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ABSTRACT 
 

There is an extensive class of neural networks, the functioning of which can be described in terms of binary 
logic: a set of logical variables describing the state of the inputs is associated with a set of logical variables 
characterizing the state of the outputs. Such networks can be described in terms of logical functions, in 
particular, through the Zhegalkin polynomial. This imposes significant restrictions on the variability of the 
neuron weights. This fact is of significant interest from the point of view of overcoming the thesis about the 
logical opacity of neural networks, which is associated with the most common approaches to training neural 
networks, which are actually the results of computer experiments. Therefore, it can be considered that 
neuroscience is predominantly an empirical science, with the only difference that its foundations are not 
laboratory, but computer experiments. An important step towards overcoming the thesis about the logical 
opacity of neural networks is to establish restrictions on the variability of the weight coefficients, i.e. proof 
of the fact that in reality neurons can perform only a limited set of operations that can be reduced to logical 
ones. At the same time, there is no reason to assert that artificial neural networks must necessarily be built on 
the basis of the apparatus of binary logic. This paper shows that appliance of ternary logic in combination 
with a geometric interpretation of the operation of neural networks allows us to reveal the existence of more 
than strict restrictions on the variability of the weight coefficients of a neural network. An exhaustive 
description of a neuron with four inputs, which shows how the proposed approach can be extended to the 
analysis of neurons with an arbitrary number of inputs.  
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1. INTRODUCTION  
 

Currently, one of the main tools for creating 
artificial intelligence systems are neural networks 
[1,2], which are widely used. Now there are a 
significant number of teaching methods, which 
differ significantly in terms of algorithmic basis and 
purpose [3,4]. However, there is a common 
distinctive feature characteristic of the vast majority 
of neural networks used in practice. It is assumed 
that the weight coefficients that determine the 
response of an individual formal neuron to a set of 
logical variables applied to its inputs can change 
continuously [5]. This fact makes it possible to use 
various methods of teaching neural networks, which 
are based on a step-by-step change in the values of 
the coefficients. In particular, neural networks have 
become widespread, the training of which are carried 
out through the use of continuous activation 
functions, for example, sigmoidal [6]. The only 
exception is the case of threshold activation 
functions, but in practice they are practically not 

used, since the existing methods of training neural 
networks are mainly focused on continuous 
activation functions [7]. Obviously, the continuity of 
the activation functions leads to the fact that the 
weight coefficients formed as a result of training can 
also take on values that change continuously. 

 
This approach has proven itself in practice, 

however, in any attempt to overcome the thesis about 
the logical opacity of neural networks, which is often 
repeated in the literature, especially popular [8,9], 
one way or another, it will be necessary to raise again 
and again the question of the possibility of direct 
calculation of weight coefficients of the neural 
network performing the specified functions. We 
emphasize that even a partial solution to this issue, 
for example, limiting the search area for the desired 
values of the coefficients, is of significant interest, 
since the complexity of neural networks, the 
procedures for their training, de facto based on the 
empirical selection of coefficients, will become 
increasingly cumbersome. Currently, this issue is 
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becoming undoubtedly relevant, since with the 
development of artificial intelligence systems [10], 
mainly using trained neural networks, they begin to 
perform a variety of functions (such as computer 
vision, autonomous control of complex systems, 
analysis and forecast, classification), while 
becoming more and more complex [11]. 

 
It is especially important to overcome the thesis 

about the logical opacity of neural networks from the 
questioning the essence of intelligence as such [12]. 
We emphasize that this question remains largely 
open, and it is this fact, in particular, that gives a rise 
to numerous discussions [13] as whether computing 
and expert systems can be attributed to artificial 
intelligence or not. As emphasized in [12, 14, 15], 
this issue will not be removed until the essence of 
intelligence as such is revealed, for which, among 
other things, it is necessary to use the methods of the 
theory of neural networks and the methods of 
philosophy in parallel, in other words - starting from 
the thesis about the convergence of natural science 
and humanitarian knowledge. 

