
Journal of Theoretical and Applied Information Technology
15th June 2021. Vol.99. No 11
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2605

BENCHMARKING MICROSERVICES ARCHITECTURE IN
IMPROVING USER EXPERIENCE

1HERALDO YUSRON P, 2NAUFAL RIZQULLAH P H, 3BENFANO SOEWITO
1,2 Computer Science Department, School of Computer Science, Bina Nusantara University, Jakarta,

Indonesia 11480
3 Computer Science Department, BINUS Graduate Program, Master of Computer Science, Bina Nusantara

University, Jakarta, Indonesia 11480

E-mail: 1bsoewito@binus.edu, 2heraldo.purwantono@binus.ac.id, 3naufal.hidayat@binus.ac.id

ABSTRACT

Technology is an important thing that must be considered, technology continues to be developed in order to
help people to work more efficiently. In every company, one of their main goals is to achieve maximum
efficiency, with efficient work, it could reduce the cost necessary and increase the productivity of its business
process without sacrificing the quality of their byproduct. One of them came from the terms of
communication between employees. How many companies use web applications as a medium to
communicate, but the current adopted architecture is mostly still monolithic. A commonly known monolithic
architecture has some limitations, especially when applications tend to be more complex such as slow access
speeds because programs are running simultaneously in one mass architecture system, small changes to the
system require an entire monolithic to be rebuilt, and limited scalability can occur. Therefore, it is proposed
to use microservices for internal web applications. Microservice has recently gained popularity among
developers since 2014. Because many companies that have implemented this technology can maximize their
profits and get a better user experience due to better access speed capabilities. Therefore, in this study, we
try to fix the problem and implement a microservice architecture in the hope of providing a better user
experience and increasing productivity for their employees. Thus, we need to compare both architectures
using comparable benchmarks and try to prove that microservices can lead to better performance and user
experience.

Keywords: Benchmark, Microservices, Software Architecture, Monolithic, DDD

1. INTRODUCTION

 In this era, technology is a necessity that everyone
must master without exception. Over time,
technology continues to develop from year to year.
Technology is made to facilitate human work in
various fields. Therefore, Humans continue to
innovate and seek the latest technology that humans
can use to make their work easier. For example, in
the corporate sector, the company itself has a lot of
data processing, the data that can be processed can
be millions or even tens of millions. In data
processing, a media or third party is needed that can
be a bridge to share data according to employee
needs. In this research, the third party is a web
applications application. Web applications are used
to make it easier for employees to select data that
they can use to reprocess them into data that can be
useful in other fields. Of course, web application
does not escape technological developments,
humans innovate and continue to develop web
application to make them easier to use and to be more

efficient. In general, a web application has a main
function that can be used by users, for example in a
company. Companies can use a web application to
transfer raw data which will be processed by the user.
However, in some cases companies make many web
applications for users to use because they have
different forms of data, but actually the web
application has the same function, so the user must
have a different account to access each application.
In this case, according to the researcher, it is very
ineffective because the user has many accounts to
access data. Therefore, researchers created a web
application that combines several of these
applications using the microservices method.
According to Johannes Thönes in his research said
that microservices are microservices, are small
applications that can be implemented independently,
scaled independently, and tested independently and
have one responsibility. It is sole responsibility in the
original sense that there is one reason to change and
/ or one reason to be changed. But the other axis is

Journal of Theoretical and Applied Information Technology
15th June 2021. Vol.99. No 11
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2606

single responsibility in the sense that it only does one
thing and one thing and can be easily understood [1].

Based on the description in the background, the
research problem we willing to solve can be
identified based on follows:
 How to combine multiple application that are

used as third parties to transfer data by users
with one account

 How to implement microservices into a web
application

2. LITERATURE REVIEW

According to the one who pioneered the
term of "microservice" [2], it is described as an
approach to developing a single application as a suite
of small services, each running its own process and
communicating with lightweight mechanism, often
as an HTTP resource API. While other [3], defined
it as "distributed application where all its modules
are microservices" or "Microservice are small,
autonomous service that work together" as described
by [4]. This architecture model allows developers to
build application as suits of services. As well as the
fact that each service is independently deployable
and scalable, thus also provides a firm module
boundary, even allowing for different services to be
written in different programming language and
teams. This new form of architectural style was
established due to an increased frustration from user
especially developer when they were using
monolithic architecture style. Especially, as more
application is being deployed when small changes
made to a small part of the application, requires
entire monolithic to be rebuilt and deployed. Over
time, difficulties occur in maintaining a good
modular structure and making it harder to keep
changes that ought to only affect one module within
that module. Scaling requires scaling of the entire
application rather than parts of it that require greater
source [2].

There aren't any formal definition yet that
represent the microservice architectural style, but
according previous paper [2], [3], we found out that
these researches describes some of its characteristic.
Common characteristic of microservices
architecture include:
 Componentization via services—the application

is developed upon smaller independent services
that runs different processes, applied boundaries
on its resources, and communicating through
lightweight mechanism

 Organized around business capabilities—built
by cross-functional teams.

 Focus more on products rather than projects—
prioritize more on business capabilities, not the

software as a set of functionality to be
completed.

