [14]. In
particular, the Unity3D game engine provides a
hierarchical integrated development environment
and supports 3D model source files generated from
various 3D modeling software such as 3ds Max,
Maya, Blender, and Cinema 4D. The Unity3D game
engine has been implemented by Noble Muffins
[15].

The scene manager applied to [15] is BSP-
Tree (Binary Space Partitioning Tree) [16,17]. BSP-
Tree is a kind of Binary Tree that contains
information for partitioning space, initially designed
for Hidden Surface Removal. The application range
has been expanded widely due to its characteristics.
In computer science, binary space partitioning
(BSP) is a method for recursively subdividing a
space into convex sets by hyperplanes. This
subdivision gives rise to a representation of objects
within the space employing a tree data structure
known as a BSP tree [17].

Binary space partitioning was developed in
the context of 3D computer graphics, where the
structure of a BSP tree allows spatial information
about the objects in a scene that is useful in
rendering, such as their ordering from front-to-back
concerning a viewer at a given location, to be
accessed rapidly. Other applications include
performing geometrical operations with shapes
(constructive solid geometry) in CAD, collision
detection in robotics and 3D video games, ray
tracing and other computer applications involving
handling of complex spatial scenes [17].

Binary space partitioning is a generic
process of recursively dividing a scene into two
until the partitioning satisfies one or more
requirements. It can be seen as a generalization of
other spatial tree structures such as k-d trees and
quad-trees, one where hyperplanes that partition
space may have any orientation, rather than being
aligned with the coordinate axes as they are in k-d
trees or quad-trees. When used in computer
graphics to render scenes composed of planar
polygons, the partitioning planes are frequently
chosen to coincide with the planes defined by
polygons in the scene [17].

The binary space division method
recursively divides a space into two spaces until a
specific final purpose is satisfied. For example,

Journal of Theoretical and Applied Information Technology
15th July 2021. Vol.99. No 13
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3255

in the case of collision detection, the space is
divided so that the original object can be
sufficiently collision-checked. In the case of
rendering, the space is divided into convex shapes
so that the algorithm can be used most efficiently.
Do [17].

Since the plane across the splitting line
must be divided into two, the number of final
objects necessarily increases. Because the BSP tree
must be well-balanced, creating the right and
efficient BSP tree is the most difficult part of the
implementation process. In 3D space, a plane is
used to divide the plane of an object [17].

The Figure 2 illustrates the process of
dividing an irregular polygon into several convex
polygons. Note that the number of edges of the
polygons divided for each step from the beginning
to G and F decreases, and at the final step, the
polygon becomes a completely convex polygon. In
some cases, the dividing line may extend between
vertices in space and non-intersecting line
segments. If the splitting line intersects a line
segment or plane, the intersected segment or plane
is divided into two so that it is completely
independent [17].

In Figure 2, A is the root of the BSP Tree
which includes all polygons in the world. A is
divided into B and C. B is divided into D and E.
Then, D is divided into convex polygons F and G
which are tree leaves. An efficient BSP structure is
created entirely through a good algorithm. Most
BSP algorithms test several cases to obtain the
optimal tree in the partitioning process. Thus, the

process of creating a single tree usually involves a
long calculation process.

It is relatively easy to judge whether a part
of each triangular mesh to be cut is the front side or
the back side of the cutting plane, or if the plane
passes through the triangular mesh, when cutting a
specific polygon based on an infinite plane in the
BSP-Tree have. If the cutting plane penetrates the
triangular mesh, divide the triangular mesh into two
polygons to complete the cutting operation. One on
the front side of the cutting plane and one on the
back side. Generally, when cutting a triangle, one
triangle and one quadrilateral are created. The
newly created triangles and quadrangles are stored
in the buffer area. The triangular or tetrahedral
meshes, which are stored in the buffer region, are
then transformed into two separate 3D models by
mesh splitting [18].

In the conventional cutting method using
BSP-Tree, since the 3D model is cut into two parts
based on the infinite plane, it is difficult to use it for
general cutting work. [19] proposed a technique of
cutting a 3D model within a finite region to solve
this problem. Specifically, the cutting path plane
can be defined finitely, and the 3D model is divided
only within the cutting range, so that it can be
usefully used in various industrial fields. [18]
applied the disassembly process of the reactor 3D
model to the virtual simulation process to show the
usefulness of the proposed partial cut technique.