 
Furthermore, the most general proof that very 

strict constraints can be imposed on the variability of 
the weight coefficients of a neural network follows 
directly from the application of the Zhegalkin 
polynomial to the description of the operation 
performed by the neurons of the network [16]. 
Indeed, if an individual neuron of the network 
associates a set of logical variables describing the 
state of its inputs with one logical variable that 
describes the state of its output, then the operation 
performed by this neuron can be represented in its 
most general form as 

 
𝑓ሺ𝑥ଵ, 𝑥ଶ, 𝑥ଷ, … , 𝑥ேሻ ൌ

∑ 𝑓ሺ𝜎ଵ, 𝜎ଶ, 𝜎ଷ, … , 𝜎ேሻ𝑥ଵ
ఙభ𝑥ଶ

ఙమ𝑥ଷ
ఙయ … 𝑥ே

஢ొ
ఙభ,ఙమ,ఙయ,…,ఙಿ  

                                                                 (1) 
 
where 𝑁 is the number of neuron inputs, the 

summation is carried out over all possible 
combinations of logical variables in the sequence 
ሺ𝜎ଵ, 𝜎ଶ, 𝜎ଷ, … , 𝜎ேሻ, each of which can take the value 
of either a logical zero or a logical one, the 
designation 𝑥௜

ఙ೔ has the following meaning: 
 

𝑥௜
ఙ೔ ൌ ൜

𝑥௜,   𝜎௜ ൌ 1  
�̅�௜,   𝜎௜ ൌ 0                  (2) 

 
where the symbol �̅�௜ denotes the operation of 

logical inversion 
 

�̅�௜ ൌ 1 ൅ 𝑥௜                         (3) 

Formula (1), in particular, shows that there are no 

more than 2ଶಿ
 possible options describe the 

functioning of a particular neuron of the type under 
consideration, and this number does not depend on 
the type of activation function. This also implies to 
the fact that there is a countable number of possible 
combinations of weight coefficients, which does not 

exceed 2ଶಿ
. 

 
This conclusion, however, does not in itself have 

significant practical significance, since we are 
talking about combinatorically large numbers. 
Nevertheless, it is possible to narrow the variability 
of the neural network weight coefficients further, if 

we consider that the indicator 2ଶಿ
 corresponds to the 

number of logical operations at all, i.e. here, the 
specificity of operations performed by neurons is not 
considered, where the weighted sum of values 
describing the state of its inputs is calculated [2]. 

 
Based on the methods of projective geometry, 

such attempt was made in [17]. It was shown that 
while constructing a neural network, the weight 
coefficients that specify the operation of an 
individual neuron can be selected from a certain 
finite set of sequences. Specifically, for each j-th 
neuron of the network, a certain set of weight 
coefficients 

 
𝑊௝ ൌ ൫𝑤௝ଵ, 𝑤௝ଶ, … , 𝑤௝ே൯,  (4) 

 
obtained in the process of training a neural 

network can be replaced with a set 
 

𝑊௝
଴ ൌ ൫𝑤௝ଵ

଴ , 𝑤௝ଶ
଴ , … , 𝑤௝ே

଴ ൯,  (5) 
 
where the values 𝑤௝ே

଴  take on certain discrete 
values. 

 
However, the indication of a specific set, which 

completely exhausts the choice of sequences of the 
form (5), when using the methods of projective 
geometry, encounters certain computational 
difficulties. Moreover, these methods are not very 
clear. 

 
In this work, an attempt is made to develop a 

visual method for constructing a set that exhausts 
admissible sequences of the form (5). It is shown that 
the construction of such a set corresponds to the 
transition to the description of considering type of 
neural networks in the language of ternary logic.  
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Our proposed approach creates the basis for a 
significant modernization of the basic approaches to 
the creation of artificial intelligence systems, at least 
those of them that are based on the use of neural 
networks. Indeed, at present, the overwhelming 
majority of results in this area have been obtained on 
a purely empirical basis using computer 
experiments. The true algorithm for the functioning 
of an empirically tuned neural network remains 
unknown, which makes many authors talk about 
their logical opacity. However, reducing the 
operations performed by the neural network to 
logical ones will allow, at least, to explicitly reveal 
these algorithms, i.e. establish the set of logical 
operations that the neural network performs. At the 
next stage, this approach will allow us to proceed to 
the construction of explicitly written algorithms for 
the functioning of neural networks.    

 
2. ESTIMATION OF THE VARIABILITY 
OF WEIGHT COEFFICIENTS` SETS BASED 
ON THE NEURONS FUNCTIONING 
DESCRIPTION USING TERNARY LOGIC 
 

Consider a basic expression describing the 
functioning of an individual neuron in a network 
with N inputs. 