 Smart endpoints and dumb pipes—
choreographed using simple REST protocols in
order to avoid other complex orchestration
protocols

 Decentralized governance and data
management—can be developed using different
technologies and data management
infrastructure

 Infrastructure Automation—built by teams with
extensive experience on continuous delivery
and integration

 Design for Failure—capable of detecting failure
quickly and automatically restore service

 Evolutionary Design—design pattern can adapt
dynamically in response to service changes

 Another characteristic that has been defined
by [4], that makes microservices different are "small
and focused on doing one thing well" and
"autonomous". Which these characteristics were
also mentioned in previous paper [2], [3].
 Microservice in some of its
implementations are commonly being compared
with Service-Oriented Architecture (SOA) and
Domain-driven Design (DDD). In fact, at the time
when there was absence of any standardized
definition for microservice, SOA and DDD concept
are widely used to develop microservices. And most
of the papers even said that MSA are inherited from
SOA with a bounded context that adapted from DDD
concept [3], [5]–[8]. Before we jump right on to
microservices architecture structure, we will be
discussing about how microservices beforehand
related to its predecessor's architecture, concept and
support system. And how those mentioned
architecture influenced microservice to be as it is
today
2.1. Monolithic Architecture

Figure 1. Monolithic Architecture [9]

 As mentioned previously in this section,
monolithic application is built as a single unit.
Enterprise Application are commonly built upon
three main parts: a client-side user interface, a
database, and a server-side application. The server-
side application which handle HTTP requests,
execute domain logic, retrieve & update data from
database, and select & populate HTML views to be

Journal of Theoretical and Applied Information Technology
15th June 2021. Vol.99. No 11
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2607

sent to the browser. This server-side application can
be called a monolith - a single logical executable.
Any changes to the system requires the entire
monolith to be rebuilt and deployed [2]. Especially,
as application tends to become more complex, its
weaknesses appear. For example, high complexity,
poor reliability, limited scalability, and hindering
technological innovation. As shown above in Fig. 1,
which embodied a traditional monolithic
architecture. First, the user interacts with the front-
end. Then, the front-end application redirect user
request to a container that hosted a software instance,
which then connects to the database to complete
those requests [9].
2.2. Domain-Driven Design (DDD)

Figure 2. Bounded context concept on Domain-Driven

Design [10]

 Domain-Driven Design (DDD) has gained
more acknowledgement as a result of raising
popularity on microservices technology [5]. The
main idea of DDD is the binding of its domain to the
implementation [11]. Its strategic design is focused
more on dealing with large models and teams by
dividing them into different bounded context and
being explicit about their interrelationship as shown

at Fig. 2 [10]. By popularizing its bounded context
concept, each component in the system only exists
within its bounded context. More microservice
implementation done by using this approach due to
its well-established set of practices that enables
modelling complex systems. So, the following
bounded context is a prominent way to start
designing microservice, which allows a loosely
coupled microservices design [5]
2.3. Microservice Architecture (MSA)
 As we also previously said that
microservices has some characteristic of dumb
piped, flexibility and loosely coupled characteristic.
And by means "loosely coupled" will make the
change to a service would not bother or require a
change on another service, which differentiate it
with monolithic that required the whole systems to
be rebuilt [4]. Unfortunately, there aren't any
standardized microservice architecture, because
each microservice architecture was built specially to
fulfil its own business requirements. According to
various papers that have been found [7], [9], [12]–
[14], these papers shows similar form of
architectural pattern for microservices. Take
Instagram apps for example, Instagram will use a
separate service for each action: Share (Move a
photo from a device), Like (A method for
incrementing internet karma), Follow (Subscribe to
a particular user's photos), Search (Find photos
based on criteria), Register (Create a user). These
common concern from each of these services
separating its data. The separation happens for
retrieving user data and how to authenticate user.
Authentication often happens frequently and
universally by many services. With every call on
most of the apps/services contain information about
an authenticated user (such as token). This action
needs to be looked up quickly from many different

Figure 3. An example of microservices architecture

Journal of Theoretical and Applied Information Technology
15th June 2021. Vol.99. No 11
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2608

