
Journal of Theoretical and Applied Information Technology
30th June 2021. Vol.99. No 12
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2972

A COMPREHENSIVE APPROACH FOR CONVERTING
RELATIONAL TO GRAPH DATABASE USING SPARK

1WAEL MOHAMED, 2 MANAL A.ABDEL-FATTAH, 3SAYED ABDELGABER
1,2,3Information Systems dept, Faculty of Computers and Artificial Intelligence, Helwan University, Cairo,

Egypt

E-mail: 1 waelmohamed@fci.helwan.edu.eg, 2 manal_8@hotmail.com , 3 sgaber14@gmail.com

ABSTRACT

Nowadays, data processing requirements is growing exponentially, and relational database is not always the
best solution for all situations in big data such as increasing growth of data. Thus, NoSQL databases
emerged to overcome the limitations of relational database and work with big data. NoSQL databases have
four types of models, namely, key-value model, document database, column database, and graph database.
Many approaches have been proposed to convert relational database to NoSQL models. However, most of
them map relational database to key-value or column or document. Converting relational to graph database
is slightly disregarded by the researchers.

This paper proposes a comprehensive approach, based on Spark framework, for transformation and
migration of relational database to graph database without semantic loss. The approach also supports
conversions from Sql commands to cypher commands .It is categorized into two parts. The first part is
concerned with “transformation and migration using Spark”, which encompasses three phases: Meta data
analyzer, transformation algorithm, and migration algorithm. The second part focuses on “SQL to cypher”,
which divides into two phases: SQL parser and Translator. The suggested approach has been applied,
results and validation for the proposed approach

Keywords: Big Data , NOSQL , Graph Database , Spark , Neo4j

1. INTRODUCTION

with the increasing size of datasets, big
data processing has attracted more research
attention[1]. Managing big data is a key issue when
availability and scalability are required. While
traditional database management systems can store
large-scale data, they have significant limitations in
scalability and availability.

To overcome the limitations of RDB, a new
category of database, called NoSQL (Not only
Structured Query Language), has been proposed.
NoSQL databases are new category of databases
that differ from the RDB (Relational database). It
supports horizontal scaling, storing complex data,
high availability, no fixed schema, fault tolerance,
frequent updates to data, and fast development. In
addition, it does not depend on Join operations. It is
suitable for cloud computing and big data.
Therefore, enterprises want to move to NoSQL.
There are four categories of NoSQL databases,
which are key-value model, document databases,
column databases, and graph databases[2]. There is
no standard query language for NoSQL databases

because each model has different data model and
different data access methods. On the other hand,
there exist an enormous number of users familiar
with SQL. As consequence, migration to NoSQL
has a very sloped learning curve. Therefore, the
motivation is to use SQL language and big data
capabilities of NoSQL stores.

 Several approaches have been proposed to
convert RDB to target NoSQL database. The
approaches create a bridge between SQL and
NoSQL that allow users to write SQL on NoSQL
database. The main objectives: (i) integrate the
world of SQL and big data capabilities of NoSQL
(ii) minimize migration cost from RDB to NoSQL.
The approaches of mapping and migrating from
RDB to NoSQL models are organized into three
categories (i) layer that work as middleware
between RDB and NoSQL (ii) Storage engine that
adjust storage manager in RDB to store relational
data in NoSQL database (iii) Migration approaches
from relational to graph.

Most of these approaches have common
methodology which concluded in these steps: (i)

Journal of Theoretical and Applied Information Technology
30th June 2021. Vol.99. No 12
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2973

transforms from relational to target NoSQL model
(ii) migrate data from relational to NoSQL (iii)
provide query mapping from SQL to the language
of target NoSQL database. The flaw of first
category of approaches, to the best of our
knowledge, is that no layer for transformation of
RDB to graph database[3]. The existing layer
approaches transform only RDB to key-value or
column or document models. The weakness of
second category is the restriction to specific
NoSQL model and did not include graph database.
The main flaws of the third category are the
experiments didn't conduct in distributed
environments [4] and there is no research paper that
presents query mapping from SQL to cypher[5].

In this paper, we present an approach, based on

spark as a distributed processing engine[6], to
transforms and speed up the migration of data from
RDB to graph database. The approach also supports
translation from SQL to cypher commands. The
approach consists of two parts. The first part
transforms and migrate data from relational to
graph database while the second part translates
SQL to cypher commands.
The contributions of this work are listed as follows:
 Proposing an efficient transformation algorithm

to transform RDB to graph database.
 Presenting an efficient migration algorithm for

migrate data from RDB to graph database using
big data processing engine (Apache spark).

 The proposed layer converts RDB to graph
database without a semantic loss that is very
important for further analysis such as graph
mining.

 Proposing query mapping from SQL to cypher
query language.

 The proposed layer conducts experiments in
distributed environment.

The reminder of this paper is organized as
follows. Section 2 provides overview for related
work. Section 3 describes the architecture,
Transformation algorithm, migration algorithm and
query mapping from SQL to cypher language.
Experiments and results are outlined in Section
4.The conclusion of this research is offered together
with suggestions for future research directions in
the final section

2. BACKGROUD AND RELATED WORK

2.1 Definition And Background

 This section presents basic definition of
relational and graph database. Relational schema is

denoted as Rj = {Ai,Ai,….,AM} where Rj is j-th
relation , Ai is the set of attributes in the i-th
relation and M is number of attributes. In the
relational database schema R where R = {R1,R2
,..RN} where N is number of relations. [7].

Graph database be denoted as G(N,E) such that N =
{N1,N2,…,NN} is set of nodes and E={e1,e2,e3 ,…
en} is the set of edges that connect nodes e = (ni,nj)
Each node and edge has its own properties[8].

2.2 Related works

The approaches can be placed into three categories:
layers approaches, storage engines and migration
approaches from relational to graph.

 Layers approaches work as middleware
between relational model and NoSQL models.
Layers allow the transformation, migration and
query mapping from RDB to NoSQL model. The
motivation of layer approaches is to retain the
benefits of SQL in the context of NoSQL. Layers
can be classified according to (i) NoSQL models
(ii) automatic mapping (iii) support join (iv) SQL
support. Layer may support: i) an automatic
transformation from relational model to NoSQL
model or allow users to customize the
transformation process (ii) the translation of SQL
join operation to the language of NoSQL model
(iii) the translation of all or subset of DML and
DDL statements. The functional constrains of
NoSQL models make mapping only of subset SQL.
Most of the proposed layers support the
transformation and migration key-value , column
,or document models such as [9][10][11][12]. The
limitation of preceding layer approaches is no layer
supports the transformation, migration and query
mapping (all DML and DDL) to graph database [3].

Storage engines edit the kernel of RDB

management system (RDBMS) to persist relational
data in NoSQL model. Three approaches are
proposed for storage engines Phoenix [13],
CloudyStore[14] and DQE[15]. Phoenix stores
only key-value model in MySQL. CloudyStore
stores column model in MySQL while DQE stores
column model in Derby. The preceding storage
engines approaches restrict application to work
with particular RDBMS but they provide
optimization access and achieve the requirement for
managing large-scale data.