 
𝑌 ൌ 𝜃ሺ𝑤ଵ𝑋ଵ ൅ 𝑤ଶ𝑋ଶ ൅ ⋯ ൅ 𝑤ே𝑋ேሻ  (6) 

 
From the point of view of approach being 

developed, in which logical operations performed by 
neurons are de facto considered, without loss of 
generality, we can assume that in this record the 
activation function is stepwise 

 

𝜃ሺ𝑥ሻ ൌ ቄ
െ1, 𝑥 ൑ 0
൅1, 𝑥 ൐ 0                  (7) 

 
The proof of this statement will be given below. 
 
For the convenience of further use, we will 

assume that all variables appearing in formula (6) 
and similar ones can only take discrete values -1 and 
+1. 

 
𝑌௜, 𝑋௜ ∈ ሺെ1, ൅1ሻ                 (8) 

 
The choice of these values is dictated only by 

geometric analogies, which will be used in the 
future. Such a choice of variables does not in any 
way affect the generality of its consideration, since 
it is always possible to establish a correspondence 
between the above values and logical variables in 
accordance with the formula 

൜
െ1 → logical 0
൅1 → logical 1             (9) 

 
The values ± 1 can also be considered as values 

that a ternary logic variable can take or as elements 
of the Galois field 𝐺𝐹ሺ3ሻ, on which the following 
addition and multiplication operations are defined. 

 
1 ൅ 1 ൌ ሺെ1ሻ; ሺേ1ሻ ൅ 0 ൌ ሺേ1ሻ;  

ሺെ1ሻ ൅ ሺെ1ሻ ൌ 1            (10) 
 

ሺേ1ሻ ∙ 1 ൌ ሺേ1ሻ; ሺേ1ሻ ∙ 0 ൌ 0;  
ሺെ1ሻ ∙ ሺെ1ሻ ൌ 1                      (11) 

 
Formula (10) is actually the rules for adding 

integers modulo 3. 
Note that formula (6) is often used in the form 
 

𝑌 ൌ 𝜃ሺ𝑤ଵ𝑋ଵ ൅ 𝑤ଶ𝑋ଶ ൅ ⋯ ൅ 𝑤ே𝑋ே ൅ 𝑋଴ሻ 
                                                               (12) 

 
However, if a neuron with an arbitrary number of 

inputs is considered, the value 𝑋଴ can be excluded 
from consideration without loss of generality, i.e., 
put it equal to zero. 

 
Formula (6) admits a transparent geometric 

interpretation [12]. Namely, consider the hyperplane 
 

𝑤ଵ𝑋ଵ ൅ 𝑤ଶ𝑋ଶ ൅ ⋯ ൅ 𝑤ே𝑋ே ൌ 0        (13) 
 
This hyperplane divides the 𝑁-dimensional 

space ℝேi into two half-spaces. If a point with 
coordinates ሺ𝑋ଵ, 𝑋ଶ, … , 𝑋ேሻ falls into one of these 
half-spaces, then function (6) takes on the value െ1, 
if in the other, then ൅1. Moreover, since 𝑋଴ ൌ 0, 
then plane (13) passes through the origin. 

 
In fact, we are talking about the fact that the 

hyperplane (13) cuts the hypercube with edge 2 into 
two equal parts. Accordingly, the variability of the 
sequences of weight coefficients, as noted in [17], is 
determined by the topology of the mutual 
arrangement of those vertices that remain in the 
same half-space. There is a fairly wide range of 
changes in the specific values of the weighting 
factors, at which the above topology will remain 
unchanged, i.e., from the point of view of neuron 
functioning, two planes dividing the set of 
hypercube vertices into the same subsets can be 
considered as insignificantly different. We 
emphasize that this applies only to hyperplanes in 
general position, i.e., to those that do not pass 
through the vertices of the hypercube. If this 
condition is not satisfied, then a small change in the 
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coordinates of the hyperplane leads to qualitative 
differences between the subsets indicated above. 