services. However, the user entity, with entities of
name, preferences, and email address probably
needs to be accessed less frequently. Thus, while
user data and authentication are coupled, it is
probably a good idea to keep them separated [15].
By using the same architectural concept that Liu
proposed in his paper [9], we try to implement their
microservice architecture to form our own version of
Instagram's microservices architectural pattern
shown in Fig. 3 With Auth API that process user
authentication service such as token retrieved from
authentication database. Profile API, which retrieve
information about user entities from Profile
Database. And lastly, User API, which also retrieve
user photos, follows, likes, etc. from user database.
It is possible that User API might also be divided into
several breakdowns based on photos, follows, like,
etc. to have more granularity, since "smaller is better
for microservices". But, such example is only
intended to give readers an overview of how
microservice architectural pattern was implemented
for each service.
2.4. Benchmarking Microservices
 Benchmarking as paper [16] mentioned, "Is
the process of measuring quality and collecting
information on system states.". Benchmarking can
also be applied to measure different software
versions, configurations, system alternatives, or
deployments [17]. We've search for paper related to
microservices with keywords include assessment,
performance, benchmark, benchmarking across
various journals. Seeing that microservices research
are relatively immature [18], and some paper stated
that benchmarking microservices is hard because
each of the application requires their own custom
benchmark which also need to be assessed
repeatedly as the service evolves [19], [20]. Above
all hindrance and limitation in finding related
research available online, we finally found some.
And conclude that benchmarking a microservice
application is still possible and could give a
tremendous contribution to researchers, practitioners
and communities in this field due to its adequacy.
 Research that discusses benchmarking or
non-functional performance assessment criteria of a
microservice. Which one of them [17], where the
study uses a pattern-based approach to assess non-
functional microservice more easily, while still
considering the quality of complex interactions.
Assuming that a microservice exposes the REST
API, described in a machine-understandable way,
and allows developers to model interaction patterns
from abstract operations that can be mapped to that
API. Required parameter values are provided at
runtime and possible data-dependencies between

operation are resolved. They implemented their
approach in a prototype, which then being used to
demonstrate the low effort applicability of their
pattern benchmarking approach to three open-source
microservices. As a result, their work shows that
pattern-based benchmarking of microservices is
feasible and opens up opportunities for
microservices providers and tools for developers.
 Other research [20] proposes, discusses,
and illustrates the use of an initial set of requirements
that may be useful in selecting a community-owned
architecture benchmark to support repeatable
microservice research. In order to fill a lack of
repeatable empirical research on the design,
development, and evaluation of microservice
applications. By using selected possible benchmark
candidates amongst five open source microservices
applications, the conducted assessments cover up
architecture, DevOps, and General contexts.
Although, their early results indicate that none of the
five applications analyzed is relatively mature to be
used as a community-wide research benchmark,
each one of them may already be useful to fulfill the
needs and promote the reproducibility of specific
empirical studies. In hope for a better requirement in
benchmarking microservices, they expect that their
research constitutes as an 'ideal' benchmark for
conducting empirical microservice research.
 Another research we found offers an
assessment for microservices architecture
qualitatively rather than quantitatively [3]. This
study stated that, even though microservice was the
latest architectural trend and capable to solve various
problems associated with monolithic architectures,
there still some significant disagreement on when
should microservice architecture applied. Likewise,
how it may be implemented effectively. In respect of
limited empirical research on the topic, this study
identifies and discusses a range of opportunities and
challenges associated with the microservice
application and implementation. The findings
reviewed an in-depth interview with 19 ICT
architects with significant experience in large
corporate systems, middleware, service-oriented
architecture, and some of limited extent
microservices.
 Research conducted by [13] stated that
microservice architecture, from its architectural
perspective impose a number of relevant challenges
related to their high degree of distribution and
decoupling. Things such as measuring, controlling,
and system architecture quality assurance are of
paramount importance. The paper proposed an
approach for specification, aggregation, and
evaluation of software quality attribute related to the

Journal of Theoretical and Applied Information Technology
15th June 2021. Vol.99. No 11
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2609

architecture of microservice-based system. This
proposed approach allows developer to (i) produce
architecture model, either manually or automatically
via recovering techniques, (ii) contribute to a well-
specified ecosystem and automatically computable
software quality parameter for MSAs, and lastly (iii)
continuously measure and evaluate the architecture
of their system by (re-)using the software quality
parameter defined in the ecosystem. This approach is
implemented by using Model-Driven Engineering
techniques and has been validated by assessing the
maintainability of a third-party, publicly available
benchmark system.

3. METHODOLOGY

In this research, assessing a microservices
application will be built upon several stages as
shown in Fig. 4. Those stages should be taken into
consideration based on the importance of each stage
for this research, which will be explained explicitly
as follows.
3.1. Problem Identification
 This study is brought up by a problem that
came from a company that uses web application for
their internal usage. Just by accessing this internal
web application, we saw a problem that fuels our
concern. This web application requires different
pages and accounts for each different service as
shown in Fig. 5. For example, when user A needed
to collect different data from service 1 and 2. He
required to login to a webpage that contains the
service 1 to access the data, and then opens up
another tab and open another webpage that contains
service 2, login, and then access the data. It was a
user experience nightmare, and we've heard some of
the employees complain about this kind of access
that demand more time to switch between each web
pages which hamper their productivity. According to
their experience, we trying to analyze the reason why