Some scholars presented approaches for

converting RDB to graph database [8][16-20].
in[16], the authors have proposed an approach to
convert RDB to graph database. However, the

Journal of Theoretical and Applied Information Technology
30th June 2021. Vol.99. No 12
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2974

approach aggregates the unifiable tuple in the same
node that allow node to store large data. The
approach violates the semantic of schema that
makes the approach is not suitable for further
analysis such as graph mining. It is very difficult to
determine which type of semantic of this node
belongs. If the RDB contains redundant attributes,
the data may be losing during migration step. It did
not cover the mapping of unary relationship. It uses
large volume of database in the experiments but the
tests did not conduct in distributed environments.
in[8], an approach for converting from RDB to
graph database which includes migration order has
been suggested. It determines which table to be
migrates as node and which tables that will be
migrated as edges. The authors also compare the
proposed approach with [16]. The results display
reduction of the number of generated nodes. It uses
large database in experiments but did not conduct it
in distributed environment. The main objective of
this approach is to convert relational data to graph
database as data preparation for graph analysis.
Therefore, the approach did not include query
mapping from SQL to any graph query language.
in[17], an improved approach offered for the
approach in [16]. The proposed approach called
FD2G. FD2G support unary relationship and
associative entities. The main disadvantage of
FD2G is that it needs to convert the RDB to the
third normal form before the migration. FD2G did
not use distrusted environment.
in[18], an approach that keeps the semantic from
real world in migration of data from relational to
graph database has been offered. The approach is
the crux for further analysis. It suggests the
direction of edge where the starting node is from
the many side and the end node is in one side. The
starting node contains foreign key as property in
node and create edge between two nodes. It stores
foreign key in the many so it is considered to be
redundant because there is no need to store foreign
key as property because the edge already represent
the two tuples. The approach conduct experiments
on small data. it did not include query mapping
from SQL to Cypher.
in[19], transformation rules for mapping one to one
, one to many and many to many to graph database
have been suggested. The approach did not include
automatic transformation and migration and use
small data in experiments. It also did not include
query mapping from SQL to graph database. The
proposed also did not conduct experiments in
distributed environment.
in[20] , an approach for migrating data from RDB
to neo4j has been offered. It proposes rules for

mapping one to one, one to many and many to
many relationships. It also explains only the
methodology for converting Sql to cypher. It did
not conduct experiments in distributed environment
and use small database. It did not include recursive
relationship in mapping.

The related research works for converting RDB
to graph databases have the following
shortcomings.

 The lack of research on conducting
experiments in distributed environment to
reduce time for migration according to
systematic literature review[4].

 The absence of research on automatic
mapping from SQL to cypher language as
stated by this survey[5].

Therefore, an approach that uses Spark as
distributed processing engine in converting RDB to
graph database is essentially needed.

3 THE PROPOSED APPROACH FOR

MIGRATION RDB TO GRAPH
DATABASE

The proposed approach uses the benefits of
relational in the context of graph database. It
consists of two parts (i) Transformation and
migration of data using Apache Spark engine and
(ii) SQL to cypher. The first part follows the same
strategy that transform from relational to NoSQL
model then migrating data from RDB to NoSQL
model. The first phase in the first part is to perform
metadata analysis for RDB. The second phase is the
transformation algorithm. The third phase is the
migration algorithm. The second part of the
proposed approach layer consists of SQL parser and
the translator from SQL to cypher equivalent query.
The architecture has three types of dictionary.
Dictionary1 stores metadata of tables such as table
name, primary keys, and foreign keys. Dictionary 2
contains the output from Transformation algorithm
that describes how each table is migrated to graph
database. Dictionary 3 maintains start node, end
node and edge name for all edges that have been
emitted from migration phase .SQL to cypher part
uses dictionary 1, 2 and 3 in query mapping.
Figure1 outlines the architecture of the proposed
approach.
3.1 Part I: Transformation and Migration

3.1.1 schema metadata analyzer
In order to get efficient ETL (Extract, transform,
load) from the RDB to the graph database each
table data and properties should be accessed as
minimum as possible. Thus metadata should be
inspected before transformation and migration step.

Journal of Theoretical and Applied Information Technology
30th June 2021. Vol.99. No 12
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2975

The relationships between tables, recursive
relationship, primary key, foreign and other
attributes that are not part of primary key or foreign
key should be identified. The aforementioned tasks
depend on complexity of RDB not data volume of
RDB itself. SchemaCrawler[21] is used to achieve
those tasks. Therefore, the input to schema
metadata analyzer is RDB and the output is
relationships between all tables, primary key,
foreign key and other attributes of table. The output
from this step persisted in dictionary 1 as illustrated
in figure. 1.
3.1.2 transformation algorithm

This section presents a proposed algorithm to
transform from RDB to graph model without
semantically lose. The input is the schema
metadata analyzer output (dictionary 1 in figure 1)
while the output is nodes and edges types. The
property graph consists of nodes and edges .The
data in the RDB convert as nodes and edges in
graph database. The proposed transformation
algorithm proposes three types of nodes: (i) first
nodes (ii) second nodes (iii) intermediate nodes.
Also, it proposes join table edges type which
contains join table that represents many to many
relationships between two tables. It offers
Recursive relationship edges type which contains
tables that have recursive relationships.

By using dictionary 1, each table has properties
such as primary key attributes, imported foreign
keys, exported foreign keys and other fields. For
each table in all tables in RDB, we check the
following constrains:-
i. If number of imported foreign keys =2 ,

references two others tables and primary key is
not referenced by any others tables is the
representation of M: N relationship between
entities (join table), table will be converted as
join table edges type. So, all tuples of join table
will be migrated as edges.

ii. If number of imported foreign keys of table >=
3, table will be converted as intermediate node
type.

iii. If number of imported foreign keys =0 that
implies the table does not references any other
tables, table will be converted to first node type.

iv. If table has imported foreign keys or exported
foreign keys, the table will be converted as
second node type.

v. If table has recursive relationship, the recursive
relationship will be converted to recursive
relationship edges type. All tuples in table that

have recursive relationship will be migrated as
edges between nodes of the same label.

The output from the transformation algorithm is
stored in dictionary 2 as in figure1.
If the relationship between two entities is one to
many, then the starting node in graph model will be
from many side and the end node in one side. Each
node type with the list of table's names that belongs
to this type is saved in dictionary 2. The
pseudocode for transformation is depicted in
Algorithm1.

Algorithm 1: transform RDB to graph database
Input: RDB and the output from schema analyzer
Output: list of tables to migrate as first nodes or
second nodes or intermediate nodes or recursive
edges or join table edges.
AllTables []  list of all tables in database
JoinTablesEdges []

FirstNodes [] 

SecondNodes [] 

IntermediateNodes [] 

RecursiveEdges [] 

For each table t allTables {
 If (t.getImportedKeys = = 2 and
t.getExportedKeys = =) {
 JoinTablesEdges [] t
 }
 Else if (t.getImportedKeys >=3) {
 IntermediateNodes [] t
 }
 Else if (t.getImportedKeys) {
 FirstNodes [] t
 }
 Else if (t.getImportedKeys) or

t.getExportedKeys)) {
 SecondNodes [] t
 }
 RelatedTables [] t.getRelatedTables
(TableRelationship.parent)
 For each Table rt RelatedTables{
 If (rt.getName () == t.getName ()) {
 RecursiveEdges [] t
 }}
 End for each
 }
End for each

Journal of Theoretical and Applied Information Technology
30th June 2021. Vol.99. No 12
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2976

Figure 1.: The proposed approach to migrate RDB to

graph database (Synthesis by the authors)

3.1.3 migration algorithm
This section introduces the proposed algorithm to
migrate data from RDB to graph database has been
proposed. Apache spark is used in the migration
step to reduce time for migrating large-scale data
because apache spark work in distributed
environment. The input to migration algorithm is
the output of transformation algorithm (dictionary 2
in figure1). Firstly, spark cluster reads dictionary 2
and creates hash map with five keys as follows:
first nodes, second node, intermediate nodes, join
tables and recursive. Each key contains the list of
all tables belongs to this key. After that spark add
this hash map as a broadcast variable to be
available to all spark nodes. The main task in
migration algorithm is the migration order. The
migration order will go through the following steps:

 First nodes type refers to the tables which
do not reference any other tables.

 Second nodes type.
 Intermediate nodes type
 JoinTablesEdges list that contains join

tables.
 Recursive Edges list that have tables

recursive relationships.
Migrating one to many, one to one and many to
many relationships are migrated as edges where
each edge has start node, end node and edge name.
All metadata about edges is persisted in dictionary
3 as shown in figure 1.The pseudocode for the

migration steps is shown in Algorithm 2. An
example for RDB is illustrated in figure. 2.