 
The hyperplane equation can be specified in 

various ways. In particular, if such a plane passes 
through the origin, then it can be given by an 
equation of the form 

 

𝑑𝑒𝑡 ൮

𝑥ଵ 𝑥ଶ

𝑎ଵ
ଶ 𝑎ଶ

ଶ
⋯ 𝑥ே

⋯ 𝑎ே
ଶ

⋮ ⋮
𝑎ଵ

ேିଵ 𝑎ଶ
ேିଵ

⋱ ⋮
⋯ 𝑎ே

ேିଵ

൲ ൌ 0 (14) 

 
where ൫𝑎ଵ

௝, 𝑎ଶ
௝, … , 𝑎ே

௝ ൯  are the coordinates of 𝑁 െ
1  fixed points in the space  ℝேand ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥ேሻ 
are the current coordinates included in the 
hyperplane equation. 

 
Indeed, if the points with coordinates 

൫𝑎ଵ
௝, 𝑎ଶ

௝, … , 𝑎ே
௝ ൯  and ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥ேሻ  lie in the same 

hyperplane, this means that the equations 
 

ቊ𝑤ଵ𝑎ଵ
௝ ൅ 𝑤ଶ𝑎ଶ

௝ ൅ ⋯ ൅ 𝑤ே𝑎ே
௝ ൌ 0

𝑤ଵ𝑥ଵ ൅ 𝑤ଶ𝑥ଶ ൅ ⋯ ൅ 𝑤ே𝑥௡ ൌ 0
, 𝑗 ൌ

1,2, … , 𝑁 െ 1                        (15) 
 
This system of equations can be considered as 

equations for the coordinates of the straight line 
ሺ𝑤ଵ, 𝑤ଶ, … , 𝑤ேሻ. This system is homogeneous; 
therefore, it has a solution only if its determinant is 
zero, which is expressed by formula (14). We also 
emphasize that system (15) includes 𝑁 െ 1 sets of 
coordinates corresponding to 𝑁 െ 1 points in the 
space ℝே. This corresponds to the fact that one and 
only one plane can be drawn through 𝑁, which 
coordinates do not correspond to linearly 
independent vectors. So, in three-dimensional space 
through three points that do not lie on one straight 
line, one and only one plane can be drawn. 

 
Expanding determinant (14) along the top row, 

we find that the coordinates of the straight line are 
related to the coordinates of the point  
ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥ேሻ by a relation of the form (13), and 
there is 

 
𝑤௜ ൌ 𝐴ଵ௜, 𝑖 ൌ 1,2, … , 𝑁 (16) 

 
where 𝐴ଵ௜ are the algebraic complements of the 

elements of the first row of the determinant (14), in 
particular, 

 

𝐴ଵଵ ൌ 𝑑𝑒𝑡 ቌ
𝑎ଵ

ଶ ⋯ 𝑎ே
ଶ

⋮ ⋱ ⋮
𝑎ଵ

ேିଵ ⋯ 𝑎ே
ேିଵ

ቍ        (17) 

 
You can select points that define a hyperplane in 

different ways. In particular, all these points can be 
chosen on the edges of a hypercube with edge 2, all 
vertices of which have coordinates 

 
𝑄ప⃗

௝ ൌ ൫𝑏ଵ
௝, 𝑏ଶ

௝, … , 𝑏ே
௝ ൯; 𝑏௜

௝ ൌ േ1; 
𝑗 ൌ 1,2, … , 𝑁 െ 1                    (18) 

 
where multi-index 𝚤 and specifies a specific 

vertex (specific sequence of characters). 
 
Moreover, as it follows, among other things, 

from the results of [17], planes in general position 
can be specified by points lying exactly in the center 
of each of the edges. We emphasize that for the 
purposes pursued, it is sufficient to consider only 
planes in general position, i.e., those that, at small 
displacements of the reference points, will ensure the 
division of hypercube`s vertices set into the same 
subsets. 

 
The coordinates of such points are specified by 

sequences of the form (18) with the difference that 
one and only one of the coordinates takes on a value 
equal to zero. The selection of a specific edge can be 
displayed by the following entry 

 
𝑄ప⃗,௞

௝ ൌ ൫𝑏ଵ
௝, 𝑏ଶ

௝, … , 𝑏ே
௝ ൯; 𝑏௜ஷ௞

௝ ൌ േ1; 𝑏௞
௝ ൌ 0;  

𝑗 ൌ 1,2, … , 𝑁 െ 1           (19) 
 
Let us show that such a choice of points defining 

the coordinates of the hyperplanes characterizing the 
functioning of neurons allows us to estimate the 
variability of the neural networks` weight 
coefficients. This will prove the stated statement that 
much more serious restrictions are imposed on their 
variability than it follows from the direct application 
of the Zhegalkin polynomial [16]. 