this company uses that kind of web page
architecture. Afterwards, we suggest a new web page
architecture that could perform better in terms of
user experience, maintainability, and performance.
"Better" by all mean is we trying to compare
previous architecture over recent one and define a
parameter that could be a reference in comparing
those two.
3.2. Literature Review
 In this stage, we search for various studies
related to software architecture especially
microservices which recently has been trends among
companies, communities and researchers. We also
mentioned other predecessor’s software architecture
that pioneered microservices to be microservices
that generally being used today. Related
predecessors’ architecture that became the
constituent parts of microservices such as Service-
Oriented Architecture (SOA), Domain-Driven
Design (DDD), and its support system such as
Development and Operation (DevOps) as mentioned
in section II. From that various related studies, we
also found out that those studies simultaneously
mentioned the benefits of microservices over other
former software architecture because of its
adaptability. For many companies that have been
using microservices architecture for their services, it
became one of the main factors that bolsters up their
tremendous business growth and outpaces their
competitors. Not to mention, Amazon, Netflix,
Instagram which have been implementing
microservice, saw potential use on this kind of
architecture in the future. Therefore, we try to
conduct this study more about microservices
architecture rather than other architecture.
3.3. Modelling Architecture
 Before we develop the application, first we
need to model the architecture based on its
authorization and role using UML's use case
diagram. We use Use Case Diagram, because
previous architecture was built based on its role,
authorization and service provided. Thus, we saw
this type of modelling language suits the
architecture. As we also had mentioned, there are 2
use case diagrams that we're going to make including
the company's own architecture and microservices
architecture shown on Fig. 5. The company's
architecture describe that each user requires to login
into different website for each different available
service. And the microservices architecture only
requires user to login one time to access all available
services.
3.4. Implementing Architecture
 After the architecture design was made, we
then implement the designed architecture to web

Figure 4. Research Stages

Journal of Theoretical and Applied Information Technology
15th June 2021. Vol.99. No 11
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2610

application using PHP supported with Laravel
framework. We prefer PHP as our implemented
application because this company's web architecture
is also using PHP as its preferred language. This
same language implementation will support each
assessment to provide a better comparison and
benchmark between the two.
3.5. Benchmarking

Based on what is seen from the problems
that occur in a company, in this stage, we will assess
each architecture using the empirical approach that
has been used in [20] using parameters that are
determined based on the context. Where these
parameters was based on the case of how
microservices application being developed and
deployed by various practitioners and industry
experts [2], [4], [20]. As described in Aderaldo's
works [20], this specified parameter reflect how
typical microservices applications are currently
being developed and delivered into production, as
reported by practitioners, and industry experts.
3.5.1. Requirements related to architecture
 These parameters reflect the ideal
characteristics of the benchmark for microservices
from the perspective of its architectural nature.
 P1: Architectural Model: A typical
application for microservices consists of many tiny
independently deployable services that can
communicate asynchronously and indirectly during
runtime. These features make it hard for a developer
to completely understand the integration points and
obligations of all resources within the overall
framework architecture, based on its source code
alone. At runtime, a well-documented benchmark
for microservices should provide an explicit view of
its key service components and their possible
communication channels. In order to help software
engineering researchers in better understanding,
exploring and evaluating the architectural design
decisions and compositional runtime topologies of
the benchmark, such a view is necessary.
 P2: Pattern-based Design: The advantages
of a pattern-based software architecture have long
been recognized by the software engineering
community, such as ease of maintenance and reuse.
A number of industry-tested architecture trends have
already been proposed to facilitate the development
of scalable and robust applications for microservices
in this regard. Some of the most common
microservice patterns are Circuit-breaker, API
Gateway and Service Discovery. Therefore, the use
of such patterns is expected in the design of a
microservices benchmark that is representative of
how applications for microservices are currently

being developed and delivered to production
environments in the real world.
3.5.2. Requirements related to DevOps
 These parameters reflect the need of the
industry to adopt core programming practices of the
DevOps continuous delivery pipeline for a
production-ready microservices framework.
 P3: Easy Access from a Version Control
Repository: The use of a Version Control System
(VCS) is a crucial aspect of the development of any
modern software, even more so in a distributed
setting. There is a mandatory prerequisite for any
microservices benchmark candidate to use a public
distributed VCS such as GitHub or Bitbucket as its
key software repository, as it enables software
engineering researchers and practitioners to have
easy access to the source code of the benchmark and
release history.
 P4: Support for Continuous Integration:
Continuous integration is a software development
practice in which, with any code commit sent to the
version control system, new code developed on a
developer's computer is automatically merged with
the current software code base. It is the duty of
continuous integration software such as Jenkins and
TeamCity to construct a new application build and
to alert the developer team of the outcomes of the
build. These tools can also cause additional
functions, such as code quality management and
checking, to be performed.
 P5: Support for Automated Testing:
Automated research instruments such as Cucumber
and Selenium are able to conduct experiments,
record their findings and equate them with previous
test runs. It is possible to run experiments conducted
with these methods continuously, at any time.
 P6: Support for Dependency Management:
It is the duty of a dependency management program
such as Maven or NPM to automatically download
and install all external software objects (e.g.,
modules, libraries) needed to create a given software
product locally. Those tools have a particular
notation, called a manifest file, for defining those
dependencies. Dependencies defined in a manifest
file are usually downloaded from a central repository
of software
 P7: Support for Reusable Container
Images: Applications for microservices, as offered
by public cloud vendors, are usually implemented in
a virtualized infrastructure. Developers typically
rely on lightweight containerized virtualization
tools, such as Docker, to build reusable container
images of the entire software stack and execution
environment needed to execute each application
portion in order to speed up deployment. This helps