Migrating one to many, one to one and many to
many relationships are migrated as edges where
each edge has start node, end node and edge name.
All metadata about edges is persisted in dictionary
3 as shown in figure 1.The pseudocode for the
migration steps is shown in Algorithm 2. An
example for RDB is illustrated in figure 2.
Algorithm 2: Migrating RDB to graph model
Input: RDB r and JoinTablesEdges [], First nodes
[], Second nodes [], Intermediate nodes [] and
RecursiveEdges [].
Output: Graph Database g
Migrated 

For each Table t First nodes[]
 MigrateFirstNodes (First nodes [],r, g)
End for each
Migrated  First nodes []
For each Table t second nodes
 MigrateSecondNodes (Second nodes [], r, g)
End for each
MigratedSecond nodes []
For each Table t Intermediate nodes
 MigrateIntermediateNodes (Intermediate nodes
[], r, g)
End for each
MigratedIntermediateNodes []
For each Table t JoinTablesEdges
 MigrateJoinTablesEdges (JoinTablesEdges [],r
,g),
End for each
For each Table t Self nodes

Journal of Theoretical and Applied Information Technology
30th June 2021. Vol.99. No 12
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2977

 MigrateRecursiveRelationship (RecursiveEdges
[] , r, g)
End for each

Figure 2: relational database example

3.1.3.1 migrating first nodes
Spark extracts data that belongs to the first nodes
type from hash map in the broadcast variable.
Therefore, all tables of first nodes type became
available to all nodes in spark cluster. Each table in
first nodes is migrated by creating nodes where
label is table name and each tuple field with value
as properties in node. Each node in cluster read
first nodes from broadcast variable .Spark job takes
table's names and create node for each tuple in each
table as depicted in algorithm 2.1. In RDB
described in figure 2, tables that will be migrated as
first nodes are office, product lines and shipper.
The input to this step is first nodes, RDB name and
graph database name. The connector receives all
tuples in each table of the first node type as spark
dataset and create node for each tuple of this
dataset. After the end of this step, office and
productline tables are stored in migrated list.

Algorithm 2.1: Migrating first nodes to graph
database: MigrateFirstNodes (First nodes [],r, g)
Input: RDB r, graph database g, First nodes []
Output: tables in first nodes list have been
migrated to graph database g
For each Table t First nodes []
 For each tuple {tuple1} in t
 Node createNode ()
 Node.label  t.getName ()
 Node.properties 
tuple1.getCoulmnsNamesAndValues ()
 End for each
End for each

3.1.3.2 Migrating second nodes

Spark cluster fetches all tables of second nodes
type from the map which exists in the broadcast
variable. Second nodes list contains tables that will
be migrated as second nodes in this step. The input
to this step is second nodes, RDB name and graph
database name. The migrated list contains office,
shipper and productline, while second nodes list
contains Product, Employee, Customer and
Payment. Tables in second nodes list are reference
tables (Child tables) for tables that already
migrated in the migrated list (parent table) will be

Journal of Theoretical and Applied Information Technology
30th June 2021. Vol.99. No 12
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2978

converts first. Migrating second nodes has two
parts:
(i) Migrating second nodes that reference first
nodes
(ii) Migrating remaining tables in second nodes list

Child tables of the migrated list that contain
(office and productline) are Product and Employee
tables. The intersection between second nodes list
and child tables is Product and Employee. Product
table is the child table of productline while
Employee is the child table of Office. For each
table in the result of the intersection, the following
are taken:

i. Each tuple is migrated as node where table
name become the node label and properties
same as columns of tuple.

ii. Get the parents of table from migrated list and
create edges between table and parents.

iii. Add table to migrated list.
The nodes will be created first then the edges.

In figure. 3, all tuples of Employee are migrated as
nodes where node label is Employee and all fields
such as LastName are added as properties to node.
For example ProductLine is foreign key for table
productline table and officeCode is foreign key for
table office. So, edges will be created between
product and productline nodes and between
Employee and Office nodes. In graph database,
two nodes representing the tuples of two tables are
connected if and only if the two tuples are joinable
.spark Sql join job is used to create edges by
joining two tables such as Office and Employee.
The result of join process for Office and Employee
is the joinable tuples and create edges between
Office and Employee nodes where start node from
Employee and end node is Office node. For
example in figure. 3, an edge is created between
employee node with id =1 and office node with
code =200 another edge between employee node
with id =2 and office node with code =200 and
another edge between employee node with id =3
and office node with code =201.

The representation of 1:1 and 1:N and N:1 is

very similar in migration to graph database. For
example, creating edge between employee and
office node is depicted in figure 4. Each tuple in
office table is mapped to zero or more joinable
tuples in employee table. The direction of the edge
is from child to parent such as from Employee to
office. Employee and Product are added to
migrated list. The start node, edge name and end
node is stored in dictionary. Apache spark join job
is used to get joinable tuples and create edges that
represent two tuples.

Figure 3: Creating edges using spark join

Figure .4: Migrating first part in second nodes type

To migrate the remaining second nodes, we

take the difference between the second nodes and
migrated list. Migrated list has office, productline,
Employee and product while second nodes list has
Product, Employee, Customer and Payment. The
difference between two lists is Customer and
Payment. For each table in the result of the
difference, the following are taken:

1. Each tuple is migrated as node where table
name become node label and each tuple field
with value as properties in the node.

2. Table is added to migrated list.
3. We check if there is child-to-parent

relationship between table and its parents in
migrated list. if there a relationship , two
nodes that represents two tuples of two tables
will be connected by edge when the two tuples
are joinable.

For example, customer table contains foreign key
salesRepEmployeeNumber that referencing
Employee table so the start node for the edge that
represent joinable tuples is the customer node and
end node is employee node.

Journal of Theoretical and Applied Information Technology
30th June 2021. Vol.99. No 12
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2979

Payment table also contains foreign key (customer
ID) to Customer table. The direction of the edge is
also from child to parent. Start node from payment
node and end node is customer node. The graph
model after migrating Payment and customer is
showed in figure. 5. The start node, edge name and
end node is stored in dictionary 3.

Figure.5: Migration of customer and payment (second
part in second nodes type)

Algorithm 2.2: Migrating second nodes to graph
database:
MigrateSecondNodes (Second nodes [], r, g)
Input: RDB r, graph database g, Second nodes []
Output: tables in second nodes list have been
migrated to graph database g
childNodes 1[] getChildTables (migrated list [])
secondNodes1 [] childNodes 1 [] second
nodes []
For each Table t secondNodes1 []
 For each tuple {tuple1} in t
 Node createNode ()
 Node.label  t.getName ()
 Node.properties 
tuple1.getCoulmnsNamesAndValues()

 End for each
 Parents []getParentTables(t)
 For each Table p Parents []
 If (p.pk == t.fk)
 FirstNode getNode (p1)
 SecondNode getNode (t)
 AddEdge (FirstNode, SecondNode)
 End if
 End for each
 Migrated []t
End for each

secondNodes2 []second nodes []-migrated list []
For each Table t secondNodes2 []

 For each tuple {tuple1} in t
 Node createNode ()
 Node.label  t.getName ()
 Node.properties 
tuple1.getCoulmnsNamesAndValues ()

 End for each
Migrated []t
 End for each
For each Table t1 secondNodes2 []
 Parents []getParentTables(t1)
 For each Table p1 Parents []
 If (p1.pk == t1.fk)
 FirstNode getNode (p1)
 SecondNode getNode (t1)
 AddEdge (FirstNode, SecondNode)
 End if
 End for each
End for each

3.1.3.3 migrating intermediate nodes

Spark cluster reads all tables that will be
migrated as Intermediate nodes from hash map.
Consequently, all tables in intermediate nodes are
available to all nodes of spark cluster. The input to
this step is Intermediate nodes, RDB name and
graph database name. Intermediate nodes list
contain tables that will be migrated as intermediate
nodes. For each table in the intermediate nodes list,
we do the following:

i. Each tuple is migrated as node where table
name become node label and properties of the
node are the same as fields of the tuple.

ii. Table is added to migrated list.
iii. We get parents of the table first and for each

parent, we create edges between two nodes
that represent two joinable tuples from this
table and this parent.