 
Consider expressions for algebraic complements 

(17), considering that the rows in matrix (14), 
starting with the second, satisfy condition (19). We 
also consider that the determinants of the form (17) 
have a direct geometric interpretation. This is the 
volume of a parallelepiped, the edges of which are 
specified by vectors, the coordinates of which 
correspond to the rows of the determinant of the 
form (17) in the 𝑁 -dimensional space. All these 
vectors are located inside a hypercube with edge 2 
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and center at the origin. Therefore, for the volume of 
a given body, the estimate is valid 

 
|𝑉ே| ≲ 2ேାଵ                     (20) 

 
Considering the fact that the number of 

coordinates of a hyperplane in an N-dimensional 
space is exactly N, for the variability of the 
sequences of weight coefficients of a neuron with N 
inputs the following estimate is valid 

 
𝑞 ≲ 2ሺேାଵሻே                    (21) 

 
This assessment follows from the following 

considerations. The volume in expression (20) is 
taken modulo, since the calculation of the 
determinant of the form (17) gives the oriented 
volume, i.e. the value of an individual weighting 
factor varies within 

 
െ2ேାଵ ≲ 𝑤௝ ≲ 2ேାଵ             (22) 

 
At the same time, the values of the weight 

coefficients calculated through algebraic additions 
of the form (17), when choosing the reference points 
at the center of the edges of the 2-hypercube, are 
certainly integers, i.e. it follows from (22) that the 
number of possible options is indeed determined by 
the number 2ேାଵ. Estimate (21) is obtained if we 
consider that in order to define the entire plane, 𝑁 
points are needed, i.e. q is the variability of the 
sequence as a whole, but not of the individual 
coefficient. 

 
Note that the obtained estimate (21) is indeed 

much more stringent than the one that follows 
directly from the use of the Zhegalkin polynomial, 

given by the exponent 2ଶಿ
. In reality, this calculation 

is also overestimated, which can be demonstrated by 
specific examples of using the proposed approach to 
the geometric classification of neurons, which is 
actually based on ternary logic. The term "ternary 
logic" is used in the following sense: all possible 
sequences of the weighting coefficients of an 
individual neuron in the network are marked with a 
set of sequences in which only three values -1, 0 and 
+1 appear. This corresponds to the use of ternary 
logic [18, 19], which will be used below to prove the 
possibility of extending the developed approach to 
neural networks with arbitrary activation functions 
with a limited transition region. 
 
 

3. NEURONS WITH FOUR INPUTS: 
GEOMETRIC CLASSIFICATION 
 

Let's consider the application of the proposed 
approach to the description of a neuron with four 
inputs. As noted in [17], the situation is qualitatively 
different depending on whether the neuron has an 
even or odd number of inputs, and a neuron with 
three inputs was analyzed in detail in the cited work. 

 
The classification of neurons by the nature of the 

weighting coefficients` sequences can indeed be 
given in geometric language, which is, not 
surprisingly, the most illustrative for the case of 
neurons with three and four inputs. 

 
Since we are considering a 4-hyperplane passing 

through the origin, cutting a four-dimensional cube 
into two identical parts, it can be visualized using a 
three-dimensional cube. It displays 8 vertices out of 
16; the plane under consideration passes 
symmetrically relative to the other eight vertices. 
Otherwise, this three-dimensional cube is formed by 
those vertices of the 4-cube, for which the value of 
the fourth coordinate 𝑥ସ is equal to 1. 

 
We will classify triples of points defining a 4-

hyperplane according to the following scheme. 
 
In Figure- 1 shows the top face of the considering 

cube, two points on it are marked, a starting point to 
construct hyperplanes belonging to different classes. 
Let us take as the "initial" position of the hyperplane 
where the upper face of the considering cube lies in 
it. 

 

 
Figure 1: The scheme of the points location, used to 

construct a geometric classification of neurons with four 
inputs, on the upper edge (Position 1). 