Journal of Theoretical and Applied Information Technology
15th June 2021. Vol.99. No 11
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2611

the program to be conveniently deployed separately
from the underlying physical system in the same
virtual environment (e.g., developer machines,
production servers)
 P8: Support for Automated Deployment: A
standard microservice application's implementation
configuration can vary greatly across different
execution environments (e.g., development, staging,
production). Changing the execution environment
would also entail changing its source code if such
variations were incorporated in the implementation
of the program. This will, of course, cause delivery
of applications a very challenging and error-prone
process. Developers typically define environment-
dependent configuration details in objects external to
the source code that are then used by automatic
deployment tools such as Chef and Ansible to
mitigate this issue. These tools typically have a
systematic and centralized means of defining the
numerous forms in which a microservices program
could be deployed at runtime.
 P9: Support for Container Orchestration:
A delightful feature of containers is that they can be
planned and orchestrated instantaneously on top of
either physical or virtualized computing
infrastructure. Three of the most widely used
container orchestration software are Docker Swarm,
Kubernetes and Mesos. These tools offer automated

system assistance to overcome some key issues in
the implementation of applications for
microservices, such as infrastructure discovery, load
balancing and rolling updates.
3.5.3. General requirements
 These parameters represent general
benchmark characteristics which, from a
technological point of view, are not compulsory but
which would give contribution to community and
researchers in enhancing insight for developing
microservices architecture.
 P10: User Experience required steps:
Especially for this study, assessment based on user
experience related to each required step will be
conducted. This assessment was held in purpose of
seeing how the user will then interact with the
deployed application. Former web application as
stated before, require user to login into different web
pages to use each service provided. And in contrast,
we develop another web application using an
implementation of microservices that might provide
a better user experience. And in this assessment will
provide a more comprehensible comparison for
identifying how well the recent developed
architecture in compare of previous architecture in
term of its user experience.
 P11: Page Runtime: Generally, a quality of
a software engineering is commonly related to its

Context Parameters Assessment Rationale
Architecture P1: Architectural Model Represent how he application should provide enough

architecture view for each services elements
 P2: Pattern-based Design Represent how the application should be designed based on

renowned microservices architectural pattern
DevOps P3: Easy Access from a Version Control

Repository
Represent how the application repository should be easily
accessible from a public version control system

 P4: Support for Continuous Integration Represent how the application should provide support for at
least one continuous integration tool

 P5: Support for Automated Testing Represent how the application should provide support for at
least one automated testing tool

 P6: Support for Dependency Management Represent how the application should provide support for at
least one dependency management

 P7: Support for Reusable Container Images Represent how the application should provide reusable
container images for at least one container technology

 P8: Support for Automated Deployment Represent how the application should provide support for at
least one automated deployment tool

 P9: Support for Container Orchestration Represent how the application should provide support for at
least one container orchestration tool

General P10: User Experience required steps Represent how the application deals with the user experience
according to user's step

 P11: Page Runtime Represent how much time required for the application to run
the webpage

 P12: Alternate Versions Represent how the application should provide alternate
implementation in terms of programming languages and/or
architectural decisions

 P13: Community Usage and Interest Represent how the application should be easy to use and of
interest to its target research community

Table 1. Benchmark Assessments Parameter

Journal of Theoretical and Applied Information Technology
15th June 2021. Vol.99. No 11
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2612

user accessibility, and time are mainly mentioned.
Research that using time as its benchmark
measurements such as [19], mentioned that by using
duration they would enhance their approach with the
capabilities necessary for benchmarking entire
microservices application. Especially, the ability of
resolving complex data dependencies across
microservices endpoints. Therefore, we consider that
runtime is one of our measurements in
benchmarking both architectures.
 P12: Alternate Versions: Providing several
implementation alternatives is another attractive
characteristic for any software engineering
benchmark. In the unique case of a benchmark for
microservices, this may mean offering alternative
implementations of the benchmark microservices
using various programming languages (e.g., Java
and Node.js) or different architecture designs (e.g.,
monolithic vs. decentralized). For Software
Engineering researchers interested in comparing
various microservice architectures in terms of their
design decisions and their technical choices, this will
be extremely useful.

 P13: Community Usage and Interest: A
research benchmark's use history illustrates how
much its target testing audience has used the
benchmark. In addition, the attention of the group is
likely to be further drawn by a benchmark that is well
defined and easy to customize (for example, to
enable integration of external data collection and
research tools) and rollout. Of course, using a
benchmark for microservices that is simple to use
and has already drawn the attention of other
researchers in the area not only enhances confidence
in the adequacy of the benchmark for new studies,
but also enables repeatability of previous benchmark
findings.
 Mentioned explanation of related
parameter will be summarized according to its
perspective and rationale in Table. 1.