The migration of intermediate nodes also conducted
using apache spark Sql job. We also use spark Sql
join between table and each parent is used to get
joinable tuples .In this example, intermediate nodes
list contains order table. The parent's tables of order
are shipper, Customer, and Store. Creating edges
between nodes is achieved using Apache spark
SQL as in migrating second nodes. The start node
for the edge is from intermediate node (child node)
to parent nodes. An edge is created between order
and shipper where starting node for edge is from
order node to shipper node. Another edge is created
between order and Customer where starting node
for edge is from order node to Customer node and
last edge from order node to Store node. The start
node, edge name and end node also stored in
dictionary 3 .Figure. 6 shows the migration of order

Journal of Theoretical and Applied Information Technology
30th June 2021. Vol.99. No 12
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2980

table as intermediate node. Algorithm 2.3 displays
migration steps for intermediate nodes list.

Figure 6. :The migration of order table as intermediate
node

Algorithm 2.3: Migrating intermediate nodes to
graph database:
Algorithm 2.3: Migrating intermediate nodes to
graph database: MigrateIntermediateNodes
(intermediate nodes [], r, g)
Input: RDB r, graph database g, Intermediate
nodes []
Output: Intermediate nodes list [] have been
migrated to graph database g
For each Table t Intermediate nodes []
 For each tuple {tuple1} in t
 Node createNode ()
 Node.label  t.getName ()
 Node.properties 
tuple1.getCoulmnsNamesAndValues ()

 End for each
 Migrated []t
End for each
For each Table t1 Intermediate Nodes []
 Parents []getParentTables(t1)
 For each Table p2 Parents []
 If (p2.pk == t1.fk)
 FirstNode getNode (p1)
 SecondNode getNode (t1)
 AddEdge (FirstNode, SecondNode)
 End if
 End for each
End for each

3.1.3.4 migrating join tables

In this step, join table list are extracted form hash
map in the broadcast variable. No nodes are created

in this step because all nodes were created in
previous steps. The input to this step is Join table
list, RDB name and graph database name.
JoinTablesEdges list contain join tables that will be
migrated as edges between two nodes. For each
table in the Edges list, the following actions are
done :
i. Two imported foreign keys are extracted from

table where each foreign key references one
table in two tables that are connected via join
table.

ii. Get two nodes that represent two tables that
connected by join table.

iii. Get attributes on the relationship by take
difference between all column in table and two
imported foreign key columns.

iv. An edge is created between nodes for each tuple
in table.

The migration of join tables is conducted using
Apache spark job. JoinTablesEdges list contains of
Order_Product table. The Order_Product is join
table (M: N relation) between order table and
product. OrderID is foreign key in Order_Product
for order table while ProductCode is foreign key in
Order_Product for product table. The attributes qty
and priceEach are relation attributes .Each tuple in
Order_Product is migrated as edge between order
node and product node. The attributes qty and
priceEach are migrated as properties on the edge.
Migration of Order_Product is depicted in figure 7.
All the steps in migrating join tables are depicted in
algorithm 2.4. All tasks in this step are conducted
using spark Sql join job. The start node, edge name
and end node for each join table stored in dictionary
3 in figure. 1.

Figure.7: Migration of Order_Product table

Algorithm 2.4: Migrating join tables to graph
database: MigrateJoinTablesEdges
(JoinTablesEdges [], r, g)
Input: RDB r, graph database g, Join Tables

Journal of Theoretical and Applied Information Technology
30th June 2021. Vol.99. No 12
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2981

Output: join tables in JoinTablesEdges [] have
been migrated as edges to graph database g
For each Table t JoinTablesEdges []
 FKS t.getImportedFkslist ()
 Fk 1 FKS[0]
 Fk 2 FKS[1]

 Table1 t.getReferencedTable (Fk 1)
 Table2 t. getReferencedTable (Fk 2)
 Node 1getNode (Table1)
 Node 2getNode (Table2)
 AllColmuns []  t.getAllCoulmns ()
 AttrributesOnRelationship []  allColmuns [] -
FKS []
 For each tuple tuple1 t
 AddEdge (Node 1, Node 2,
t.getAttributeOnRelationship ())
 End for each
End for each

3.1.3.5 migrating recursive relationship

All tables that have recursive relationships are
extracted from hash map. RecursiveEdges list
contains tables that have Recursive relationship.
The input to this step is RDB name, tables that have
Recursive relationships and graph database name.
The nodes that represent those tables have been
already migrated in previous steps. The objective of
this step is to create edges between nodes that
represent the tables which have recursive
relationship. Apache Spark Sql inner join operation
is used to create edges between nodes.
RecursiveEdges list in our example contains
employee table. Employee table has ID as primary
key and reportsTo as foreign key for employee
table. The inner join operation is between employee
table and itself and the join condition is
employee.reportsTo column equal employee. ID
column. For each table in RecursiveEdges list, we
do the following:

1. Primary key and foreign key of table are
extracted and inner join operation between
table and itself is created. The output is spark
dataset contains foreign key and primary key
as columns.

2. An edge is created for each tuple in the result
of spark dataset where the name of the edge is
the name of foreign key.

3. The starting node of the edge that represents
tuple is from employee node which has
foreign key as attribute to the employee node
which has primary key equals foreign key of
starting node.

The migration of recursive relationship of
employee table is depicted in figure. 8. The

metadata for recursive edges such as edge name,
start node and end node is stored on dictionary 3 in
figure. 1.

Figure .8: migrating of recursive relationship for

employee table.
Algorithm 2.5: Migrating Recursive relationship
to graph database: MigrateRecursiveRelationship
(RecursiveEdges [], r, g)
Input: RDB r, graph database g, tables that have
recursive relationships []
Output: Edges between table that have recursive
relationship have been migrated to graph database
g
For each Table t RecursiveEdges []
 For each tuple {tuple1} in t
 Pk Tuple1.getPk()
 Fk Tuple1.getFk()
 Node1 getNode(pk)
 Node2 getNode(fk)
 addEdge (Node1,Node 2)

 End for each
 End for each

Figure 9: graph model for RDB of figure 2

Journal of Theoretical and Applied Information Technology
30th June 2021. Vol.99. No 12
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2982

Figure 9 represents the graph database after
transformation and migration of all tables in RDB
in the mentioned example in figure 2

3.2 Part II :SQL to Cypher

This part of the approach consists of Sql parser
and translator from SQL to cypher language.
Jsqlparser [22] used to parse SQL query. It uses the
data of dictionary1, dictionary 2 and dictionary 3
.All tables foreign key, primary and remaining
attributes key are in dictionary1. All tables that
have been migrated as first nodes, second nodes,
intermediate nodes, JoinTablesEdges and
RecursiveEdges are in dictionary 2. All metadata
about edges are in dictionary 3. The SQL to cypher
module receives insert, update, or delete or select
query and convert it to cypher with the help of three
dictionaries. It supports subset of Data modeling
language (DML) operation.
3.2.1 Insert
This section explains the translation of SQL
INSERT statements to CREATE Nodes in cypher
language. Jsqlparser is used to extract table name
and columns from INSERT statement. The
translation of insert statements is very similar to
migration algorithm. There exist two formats of
INSERT statements as follows:

i. INSERT INTO table_name (column1, colu
mn2, column3, ...) VALUES
(value1, value2, value3, ...).

ii. INSERT INTO table_name
VALUES (value1, value2, value3 ,...).