In this paper, the mesh clipping algorithm
was implemented in a mobile 3D arcade game
developed by ourselves. In addition, the efficiency
of the process of processing complex meshes was
verified through operation experiments of 3D
arcade games. The metrics used for verification are
rendering speed, Frame per Second (FPS).

Figure 2. Generating BSP Tree [17].

Journal of Theoretical and Applied Information Technology
15th July 2021. Vol.99. No 13
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3256

2. BACKGROUNDS

2.1 Plane Equation

Figure 3. Plane determined by Point and Normal Vector.

As shown in Figure 3, the plane is

determined by a point k and a vector n that is
perpendicular to the plane to be determined. (The

vector n at this time is the normal vector of the

plane.) When kr  is p for any point r on the

plane, 0 pn holds. Equation 1 holds for vector

),,(cban  , point),,(zyxr  , and
),,(000 zyxk 

.

0)()()(

0),,(),,(

000

000




zzcyybxxa

zzyyxxcba
 (1)

If this is summarized and the constant term
is d, Equation 2 is established. This is called the
general equation of the plane [6, 7].

0 dczbyax (2)

2.2 Geometrical Relationship between Plane

and Point

The distance D between the plane and the
point is equal to Equation 3 [6].

222

111'
cba

dczbyax
DD




 (3)

If a space in the normal vector direction of
the plane is referred to as 'front' and a space in the
opposite direction of the normal vector is referred
to as 'back', the position of the point p according to
D’ as shown in Table 1. If D’ is greater than 0, the
point p is in front of the plane and less than 0, the
point p is behind the plane. If D’ is 0, the point p is
the point included in the plane. When mesh
clipping is performed, the points are collected and
stored according to the position of the point on the
plane, and then the mesh is divided.

Table 1. Position of Point p by Condition D’

Position of Point p

D’ > 0 Point p is in front of the Plane

D’ = 0 Point p is in the Plane

D’ < 0 Point p is in back of the Plane

2.3 Intersection of Plane and Line

As shown in Figure 4, the general way to
find the intersection when a straight line passing
through two points p1 and p2 and a plane meet at a
point is as follows.

If
),,(1111 zyxp  and),,(2222 zyxp  , the

straight line intersecting the plane and the point p
can be expressed as Equation 4.

)(121 ppupp  (4)

Where u is the slope of the line. Equation

4 is assigned to plane equation
0 dcxbyax and u is summarized as

Equation 5.

)()()(212121

111

zzcyybxxa

dczbyax
u




 (5)

 Substituting u in Equation 5 into Equation
4 yields the intersection point [8].

Journal of Theoretical and Applied Information Technology
15th July 2021. Vol.99. No 13
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3257

Figure 4. Plane determined by Point and Normal Vector.

3. Mobile 3D Arcade Game Design

As described above, we implemented and
experimented with Mobile 3D Arcade game with
mesh clipping. The game of this paper was
produced using Unity 3D game engine (version:
2018.2.0f2, 64-bit) [14]. Figure 5 shows the flow of
the game in this paper to implement mesh clipping
and execute it.

When you start the game, the first-person

player moves along the spline curve. As the game
progresses, objects appear at regular intervals, and
the player can ring the object. When the object
approaches a certain distance from the player, the
color changes, and the player can ring the object.
When the player plays the object, the mesh clipping
is done and the mesh is cut and the score is
obtained. When the player can not cut the object, it
bumps all the life, or when the player reaches the
end of the curve, the score is printed and the game
ends.

As shown in Figure 6, there are a total of
eight stages in which the game can be played, and
scores can be recorded for each stage to compare
this record with others.

4. MESH CLIPPING DESIGN IN THE 3D
GAME

4.1 Mesh Clipping Control Flow

Figure 7 shows the flow of mesh clipping
applied in the game. The user creates a plane
through a straight line entered to cut the object.
Mesh clipping proceeds to the generated plane.

Figure 5. The Control Flow of the Mobile 3D Arcade Game.

Journal of Theoretical and Applied Information Technology
15th July 2021. Vol.99. No 13
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3258

(a) Game Lobby (b) Cube in the Game

(c) Monster in the Game (d) Game Score

Figure 6. The Screen Shots of the Mobile 3D Arcade.

Figure 7. Mesh Clipping Control Flow.