4. ARCHITECTURE

 In assessing both x-company's architecture
and our proposed microservices architecture, we'll
provide both architecture model to inform readers
how the application would be developed in this study
as we described previously in modelling architecture

Figure 5. Use Case Diagram of X-Company's (Left) and Proposed Microservices Architecture (Right)

Journal of Theoretical and Applied Information Technology
15th June 2021. Vol.99. No 11
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2613

at section III. This model will also being used in
assessing both architecture based on its architecture's
assessments. Use case diagram is being used to
model both architectures as shown on Fig. 5. for the
former x-company's architecture, and the recent
microservices architecture.
 As we already told a glimpse of the problem
that occurred in this company's web app architecture
previously in problem identification at section III,
now we will describe more specifically in this
section. There was a company that would use the
web app as a medium for them to interact and
exchange its data and information across divisions
internally. This web application was being used by
employees to view, retrieve, and convert the data to
be reprocessed into new data which will be
redistributed to other divisions. Currently, several
divisions were using this web application. The web
application has its same pattern and function, there

were around three or more web applications in each
of two divisions that were being used by the
employees. Employees required to log in and access
each different web application to be able to transfer
the data and information. From this occasion, we as
researchers concluded that there were divisions that
necessitates their employees to use the web app as
their main tools to exchange data and information.
And there were around one to two web applications
for each division. Employees required to access both
web applications to transfer data. Therefore, we will
build an architecture, especially microservices-based
architecture which will be operated on these
divisions to overcome the limitation that impedes
employee productivity. Microservices aims to carry
out activities in accordance with the needs of their
respective function and divisions.

Benchmark Assessment Results
Par. X-Company's Architecture Microservices Architecture
P1

The application was provided with an explicit view
on its overall architecture

The application was provided with an explicit
view on its overall architecture

P2 Database per each service, 3 web application using
the same 3 monolithic architecture (monolithic
architectures)

Database per each service, 1 web application for
client side, 3 web application for different
services (Client-Server architecture)

P3 Source code are not publicly available on GitHub Source code are not publicly available on GitHub

P4 No CI tools used. Although, some CI tools are
supported for this apps such as TravisCI, GitHub
Actions, and Jenkins

No CI tools used. Although, some CI tools are
supported for this apps such as TravisCI, GitHub
Actions, and Jenkins

P5 No Automated Testing tools used. Although, it
supported with Automated Testing tools such as
PHPUnit

No Automated Testing tools used. Although, it
supported with Automated Testing such as
PHPUnit

P6 Includes Composer as its DM Includes Composer as its DM

P7 No Reusable Container Images used. Although, it
supported with docker for its Reusable Container
Images

No Reusable Container Images used. Although, it
supported with docker for its Reusable Container
Images

P8 No Automated Deployment. Although, it supported
with Automated Deployment tools such as Jenkins

No Automated Deployment. Although, it
supported with Automated Deployment tools
such as Jenkins

P9 No container orchestration used. Although, it
supported with Container Orchestration tools such
as Kubernetes

No container orchestration used. Although, it
supported with Container Orchestration tools
such as Kubernetes

P10 After some iteration, it has an average access speed
of 415ms after user login. And average speed of
280ms when user switch to another page

Our test results shows that it has an average
access speed of 550ms after user login. And
average speed of 135ms when user switch to
another page

P11 Require around 6 step for user to access data from
2 services

Require around 4 step for user to access data
from 2 services

P12 Available only in PHP with CodeIgniter web
frameworks

Available only in PHP with CodeIgniter web
frameworks

P13 Never previously used before as a use case study.
But have a potential community interest and
provided with its latest libraries

Never previously used before as a use case study.
But have a potential community interest and
provided with its latest libraries

Table 2. Benchmark Assessment Results

Journal of Theoretical and Applied Information Technology
15th June 2021. Vol.99. No 11
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2614

5. RESULT

 In order to assess whether each benchmark
candidate would satisfy each of our proposed
parameter, we have preliminarily examined each

application based on their provided documentation
from their respective software official sites. We also,
done some iteration and measures the average test
results on some of the parameter to gain overall test
results with the intention for a better assessment
result. The assessment result is summarized in Table.
2.
 According to Table. III, both architectures
are not fully satisfied all of our proposed parameters.
After some iteration in conducting assessments for
both applications, the overall results that we have
found stated that microservices tends to have a
slower accessing speed than a monolithic based
application. These rather contrary results might be
caused by our simple task application, not a heavy
workload application that runs maybe handle
hundreds of services and tons of traffics at a time.
Our assessments on both architecture models are
visible because we model and develop both
architectures in complementary of this study. And
both architecture models also had been described in
detail in section IV.
 Both architectures have their design pattern
uniqueness for the pattern-based design assessments.
With x-company's architecture based on three
different services each have three similar web
application provided with their own database. This
company's design pattern has a similar design pattern
with an architecture that consists of 3 monolithic
architecture. And recent microservices architecture
for each three different services, it was structured
upon four different independent web application that
work simultaneously. With one web application that
runs client-side to provide visibility or front-end for
the end-user to interact with and three web
application that runs server-side or back-end with
access to a database which then will be sent to the
client-side to be displayed. Each of these three
server-side is also provided with three different
databases based on each service.
 Both web application is not available to be
accessed publicly, considering one of the web
applications was developed for a private company
that operates internally and contains confidential
information. Thus, this confidentiality was also the
main reason why we named the architecture as an "x-
company's architecture". And for the microservices
architecture, we afraid we also cannot and will not
allow the application to be publicly available.
Because, it has a similar data pattern and attributes