In the first format the columns name is written after
table name but in the second format the columns are
not provided. in this case by using all columns are
detected from dictionary 1. Find out which type of
node this table belongs to by reading the dictionary
2. The layer automatically generate Cypher query
that is equivalent to insert SQL statement.

 If the table in the Insert statement belongs to first
nodes, the insert statement is mapped to node where
node label is the name of table and properties of the
node are the same as columns of the insert
statement. For example the Sql insert statement "
INSERT INTO ProductLine values (1000, ' text
data',' html data','image1') "is translated to cypher"
CREATE (n: productline {ID:1000, Descintext: text
data' ,DescinHTML: 'html data',image:image1}) ".

If table belongs to second nodes, the insert
statement is mapped to node and creates edge
between this node and the nodes that represent
parents of this table. The edge start from the node
that represents the table in insert statement , ending

at the node that represent parent table , and the edge
name is the name of parent table concatenated with
table name in the insert statement. For example the
insert statement" insert into product values (1,
1000,'pc', 2,200,340,'hp','any','b') " is translated to
"CREATE(n:product{code:1,productlineid:1000,na
me:'pc',scale:2,qtyInStock:200,buyPrice:340,vendor
:'hp',MSRB:'any',pdtdescription:'b'})
MATCH (a:productline),(b:product) WHERE a.ID
= b.productlineid AND b.code = 1 AND
b.productlineid = 1000 AND b.name = 'pc' AND
b.scale = 2 AND b.qtyInStock = 200 AND
b.buyPrice = 340 AND b.vendor = 'hp' AND
b.MSRB = 'any' AND b.pdtdescription = 'b'
CREATE (a)-[r:productlineproduct]->(b)
RETURN type(r) ".

 If table belongs to Intermediate nodes, the
insert statement is mapped to node and creates edge
between this node and the nodes that represent
parents of this table. The edge start from the node
that represents the table in insert statement, ending
node is the node that represent parent table , and the
edge name is the table name in the insert statement
concatenated with name of parent table. For
example the insert statement " INSERT INTO order
VALUES (10,1,'20-10-2018','21-10-2018','22-10-
2018',1,'deliverig date',1,1) " is translated to cypher
:
" CREATE
(n:order{ID:10,customerid:1,OrderDate:'20-10-
2018',RequredDate:'21-10-2018',ShippedDate:'22-
10-2018',Status:1,comments:'deliverig
date',shipid:1,StoreID:1})
MATCH (a:customer),(b:order) WHERE a.ID=
b.customerid AND b.ID = 10 AND b.customerid =
1 AND b.OrderDate = '20-10-2018' AND
b.RequredDate = '21-10-2018' AND b.ShippedDate
= '22-10-2018' AND b.Status = 1 AND b.comments
= 'deliverig date' AND b.shipid = 1 AND b.StoreID
= 1 CREATE (b)-[r:ordercustomer]->(a) RETURN
type(r)
MATCH (a:shipper),(b:order) WHERE a.shipid =
b.shipid AND b.ID = 10 AND b.customerid = 1
AND b.OrderDate = '20-10-2018' AND
b.RequredDate = '21-10-2018' AND b.ShippedDate
= '22-10-2018' AND b.Status = 1 AND b.comments
= 'deliverig date' AND b.shipid = 1 AND b.StoreID
= 1 CREATE (b)-[r:orderhipper]->(a) RETURN
type(r)
MATCH (a:store),(b:order) WHERE a.StoreID =
b.StoreID AND b.ID = 10 AND b.customerid = 1
AND b.OrderDate = '20-10-2018' AND
b.RequredDate = '21-10-2018' AND b.ShippedDate
= '22-10-2018' AND b.Status = 1 AND b.comments

Journal of Theoretical and Applied Information Technology
30th June 2021. Vol.99. No 12
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2983

= 'deliverig date' AND b.shipid = 1 AND b.StoreID
= 1 CREATE (b)-[r:ordertore]->(a) RETURN
type(r)"

 If table belongs to JoinTablesEdges, the insert
statement is mapped as edge between two nodes
that represent two tables for M:N relation. The
attributes on the relation are added as properties to
the edge. The edge name is the concatenation
between two tables that are connected via M: N
relation. For example , the following insert
statement " INSERT INTO Order_product
(orderID,productCode,qty,priceEach) VALUES
(2,2,2,267)" is translated to " MATCH
(a:order),(b:product) WHERE a.orderid = 2 AND b.
productCode = 2 CREATE (a)-
[r:orderproduct{qty:2 , priceEach:2}]->(b)"

 If table belongs to RecursiveEdges, the insert
statement is mapped as edge where edge name is
the foreign key that represents recursive
relationship. The edge start from node that
represents table which has foreign key as attribute
and end at the node which has primary key equals
foreign key of the starting node.

3.2.2 Update

This section is responsible for translating SQL
UPDATE statements to Cypher SET. The format of
UPDATE Statement is " UPDATE table_name
SET column1 = value1, column2 = value2
...WHERE condition; ".Table name and where part
are extracted by using Jsqlparser. The layer
automatically generate Cypher query that is
equivalent to update SQL statement .For example
the Sql update statement " UPDATE shipper SET
companyname = 'Thinklarge', phone ='00220'
WHERE shipid =1 " is translated to " MATCH
(n:shipper { shipid : 1 }) SET n.companyname =
'Thinklarge', n.phone ='00220' return n ".

3.2.3 Delete

This section describes how to translate SQL
DELETE statements to Cypher. Jsqlparser is used
to extract table name and where condition. The
format of DELETE statement is "
DELETE FROM table_name WHERE condition;"
.The format of delete in cypher is" MATCH (n {
condition }) DETACH DELETE n " where n is the
name of node. The layer automatically generate
Cypher query that is equivalent to delete SQL
statement for example the SQL delete statement "
delete from Employee where

Email='xavidata@yahoo.com' " is translated to "
MATCH (Employee { Email:
''xavidata@yahoo.com''}) DETACH DELETE
Employee ".

3.2.4 Select

The translator also can translate SQL SELECT
statement to Cypher. The Tables names, alias and
columns in the query are extracted from SQL query
using Jsqlparser. It automatically generates cypher
query for the input SQL query by using dictionary1,
dictionary 2 , dictionary 3 and Sql parser. The
translator translates SQL queries that contains join
to cypher.
The translator supports conversion of WHERE and
GROUP BY. It also supports translation of LIKE
operator to "STARTS WITH", "END WITH" and
"CONATINS" in cypher. For example if the input
SQL select query is" select * from customer c
where LastName like '%w' and ID=1" is translated
to " MATCH (p:customer) WHERE p.LastName
STARTS WITH 'w' and p.ID=1 RETURN p.
LastName ,p.FirstName,p.Name, p.phone , p.ID ,
p.salesRepEmployee , p. Address1 ,
p.Address2,p.city , p.city , p.state , p.PostalCode ,
p.Country ,p.CreditLimit , p.ID".The input Sql
statement contains "*" , therefore the translator uses
the dictionary 1 to get all columns for query in
SQL.

 The translator also handles the query contains
tables that have been migrated as edges of
JoinTablesEdges type (Dictionary 2) in graph
database and joining multiple tables .For example if
the input SQL select query is" SELECT c.Name ,
c.ID FROM customer AS c JOIN order AS o ON
(c.ID = o.CustomerID) JOIN Order_Product AS od
ON (o. ID = od.OrderID) JOIN product AS p ON
(od.ProductCode = p.code) WHERE p.name = 'first
product'" is translated to " match (c:customer)-
[:orderCustomer]-(o:order),(o:order)-
[:orderproduct]-(p:product)where p.name =
'Chocolade' return c. Name,c.ID". The input SQL
query contains customer, order, Order_Product and
product tables. Order_Product table has been
migrated as edge. The translator removes
Order_Product from table list in query. The
translator construct pattern by getting edge name
between Customer and order (: ordercustomer) then
the edge between order and product (orderproduct)
by using metadata of edges in dictionary 3. The join
between Customer, order, Order_Product and
product tables in SQL is translated as pattern in
cypher "(c: customer)-[: ordercustomer]-(o: order),

Journal of Theoretical and Applied Information Technology
30th June 2021. Vol.99. No 12
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2984

(o: order)-[: orderproduct]-(p: product)". The
translator does not support subquery. The
translation steps for select query are illustrated in
algorithm 3.