Journal of Theoretical and Applied Information Technology
15th July 2021. Vol.99. No 13
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3259

Mesh is divided into three cases as shown above.
First, it can be divided into a group of points
preceding the plane and a group of points behind the
plane. These points are used to create a front mesh
and a back mesh that are not filled in each section.

 In the triangle cut by the plane, the
intersection with the plane is searched to create the
section, and it is possible to create the mesh filled
with the front mesh and the rear mesh created
above. The above procedure will be used to perform
mesh clipping and explain how the above process is
done.

4.2 The Proposed Mesh Clipping

Figure 8. Normal Vector for Making Plane.

The proposed method consists of (1) plane
generation, (2) point separation according to the
distance between vertex and plane of polygon, (3)
intersection of plane and polygon, (4) separation of
triangle using intersection, and (5) creation of cross
section.

To cut a mesh, we first need to create a
plane to truncate the mesh. As described in Section
2.1, a point and a normal vector are required to
create a plane (see Figure 8). After the straight line
you entered touches the object you want to clip, you
get two points and get the center point. This is the
point that is necessary for generating the plane.
Also, the two imported points are used as the normal
vectors necessary to generate the plane by
subtracting one point from one point out of two
points rotated 90 degrees from the center point.

If you have created a plane, you must
locate the point based on the plane and separate it.
Use Equation 3 in section 2.2 to divide the position
of the point. The position of the point is divided into
three cases, but if it is not before the plane, it is
judged to be behind the plane and proceed. That is,

if the point is included in the plane, it is assumed to
be behind the plane.

It repeats the number of triangles of the
object to be cut and finds the three points of the
triangle in the space. If three points of a triangle are
in the same space, the triangle is not divided by the
plane created by the straight line you entered. The
points of the unpartitioned triangle are stored
according to the space. Conversely, if one of the
three points is in another space, the triangle is
divided. In this case, triangles must be separated by
intersection [7,9,11]. Figure 9 illustrates the vertex
separation pseudo-algorithm.

Pseudo Program: Vertex Separation
foreach Triangle in Mesh
 foreach Vertex in Triangle
 D = Distance between Vertex and Plane
 (not taking the absolute value)

 if D > 0
 Side = Front
 else
 Side = Back

 if All on the Same Side
 if Side == Front
 Add Vertices in Front Vertex Array
 else
 Add Vertices in Back Vertex Array
 else
 Clipping the Triangle

Figure 9. The Pseudo Algorithm of Vertex Separation by

Plane.

Figure 10. Linear Interpolation.

First, store the points of the triangle to be
separated according to the space and obtain the
intersection point. The intersection point is generally
obtained through the procedure in Section 3.3, but it
can be easily obtained by using the fact that the
intersection of the triangle and the plane is always
between two points in another space of the triangle.
The linear interpolation method shown in Figure 10
is used.

Journal of Theoretical and Applied Information Technology
15th July 2021. Vol.99. No 13
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3260

Equation 6 is established if the intersection
is p, the distance between point p1 and point p is d1,
and the distance from point p2 to point p is d2.

2
21

1
1

21

2

+
+

+
= p

dd

d
p

dd

d
p (6)

(a) A single point in front of the plane

(b) Two points in front of the plane

Figure 11. Triangles Clipped by Plane.

We can use Equation 6 to find the
intersection because we know the distance from the
point in front of the plane to the plane and the
distance from the point behind the plane to the
plane for two points in another space of the triangle.

When the triangle is divided by plane,
there are two cases as shown in Figure 11 (a) and
(b). In Figure 11 (a), one point of the triangle is
placed in front of the plane, and two points of the
triangle are located behind the plane. Conversely, in
Figure 11 (b), two points of the triangle are placed
before the plane, and one point of the triangle is
located behind the plane.

Among the divided surfaces, the square
surface is divided into two triangles.

Pseudo Algorithm: Clipping the Triangle

if Number of Vertex on Front Side = 1

F1 Vertex on Front Side

B1,2 Vertex on Back Side

N1,2 Intersection of Plane and Triangle
Add N1, N2 in New Vertex Array

if Direction of F1, N1 and N2 is not CCW

 Change Direction of Vertices
Add Vertices in Front Vertex Array

if Direction of B1, N1 and N2 is not CCW

 Change Direction of Vertices
Add Vertices in Back Vertex Array

if Direction of B1, B2 and N2 is not CCW

 Change Direction of Vertices
Add Vertices in Back Vertex Array

else
F1,2 Vertex on Front Side

B1 Vertex on Back Side

N1,2 Intersection of Plane and Triangle
Add N1, N2 in New Vertex Array

if Direction of F1, N1 and N2 is not CCW

 Change Direction of Vertices
Add Vertices in Front Vertex Array

if Direction of F1, F2 and N2 is not CCW

 Change Direction of Vertices
Add Vertices in Front Vertex Array

if Direction of B1, N1 and N2 is not CCW

 Change Direction of Vertices
Add Vertices in Back Vertex Array

Figure 12. The Pseudo Algorithm of Clipping the

Triangle.