for each of its Create, Read, Update, and
Delete (CRUD) functions that leads to the company's
confidential information. For its continuous
integration, both architectures were not provided

with continuous integration tools. Nonetheless, there
were plenty of CI tools out there that would support
this application such as TravisCI [21], GitHub
Actions [22], and Jenkins [23]. These supported
continuous integration tools will enable developer to
collaborate as a team to continuously develop the
application. Both applications were not provided
with automated testing tools. Yet supported
automated testing tools such as Selenium [24] and
PHP Unit [25] can be applied to this application to
perform special automated testing for each test case
unit. These tools can be considered as investments of
money and resources in the development process for
its versatility. From the dependency management
perspective, both applications were developed using
a common web application language namely PHP.
Both applications were also developed using a PHP-
written web framework namely CodeIgniter [26]
This chosen framework supports both the company's
and microservices architecture and provides us,
developers, with a standard way to build a dynamic
web application, thus increase developer
productivity. Then based on its Reusable Container
Images assessments, there were no container images
included in both applications. However, platform
such as docker was supported with updated official
container images for PHP application [27].
Unfortunately, automated deployment was also not
included for both applications. But, tools such as
Jenkins [23] which are also mentioned as supported
Continuous Integration tools for both applications
are also provided with automated build, tests, and
deployments. Other automated deployment tools
like Kubernetes [28] are also available and famously
known as an agnostic-language of microservices. In
this study, we have not yet developed the web
application using either container or orchestration.
Thus, orchestration is not implemented in both
applications because orchestration tools require an
embedded container in it. Which there were not any
containers applied on both applications. Even
though, orchestration tools such as Kubernetes are
available yet suitable to be implemented for a
microservices-based application [28].
 After we developed both applications, we
held some test based on user perspective while they
were using both applications. Our test results show
that for the previous x-company's application,
around 6 steps were required for them to finally
access data from 2 different services. While in

Journal of Theoretical and Applied Information Technology
15th June 2021. Vol.99. No 11
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2615

microservices architecture, each user only required
to do around 4 steps in order for them to access data
from 2 different services. From both performance
perspective, unfortunately microservices was falling
behind with an average of 550ms needed while on
going home site is loading after the user had already
login. While on the company's architecture, it only
needed around 415ms for the home page to fully
loaded after the user had already login to the web
application. Being a self-developed application, as
we had also mentioned before, it was built upon PHP
language. Using PHP-written web framework
namely CodeIgniter. We use the same framework to
develop both applications to avoid bias on the
benchmark results. By publicly restricted and only
developed in complementary to this study, thus this
application has never been used before as a study
case.

6. LIMITATION

 Just like any other research, this research
has a number of limitations. One of those obvious
limitations are both applications are self-developed,
with developers that have a least amount of
experience in developing microservices architecture.
Other limitation are both of the applications are
relatively simple, thus it does not represent features
of microservices on its full potential and scale. This
rather qualitative study might not cover aspects of
microservices that are actually more crucial to be
assessed.

7. CONCLUSION

 This conducted study mainly offer an initial
set of benchmark parameter in comparing two
different web application to be used as an empirical
software architecture research as well as
implementing microservices architecture. Both
assessed applications is provided with an illustrated
architecture models and also developed using
identical language and framework to provide either
equal comparison as well as consistent test results.
Discussed parameter for the assessments on this
study was ranged across architecture, DevOps, and
other general requirements related. Our early results
indicate that microservices application for a small-
scale service application, tends to run slower than the
company's architecture. This rather contrary result
happens caused by our lack experience in developing
a proper microservices architecture and a small scale
testing that might not represents microservices in its
full potential.

8. FUTURE WORK

 Above all, we hope our study can be useful
for the community, research, and practitioners that
saw this architecture trends as a potential future. As
what we also did with [20], by trying to implement
their assessments. Thus, also pass the baton from
previous study as a start point for the discussion of
what constitutes an 'ideal' benchmark criterion for an
empirical microservices research.

REFERENCES:

[1] J. Thönes, “Microservices,” IEEE Softw.,
vol. 32, no. 1, 2015, doi:
10.1109/MS.2015.11.

[2] M. Fowler and J. Lewis, “Microservice,”
2014.
https://martinfowler.com/articles/microserv
ices.html#:~:text=In short%2C the
microservice architectural,often an HTTP
resource API.

[3] S. Baškarada, V. Nguyen, and A. Koronios,
“Architecting Microservices: Practical
Opportunities and Challenges,” J. Comput.
Inf. Syst., vol. 60, no. 5, pp. 428–436, 2020,
doi: 10.1080/08874417.2018.1520056.

[4] S. Newman, Building Microservices.
O’Reilly Media, 2015.

[5] M. S. Hamzehloui, S. Sahibuddin, and A.
Ashabi, “A study on the most prominent
areas of research in microservices,” Int. J.
Mach. Learn. Comput., vol. 9, no. 2, pp.
242–247, 2019, doi:
10.18178/ijmlc.2019.9.2.793.