Algorithm 3: Translation from SQL to Cypher
Input: SQL query q
Output: Cypher query cq

TabelsInQuery

Attributes
TabelsInQuery ExtractTables (q)
FilterConditions 

Patterns 

joinsConditionList 
/* relationshipMapping: contains start node, edge
name and end node that clarifies how the
relationship between two tables in relational model
is mapped to graph model (obtained from
dictionary 3)*/
MappingListrelationshipMapping ()
/* getAttributes: extract attributes after select
keyword */
Attributes getAttributes (q)
/* getAliasMapping: map that contains alias as key
and table name as value */
AliasMapping  getAliasMapping ()
/* getJoinsCondition(q): Extract all join conditions
in SQL query*/
joinsConditionList getJoinsCondition(q)
If (TabelsInQuery>1)
 {
 For each table t in query
 If (JoinTablesEdges . conatins (t)) then

 PatternsConstructPatternEdges
(joinsConditionList, MappingList,
JoinTablesEdges , AliasMapping)

 Break;
 Else
 Patterns ConstructPattern
(joinsConditionList, MappingList, AliasMapping)
 Break;
 End for each
 /* getFilterConditions: extract filters such as AND
, Like from query*/
 FilterConditions getFilterConditions (q)
cq  "match" + patterns + FilterConditions +
"return "+Attributes
End If
Else {
cq  "match"+(table alias : table name)+
FilterConditions +"return "+Attributes
}

SQL query may contains tables that have been
migrated as edges in the transformation and
migration process. Therefore, the mapping
considers it in the translation process from select to
cypher. JoinTablesEdges are the relations (join
tables) that have been migrated as edges between
nodes. If query has any table from edges list,
ConstructPatternEdges will be executed as depicted
in algorithm 3.2. Otherwise, ConstructPattern will
be executed as shown in algorithm 3.1

Algorithm 3.1: ConstructPattern
Input: joins Conditions List and table alias map
Output: patterns that represent joins in the SQL
query.
Patterns

For each condition c joinsConditionList
 tables[] c.split("=")
 /* extractNode : extract table from join condition
*/
 Node1extractNode (tables [0])
 Node2extractNode (tables [1])

/* getRelationship: get relationship (edge) that
join Node1 and Node2 by using the provided
joins Conditions List , dictionary 3 and emits the
relationship as follows (start node) –[edge]-(end
node) */
 Patterns += getRelationship (joinsConditionList,
Node1, Node2)
End for each

Algorithm 3.2: ConstructPatternEdges
Input: JoinTablesEdges list, joins Conditions List
and table alias map

Output: patterns that represent joins in the SQL
query
Patterns
/* Edgesjoins contains elements that is part of
relationship that have been migrated as edges
between two nodes*/
Edgesjoins 

For each condition c joinsConditionList
 tables[] c.split("=")
 /* extractNode: extract table from join condition
*/
 Node1extractNode (tables [0])
 Node2extractNode (tables [1])
 If (JoinTablesEdges.conatins (Node1))
 Edgesjoins.Add (Node1: Node2)
 End if
 Else If (JoinTablesEdges.conatins (Node2))
 Edgesjoins .Add (Node2: Node1)
 End if

Journal of Theoretical and Applied Information Technology
30th June 2021. Vol.99. No 12
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2985

 Else
 /* getRelationship: get relationship (edge) that
join Node1 and Node2 by using the provided joins
Conditions List , dictionary 3 and emits the
relationship as follows (start node) –[edge]-(end
node) */
 Patterns += getRelationship (joinsConditionList,
Node1, Node2)
 End else
/* getRelationshipEdge: gets the relationship (edge)
between two elements in Edgesjoins list that share
the same prefix such as { "Order_Product: order
"," Order_Product: product"} by using the
provided joins Conditions List, dictionary 3 and
emit relationship as follows (start node) – [edge]-
(end node) */
Patterns += getRelationshipEdge
(joinsConditionList, Edgesjoins)
End for each

4 EXPERIMENTS AND RESUALTS

The proposed approach implemented by java
programming language and Apache spark
2.4.1.MySQL has been used as relational data
source and Neo4j as graph database. The
experiments were conducted on spark standalone
cluster with two nodes. Each node has Intel core i7
and 8 GB of RAM. The Neo4j is hosted on a
dedicated machine with 8GB of RAM and Intel
core i7 (4 cores).

4.1 Database

Imdb is open source database. It is available in a
form of plain text files. Only subset of database is
used in the experiments. Table 1 describes the
characteristics of the databases.

Table 1: database characteristics

Databases Number
of tables

Tuples Relationships

IMDB[23] 7 5610922 6

4.2 Transformation and migration time

The migration of data from RDB to graph
database depend on partitions and batch size. The
relational data that will be migrated is saved in
spark cluster as dataset. Partitions are the number of
Partitions for the spark dataset while batch size
defines for each partition the batch size sent to
Neo4j. The level of parallelism in spark is
dissimilar to the level of parallelism in neo4j.

Partitioning in spark refers how the data will be
partitioned according to the number of machines in
spark cluster.

In neo4j, Partitioning is very dependent on the
number of cores in the leader node of neo4j cluster
because the writing in neo4j is scaling vertically.
The input to spark-neo4j-connector[24] for creating
edges is spark dataset, number of partitions, batch
size and node operation. The reason for choosing
spark-neo4j-connector rather than other import
tools in migration is that the connector provides
flexibility to shape data and easy to integrate data
with other data connected to spark cluster. Also, the
connector also supports the integration of neo4j
data with spark machine learning. Spark can be
used as preprocessing for neo4j import tools such
as load csv. Load csv tool can create nodes up to
10 million nodes only.

To achieve high performance in writing data

from spark dataset to neo4j database, partitions
should be tuned , batch size and memory
configuration in neo4j server parameters.it is very
recommend to tune partitions to avoid transaction
locks when creating nodes or creating edges
between nodes. The transaction scope is stretch on
a single partition. But in our case, write failures can
be occurred in case of writing edges. So the dataset
should be repartitioned before writing it in neo4j to
avoid write failures. If the dataset is partitioned to
only one partition prior sinking them to neo4j, only
one core of neo4j server will process the dataset. To
get the maximum throughput in the migration
process, all available cores in neo4j server should
be used .Therefore; the spark dataset should be
properly partitioned before writing them in neo4j
server. For example, assume the following two
tables (Table 2 ,Table 3) order and shipper .

All the tuples in the two tables will be migrated
to neo4j as nodes without problems in write
process. Creating edges between nodes requires
only ID of the two nodes. Edges are created by
spark inner join job as in Table 4.

The result in table 4 is stored as spark dataset. If the
dataset is partitioned to only one partition as in
table 4, only one core of neo4j is used in writing
edges. In this case, no write problems occur in
creating edges because only one partition is writing.
If the dataset is partitioned to two partitions as in
table 5 , Table 6 and two partition (cores) is
writing, the first partition lock the shipper node
with shipid=1 and second partition cannot write
edges because the shipper node with shipid=1 is

Journal of Theoretical and Applied Information Technology
30th June 2021. Vol.99. No 12
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2986

locked by the first partition. The two threads wait
each other which may rejects writing with lock
error.