Figure 13. Section Created by Intersections.

Journal of Theoretical and Applied Information Technology
15th July 2021. Vol.99. No 13
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3261

Note the order when storing new triangles
created with intersections. The mesh is visible only
in the counterclockwise direction based on the
normal vector of the triangle. If the order of the
three points is not counterclockwise, the order of
the points must be reversed to make them
counterclockwise [9]. Figure 12 shows the pseudo-
algorithm of triangulation.

Through the above process, the mesh is
divided by using the separated points. Before
creating the mesh, we must process the cut section.

We can create a triangle with a set of
intersections found above (see Figure 13).

As shown in Figure 13, you can create a
cross-section by creating a triangle after finding the
midpoints of the intersections. The midpoint is

simply obtained by dividing the sum of the
intersections by the number of intersections. We
create the frontal mesh by combining the created
triangles with the set of front triangles obtained in
the previous procedure. Likewise, we create the
back mesh by combining the created triangles with
the back triangles we obtained in the previous
procedure.

5. PERFORMANCE EVALUATION

We applied the mesh clipping proposed in
Section 4 to the mobile 3D arcade game designed in
Section 3 and measured the rendering speed when
the object was cut. The specifications of the
computer used in the experiment are as follows:
Processor: Intel (R) Core (TM) i5-5200U CPU @

(a) Slashing Cube (b) Slashing Monster

Figure 14. Screen Shots for Slashing Objects.

Figure 15. Rendering Speed Comparison.

Journal of Theoretical and Applied Information Technology
15th July 2021. Vol.99. No 13
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3262

2.20GHz 2.20GHz, memory: 8.00GB, graphics
card: GeForce 940M and 64bit operating system.

Figures 14 (a) and (b) show screen shots of
slashing Cube and Monster as the game progresses.

Table 2 describes the number of vertices
and triangles of cube and monster objects used in
the game.

Table 2. Number of Vertices and Triangles of Each Type

of Object.

Cube Monster

Vertices 24 1453

Triangles 12 816

Experiments were conducted to measure
the variation of the frame rate (Frame Per Second
(FPS)) according to the type of objects displayed
during the game. Figure 15 shows the results of
measuring the change in rendering speed until the
cube and monster are tilted 10 times while playing

the game. In Figure 15, the black arrow points to the
rendering speed when the objects are slashed.

It can be confirmed that noticeable frame
deterioration does not occur when the cube is cut.
On the other hand, if they have a monster with a
larger number of triangles and vertices, they may
notice a slight frame drop.

Table 3 shows the average rendering speed
with and without mesh clipping for cube and
monster. In the case of a cube, there was almost no
frame change, and in the case of a complex mesh
monster, the rendering performance dropped by
about 19.4%. Since the mesh clipping process
proceeds through triangles and vertices, rendering
performance degrades as the number of triangles
and vertices increases. However, since the rendering
speed is very high, the effect on mobile 3D game
progress is negligible.

Table 3. Average Rendering Speed with and without

Mesh Clipping.

Cube Monster

Without Mesh Clipping 122.51FPS 120.81FPS

With Mesh Clipping 118.27FPS 97.27FPS

(a) Convex Polygon

 (b) Concave Polygon

Figure 16. Convex and Concave Polygons.

6. CONCLUSION

In this paper, we study mesh clipping by
applying plane equations and experiment on 3D
game. Experimental results show that the user can
create a plane using the line and then cut the mesh
into the plane. The result shows that the
performance degradation is more complicated for
mesh with many vertices and triangles.

The study and experiment in this paper is
about the convex polyhedron described in Figure 16
(a). The concave polygon described in Figure 16 (b)
is a polygon with at least one internal shape of the
figure, and the concave polygon with a face is a
concave polygon. In the case of concave polyhedra,
there are many other variables to consider.