[6] H. Vural, M. Koyuncu, and S. Guney, “A
systematic literature review on
microservices,” Lect. Notes Comput. Sci.
(including Subser. Lect. Notes Artif. Intell.
Lect. Notes Bioinformatics), vol. 10409
LNCS, no. July, pp. 203–217, 2017, doi:
10.1007/978-3-319-62407-5_14.

[7] D. Taibi, V. Lenarduzzi, and C. Pahl,
“Architectural patterns for microservices: A
systematic mapping study,” CLOSER 2018 -
Proc. 8th Int. Conf. Cloud Comput. Serv.
Sci., vol. 2018-Janua, no. Closer 2018, pp.
221–232, 2018, doi:
10.5220/0006798302210232.

[8] L. De Lauretis, “From monolithic
architecture to microservices architecture,”
Proc. - 2019 IEEE 30th Int. Symp. Softw.
Reliab. Eng. Work. ISSREW 2019, pp. 93–
96, 2019, doi:
10.1109/ISSREW.2019.00050.

[9] G. Liu, B. Huang, Z. Liang, M. Qin, H.

Journal of Theoretical and Applied Information Technology
15th June 2021. Vol.99. No 11
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2616

Zhou, and Z. Li, “Microservices:
architecture, container, and challenges,”
2020 IEEE 20th Int. Conf. Softw. Qual.
Reliab. Secur. Companion Microservices,
pp. 629–635, 2020, doi: 10.1109/qrs-
c51114.2020.00107.

[10] M. Fowler, “Bounded Context,” 2012.
http://martinfowler.com/bliki/BoundedCont
ext.html (accessed Jan. 19, 2021).

[11] R. H. Steinegger, P. Giessler, B. Hippchen,
and S. Abeck, “Overview of a Domain-
Driven Design Approach to Build
Microservice-Based Applications,” Third
Int. Conf. Adv. Trends Softw. Eng.
(SOFTENG 2017), no. April, pp. 79–87,
2017, [Online]. Available:
https://www.thinkmind.org/index.php?view
=article&articleid=softeng_2017_4_30_641
38%0Ahttps://www.researchgate.net/public
ation/316492773_Overview_of_a_Domain-
Driven_Design_Approach_to_Build_Micro
service-Based_Applications.

[12] N. Dragoni et al., “Microservices:
Yesterday, today, and tomorrow,” Present
Ulterior Softw. Eng., no. June, pp. 195–216,
2017, doi: 10.1007/978-3-319-67425-4_12.

[13] M. Cardarelli, A. Di Salle, L. Iovino, I.
Malavolta, P. Di Francesco, and P. Lago,
“An extensible data-driven approach for
evaluating the quality of microservice
architectures,” Proc. ACM Symp. Appl.
Comput., vol. Part F1477, pp. 1225–1234,
2019, doi: 10.1145/3297280.3297400.

[14] C. Richardson, “Microservice Architecture
pattern,” 2018.
https://microservices.io/patterns/microservi
ces.html (accessed Jan. 20, 2021).

[15] T. Hunter II, Advanced Microservices. 2017.
[16] D. Bermbach, E. Wittern, and S. Tai, Cloud

service benchmarking: Measuring quality of
cloud services from a client perspective.
Cham: Springer International Publishing,
2017.

[17] M. Grambow, L. Meusel, E. Wittern, and D.
Bermbach, “Benchmarking microservice
performance: A pattern-based approach,” in
Proceedings of the ACM Symposium on
Applied Computing, Mar. 2020, pp. 232–
241, doi: 10.1145/3341105.3373875.

[18] A. Avritzer, V. Ferme, A. Janes, B. Russo,
H. Schulz, and A. Van Hoorn, “A
quantitative approach for the assessment of
microservice architecture deployment
alternatives using automated performance
testing,” 2018, Accessed: Jan. 21, 2021.
[Online]. Available:
https://www.docker.com/.

[19] M. Grambow, E. Wittern, and D. Bermbach,
“Benchmarking the performance of
microservice applications,” ACM SIGAPP
Appl. Comput. Rev., vol. 20, no. 3, pp. 20–
34, 2020, doi: 10.1145/3429204.3429206.

[20] C. M. Aderaldo, N. C. Mendonça, C. Pahl,
and P. Jamshidi, “Benchmark Requirements
for Microservices Architecture Research,”
Proc. - 2017 IEEE/ACM 1st Int. Work.
Establ. Community-Wide Infrastruct. Archit.
Softw. Eng. ECASE 2017, no. November, pp.
8–13, 2017, doi: 10.1109/ECASE.2017.4.

[21] “TravisCI,” TravisCI. https://travis-ci.com/.
[22] “GitHub Action,” GitHub.

https://docs.github.com/en/actions.
[23] “Jenkins,” Jenkins. https://www.jenkins.io/.
[24] “Selenium,” Selenium.

https://www.selenium.dev/.
[25] “PHP Unit,” phpunit.de. https://phpunit.de/.
[26] “CodeIgniter,” codeigniter.

https://www.codeigniter.com/.
[27] “Docker,” docker.

https://www.docker.com/.
[28] “Kubernetes,” kubernetes.