Table 2 : order table

Table 3 : shipper table

Shipid CompanyName phoneNumber
100 Egy service 002019866557
101 Rapid service 002019882234
102 Easy Delivery 002010765448
103 Fast 002011298764

Table 4 : result of spark inner join between order and

shipper in one partition.

Table 5 : first partition of spark dataset

To avoid writes lock while using all available cores
in neo4j server the dataset should be partitioned
properly before sinking in neo4j as depicted in
figure 10. The spark dataset is repartition and
saved in Apache parquet[25] files. Apache parquet
is useful to get high performance data pipeline.
Each partition contains non overlapping shipid. So
the pipeline of data migration is changed as follows
:(i)the data is repartitioned using spark and stored
in parquet files (ii) read all the partitioned data as

dataset and deliver it to spark neo4j connector as
depicted in figure. 10.

Table 6 : second partition of spark dataset

Figure 10. spark dataset after repartitioning

Other important parameters are the neo4j memory

configurations heap memory and page cache size.
Normalize loading is used in the migration which
uses different dataset for each node and edges.
Indexes are used for each node to get high
performance in migration.

 The proposed approach transforms and migrate
data from IMDB database and sink data in neo4j
database. It creates 1,870,915 nodes and 4,354,581
edges in neo4j database. When the number of
partitions is 1 the migration time is 12 minutes.
When the number of partitions is 4 the migration
time is 8 minutes as depicted in figure. 11. The
neo4j database assigned with only 5 GB pf RAM.

ID customerID OrderDate RequiredDate ShipDate status Comments shipid Storeid
1 2000 2018-12-08 2018-12-09 2018-12-10 0 Null 100 200
2 2010 2018-12-12 2018-12-13 2018-12-14 1 Null 100 201
3 2110 2018-12-14 2018-12-15 2018-12-16 2 Null 101 202
4 2200 2018-12-13 2018-12-14 2018-12-15 1 Null 100 200
5 2111 2018-12-14 2018-12-15 2018-12-16 0 Null 102 206
6 2123 2018-12-15 2018-12-16 2018-12-17 2 Null 101 203
7 2145 2018-12-16 2018-12-17 2018-12-20 1 Null 100 201
8 2501 2018-12-16 2018-12-17 2018-12-18 0 Null 103 204
9 2608 2018-12-18 2018-12-19 2018-12-20 0 Null 102 200

Shipid ID
100 1
100 2
100 4
100 7
101 3
101 6
102 5
102 9
103 8

Shipid ID
100 7
101 3
101 6
102 5
102 9

103 8

Shipid ID
100 1
100 2
100 4

Journal of Theoretical and Applied Information Technology
30th June 2021. Vol.99. No 12
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2987

To get high throughput, the best machine is selected
and increase size of heap memory and page cache.
This allows increasing in batch size in writing to
neo4j, consequently, decrease migration time. The
partitioning mentioned above is used in mapping of
one to many relationships. Creating edges that
represent join table for many to many need special
optimized partitioning strategy in future works.

Figure11: Migration time

Table 7 : query translation from SQL to Cypher

4.3 Query Translation and Processing

Queries in Table 7 display the translation form SQL
statements to cypher statements using SQL to
cypher part. The translator automatically maps
insert, update, delete and select statements to
cypher language. Select statements are from St 1 to
St 5 .Insert statements are St 6 and St 7. Update
statement is St 8 and Delete statement is St 9 .The
queries were conducted in IMDB database.

Queries in Table 8 are used to ensure that no data
loss occurred in the migration process from RDB to
graph database. The queries were conducted in
IMDB database. The results in table VIII ensure
that the transformed data using the proposed layer
is complete. The outcome from cypher query is the
same as the outcome from SQL query in all
statements from St1 to St 5.

As relationships treat as "the first class citizen" in
graph databases, the queries that need join between
tables in SQL queries such as St 1, St 2 and St 5
take more time than its equivalent in cypher query

statement

SQL statement Cypher statement

St1

"select a.first_name ,d.genre from actors a join roles r on
r.actor_id=a.id join movies m on r.movie_id=m.id join
movies_g
enres d on d.movie_id=m.id where a.id=320"

"match (d:movies_genres)-[:moviesmovies_genres]-(m:movies)
,(a:actors)-[:actorsmovies]-(m:movies) where a.id = 320 return
a.first_name,d.genre

St 2 "select a.first_name,di.first_name from actors a join roles
r on r.actor_id=a.id join movies m on r.movie_id=m.id
join movies_directors dvd on m. id=dvd.movie_id join
directors di on di.id=dvd.director_id where a.id=410"

match (a:actors)-[:actorsmovies]-(m:movies) ,(m:movies)-
[:directorsmovies]-(di:directors) where a.id = 410 return
a.first_name,di.first_name"

St 3 "select * from actors " "MATCH (p:actors) RETURN
p.id,p.first_name,p.last_name,p.gender"

St 4 "select * from actors a where a.first_name like '%t'" " MATCH (p:actors) WHERE p.first_name ENDS WITH 't'
RETURN p.id,p.first_name,p.last_name,p.gender"

St 5 " select d.first_name,dg.genre from directors d join
directors_genres dg on d.id=dg.director_id where
d.id=1000 "

" match (d:directors)-[:directorsdirectors_genres]-
(dg:directors_genres) where d.id = 1000 return
d.first_name,dg.genre "

St 6 " insert into movies(id,name,`year`)
VALUES(412321,'elresala',2008) "

" CREATE (n:movies{id:412321,name:'elresala',`year`:2008}) "

St 7 " insert into movies_genres(movie_id,genre)
VALUES(412321,'islamic') "

" CREATE (n:movies_genres{movie_id:412321,genre:'islamic'}) ;
MATCH (a:movies),(b:movies_genres) WHERE a.id = b.movie_id
AND b.movie_id = 412321 AND b.genre = 'islamic' CREATE (a)-
[r:moviesmovies_genres]->(b) RETURN type(r) "

St 8 update movies set year= 2009 where id=412321; "MATCH (n:movies { id : 412321 }) SET n.year= 2009 return n"

St 9 " delete from movies where mid = 412321" "MATCH (movies { id : 412321}) DETACH DELETE movies "

Journal of Theoretical and Applied Information Technology
30th June 2021. Vol.99. No 12
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2988

as depicted in figure. 12. The relationships in graph
database between nodes are actually persisted as
edges in physical storage. In contrast, the
relationships or joins between tables in RDB are
calculated for every query. Therefore, traversing
edges in graph database is faster than joining in
RDB. The comparison between statements that
have join is illustrated in figure 12.

Table 8: queries on relational and graph used in testing

phase

Figure. 12: Time execution difference between SQL and

Cypher

4.4 Comparison with similar methods

The main focus of the experiments was to prove the
effectiveness of the proposed by comparing it with
existing methods. Neo4j ETL[26] is tool to migrate
data from RDB to graph database. Neo4j ETL did
not provide query translation from SQL to Cypher.
It runs on only one machine while our approach run
in distributed environment. Therefore, our proposed
approach outperforms than neo4j ETL .Table 9
shows the comparison between our proposed
approach and Neo4j ETL.

Table 9. :The comparison between proposed approach
and Neo4j ETL

property Proposed

approach
Neo4j
ETL(online
direct import)

Translating
SQL to
Cypher

Support
translation from
insert, update
,delete and
select
statements to
cypher

Not support
translating from
SQL statements
to cypher

Elapsed time
for migration

8 minutes 12 minutes

Mode
Distributed
processing
environment

Local machine

5 METHODOLOGY
The following research methodology has been
followed:

 Reviewing the previous works related to
migrating data from relational to graph
database

 Proposing transformation algorithm
 Proposing migration algorithm using

distributed processing engine
 Installing spark cluster and neo4j and

download database
 Conducting experiments and compare

results between the proposed approach
and Neo4j ETL

6 CONCLUSION AND FUTURE WORK

NoSQL databases have been proposed to solve big
data challenges. NoSQL have four different
categories key-value, column, document and graph.
Each category has different data model for
managing data. NoSQL does not support SQL and
there exists a huge base of users familiar with SQL.
Therefore, several approaches have been proposed
to preserve the benefits of SQL in NoSQL
databases. The approaches map the relational data
to key-value, column and document database. No
approach maps the relational data to graph model.
The previous researches migrating data from RDB
to graph database have drawbacks such as the
experiments did not conduct on distributed
environments and query mapping from SQL to
graph language. Some approaches also have
semantic loss.