Journal of Theoretical and Applied Information Technology
15th July 2021. Vol.99. No 13
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3263

For example, in the case of a concave
polyhedron, there is no guarantee that one cross
section will occur in the process of creating a cross
section. Future research will be to increase
efficiency in processing complex meshes and to
study more accurate mesh clipping to handle
concave meshes and apply them to game.

ACKNOWLEDGEMENT
This work was supported by Institute for
Information & communications Technology
Promotion(IITP) grant funded by the Korea
government(MSIP) (No. 2016-0-00204,
Development of mobile GPU hardware for photo-
realistic real time virtual reality).

REFERENCES:
[1] Robert Gruen, et al., "Measuring system visual

latency through cognitive latency on video see-
through AR devices", 2020 IEEE Conference on
Virtual Reality and 3D User Interfaces (VR),
IEEE, 2020.

[2] Ysabelle Coutu, et al., "Immersiveness and
Usability in VR: AComparative Study of
Monstrum and Fruit Ninja", Game User
Experience and Player-Centered Design,
Springer, Cham, 2020, pp. 437-448.

[3] Ancret Szpak, Stefan Carlo Michalski, and
Tobias Loetscher, "Exergaming With Beat
Saber: An Investigation of Virtual Reality
Aftereffects", Journal of Medical Internet
Research, 22.10:e19840, 2020.

[4] Sung-Ho Kim, "Development of Simulator for
Rockfall and Landslide using Physical Engine",
The Journal of the Korea Contents Association,
Vol. 9, No. 9, pp. 60-67, 2009.

[5] B. Kapralos, C. Johnston, K. Finney, and A.
Dubrowski, “A Serious Game for Training
Health Care Providers in Interprofessional Care
of Critically-Ill and Chronic Care Patients”,
Journal of Emerging Technologies in Web
Intelligence, Vol. 3, No. 4, pp. 273-281, 2011.

[6] Wikipedia, "Plane (geometry)",
https://en.wikipedia.org/wiki/Plane_(geometry).

[7] David Eberly, "Clipping a Mesh Against a
Plane", Geometric Tools, 2008.

[8] Paul Bourke, "Intersection of a plane and a line",
University of Western Australia,
http://paulbourke.net/geometry/pointlineplane/,
August, 1991.

[9] Aaron Scherzinger, Tobias Brix and Klaus H.
Hinriches, "An Efficient Geometric Algorithm
for Clipping and Capping Solid Triangle
Meshes", In Proceedings of the 12th
International Joint Conference on Computer
Vision, Imaging and Computer Graphics Theory
and Applications, pp. 187-194, 2017.

[10] Wikipedia, "Linear interpolation",
https://en.wikipedia.org/wiki/Linear_interpolati
on.

[11] James F. Blinn and Martin E. Newell.
"Clipping using homogeneous coordinates."
ACM SIGGRAPH Computer Graphics, Vol. 12,
No. 3, ACM, pp.245-251, 1978.

[12] Ivan E. Sutherland and Gary W. Hodgman,
"Reentrant polygon clipping." Communications
of the ACM, Vol.17, No.1, pp.32-42, 1974.

[13] David Robert Baldwin, "Triangle clipping for
3D graphics", U.S. Patent No. 7,215,344, May
8, 2007.

[14] Unity3D Game Engine, http://unity3d.com/
[15] Turbo Slicer Guide,

http://www.noblemuffins.com/files/turboSlicer
Guide.pdf

[16] Xuhui Fan, Bin Li, and Scott Sisson, "The
binary space partitioning-tree process."
International Conference on Artificial
Intelligence and Statistics. PMLR, 2018.

[17] Binary Space Partitioning Tree,
https://en.wikipedia.org/wiki/Binary_space_part
itioning

[18] Viet, H.Q.H., T. Kamada, and H.T. Tanaka,
“An Algorithm for Cutting 3D Surface Meshes”,
Proceedings of the 18th International
Conference on Pattern Recognition (ICPR'06),
Vol. 4, pp. 762-765, 2006.

[19] Wan-Bok Lee, Wen-Yuan Hao, Byung-Pyo
Kyung, and Seuc-Ho Ryu, "Dismantling
Simulation of Nuclear Reactor Using Partial
Mesh Cutting Method for 3D Model", Journal
of Digital Convergence, Vol. 13, No. 4, pp. 303-
310, 2015.