Statement

Relational
outcome

Tables
involved in
the query

Graph
outco
me

St 1 20 4 20
St 2 1 5 1
St 3 817718 1 817718
St 4 21879 1 21879
St 5 156562 2 156562

Journal of Theoretical and Applied Information Technology
30th June 2021. Vol.99. No 12
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2989

This paper presents an approach that transforms
and migrates relational data to graph database. It
converts RDB to graph database without semantic
loss which is very important for further analysis
such as graph mining. It retains the benefits of SQL
in the context of graph database. The approach also
supports the query mapping from SQL to cypher.
The architecture of the approach builds on top of
Apache spark and conducts the experiments in a
distributed environment. It has two parts (i)
transformation and migration part and (ii) SQL to
cypher part. Transformation and migration consists
of three phases schema metadata analyzer,
transformation algorithm and migration algorithm.
SQL to cypher part have SQL parser and translator
.The layer allows enterprises to migrate relational
data to graph data without semantically lose or data
lose with a lower learning curve. The proposed
layer considered being the base for graph mining
algorithms.

 The experiments ensure that the proposed
approach migrates data from relational data to
graph without semantic loss or data loss. The
experiments also assure that traversing data using
graph database is faster than RDB .The research
proves the viability of using distributed processing
in migration process. For the immediate future, we
plan to enhance SQL by adding supports for
subquery. We also plan to propose a strategy to
repartition data in a join table for many to many
relationship.

Applying graph mining algorithms after
migrating data from relational to graph database
may display connections among data that were
formerly not shown. The study ensures the
importance of using big data processing engine
such as spark in the data migration process.

REFRENCES:
[1] P. Zikopoulos and C. Eaton, Understanding

Big Data: Analytics for Enterprise Class
Hadoop and Streaming Data. McGraw-Hill
Osborne Media, 2011.

[2] P. J. Sadalage, M. Fowler, and U. S. River,
NoSQL Distilled : a brief guide to the
emerging world of polyglot persistence, 1 st
editi. Pearson Education, 2013.

[3] G. A. Schreiner, D. Duarte, and R. dos S.
Mello, “When relational-based applications
go to NoSQL databases: A survey,”
Information (Switzerland), vol. 10, no. 7, pp.
1–22, 2019.

[4] A. T. de Oliveira, A. D. de Souza, E. M.
Moreira, and E. Seraphim, “Mapping and
Conversion between Relational and Graph

Databases Models: A Systematic Literature
Review,” in 17th International Conference on
Information Technology--New Generations
(ITNG 2020), 2020, pp. 539–543.

[5] M. N. Mami, D. Graux, H. Thakkar, S. Scerri,
S. Auer, and J. Lehmann, “The query
translation landscape: A survey,” arXiv, no. 1.
2019.

[6] M. Zaharia, M. Chowdhury, M. J. Franklin, S.
Shenker, and I. Stoica, “Spark : Cluster
Computing with Working Sets,” HotCloud’10
Proceedings of the 2nd USENIX conference
on Hot topics in cloud computing, p. 10,
2010.

[7] W. Hu and Y. Qu, “Discovering simple
mappings between relational database
schemas and ontologies,” in The Semantic
Web, Springer, 2007, pp. 225–238.

[8] O. Orel, S. Zakošek, and M. Baranović,
“Property Oriented Relational-To-Graph
Database Conversion,” Automatika, vol. 57,
no. 3, pp. 836–845, 2017.

[9] A. de la Vega, D. García-Saiz, C. Blanco, M.
Zorrilla, and P. Sánchez, “Mortadelo:
Automatic generation of NoSQL stores from
platform-independent data models,” Future
Generation Computer Systems, vol. 105, pp.
455–474, 2020.

[10] E. M. Kuszera, L. M. Peres, and M. D. Del
Fabro, “Toward RDB to NoSQL:
Transforming data with metamorfose
framework,” Proceedings of the ACM
Symposium on Applied Computing, vol. Part
F1477, pp. 456–463, 2019.

[11] C. Li and J. Gu, “An integration approach of
hybrid databases based on SQL in cloud
computing environment,” Software: Practice
and Experience, vol. 49, no. 3, pp. 401–422,
2019.

[12] S. Ramzan, I. S. Bajwa, B. Ramzan, and W.
Anwar, “Intelligent Data Engineering for
Migration to NoSQL Based Secure
Environments,” IEEE Access, vol. 7, pp.
69042–69057, 2019.

[13] D. E. M. Arnaut, R. Schroeder, and C. S.
Hara, “Phoenix: A relational storage
component for the cloud,” in 2011 IEEE 4th
International Conference on Cloud
Computing, 2011, pp. 684–691.

[14] D. Egger, “SQL in the Cloud,” ETH, Swiss
Federal Institute of Technology, Department
of Computer Science …, 2009.

[15] R. Vilaça, F. Cruz, J. Pereira, and R. Oliveira,
“An effective scalable SQL engine for
NoSQL databases,” in IFIP International

Journal of Theoretical and Applied Information Technology
30th June 2021. Vol.99. No 12
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2990

Conference on Distributed Applications and
Interoperable Systems, 2013, pp. 155–168.

[16] R. De Virgilio, A. Maccioni, and R. Torlone,
“Converting relational to graph databases,”
1st International Workshop on Graph Data
Management Experiences and Systems,
GRADES 2013 - Co-located with
SIGMOD/PODS 2013, vol. 1, no. i, 2013.

[17] Y. A. Megid, N. El-Tazi, and A. Fahmy,
“Using functional dependencies in conversion
of relational databases to graph databases,”
Lecture Notes in Computer Science
(including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 11030 LNCS, no.
January, pp. 350–357, 2018.

[18] D. W. Wardani and J. Kiing, “Semantic
mapping relational to graph model,” in
Proceeding - 2014 International Conference
on Computer, Control, Informatics and Its
Applications: “New Challenges and
Opportunities in Big Data”, IC3INA 2014,
2014, pp. 160–165.

[19] O. Alotaibi and E. Pardede, “Transformation
of schema from relational database (RDB) to
NoSQL databases,” Data, vol. 4, no. 4, pp. 1–
11, 2019.

[20] M. Gupta and R. Rani Aggarwal,
“Transforming relational database to graph
database using Neo4j,” in Proceedings of the
Second International Conference on Emerging
Research in Computing, Information,
Communication and Applications, Bangalore,
India, 2014, pp. 322–331.

[21] “schemacrawler.” [Online]. Available:
https://www.schemacrawler.com/. [Accessed:
24-Nov-2020].

[22] “JSqlParser.” [Online]. Available:
https://github.com/JSQLParser/JSqlParser.
[Accessed: 08-Dec-2020].

[23] “IMDb. Internet Movie Database.” [Online].
Available: www.imdb.com/interfaces.
[Accessed: 20-Dec-2020].

[24] “neo4j spark connector.” [Online]. Available:
https://github.com/neo4j-contrib/neo4j-spark-
connector/. [Accessed: 20-Sep-2020].

[25] “Apache Parquet.” [Online]. Available:
https://parquet.apache.org/. [Accessed: 14-
Jan-2021].

[26] “Neo4j ETL.” [Online]. Available:
https://neo4j.com/developer/neo4j-etl/.
[Accessed: 15-Oct-2020].