 
We will rotate this plane around an axis passing 

through the points shown in Fig. 1 until the plane 
passes through a point located in the center of one of 
the faces. The corresponding arrangement of the 
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points defining the hyperplane is shown in Fig. 2a. 
Figure 2b shows the projection of the location of 
these points on the plane passing through the 
diagonal of the upper face and parallel to the vertical 
edges of the cube. Figure 2 emphasizes that in this 
position of the hyperplane, it cuts off three vertices 
of the three-dimensional cube corresponding to the 
value 𝑥ସ ൌ 1, i.e., the scalar product of the radius 
vectors of these three points in the 4-space by the 
vector 𝑤ሬሬ⃗ ൌ ሺ𝑤ଵ, 𝑤ଶ, 𝑤ଷ, 𝑤ସሻ is positive. 
Accordingly, the same 4-plane cuts off 5 vertices of 
the three-dimensional cube corresponding to the 
value 𝑥ସ ൌ െ1. Of course, provided that the above 
vector 𝑤ሬሬ⃗  changes sign, in one case 5 and 3 vertices 
of three-dimensional cubes corresponding to the 
values 𝑥ସ ൌ 1 and 𝑥ସ ൌ െ1, respectively, become 
clipped. The value of the coordinate 𝑥ସ ൌ 1  is not 
shown in Figure 2, since it is the same for all selected 
points 

 

 
a) 
 
 
 

 
b) 

Figure 2:  The scheme of the points location on the 
edges of the cube, in which the hyperplane specified by 
them cuts off 3 or 5 points (at position 1 of the original 
two points, Fig. 1); three-dimensional construction (a) 

and construction in projection (b). 

 
With this choice of the points location, the 4-

plane equation takes on a specific form 
 

𝑑𝑒𝑡 ቌ

𝑥ଵ 𝑥ଶ
0 1

𝑥ଷ 𝑥ସ
1 1

െ1 0
1 െ1

1 1
0 1

ቍ ൌ 0        (23) 

 
Accordingly, the coordinates of the vector 𝑤ሬሬ⃗   are 

given by the expressions 
 

wଵ ൌ det ൭
1 1 1
0 1 1

െ1 0 1
൱ ൌ 1 െ 1 ൅ 1 ൌ 1 

(24) 
 

െwଶ ൌ det ൭
0 1 1

െ1 1 1
1 0 1

൱ ൌ 0 ൅ 2 െ 1 ൌ 1     

(25) 
 

wଷ ൌ det ൭
0 1 1

െ1 0 1
1 െ1 1

൱ ൌ 0 ൅ 2 ൅ 1 ൌ 3  

(26) 
 

െwସ ൌ det ൭
0 1 1

െ1 0 1
1 െ1 0

൱ ൌ 0 ൅ 1 ൅ 1 ൌ 2

 (27) 
 

Or 
 

𝑤ሬሬ⃗ ൌ ሺ1, െ1,3, െ2ሻ            (28) 
 
We emphasize that the obtained result is de facto 

related to the whole class of 4-planes. Namely, we 
change the sign of all elements of the second column 
of matrix (23), except for what is in the first row, i.e., 
consider the 4-plane given by the equation 

 

𝑑𝑒𝑡 ቌ

𝑥ଵ 𝑥ଶ
0 െ1

𝑥ଷ 𝑥ସ
1 1

െ1 0
1 1

1 1
0 1

ቍ ൌ 0       (29) 

 
The location of the points defining this 4-plane is 

shown in Fig. 3. The figure emphasizes that these 
points are obtained from the initial configuration 
(Fig. 2) by the operation of reflection relative to the 
coordinate plane 𝑥ଶ ൌ 0. 
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a) 

 

 
b) 

Figure 3:  The configuration of points located on the 
edges of the three-dimensional cube, obtained by the 

operation of reflection of the configuration shown in Fig. 
2, reflection relative to the plane 𝑥ଶ ൌ 0); three-
dimensional construction (a) and construction in 

projection (b). 

 
All determinants of the form (24) - (27), by 

ensuring the calculation of the coordinates of the 4-
plane, change sign, since when passing to matrix 
(29) from matrix (23) all elements of one of their 
columns change sign. The only exception is the 𝑤ଶ,  
component, since the column that changed the sign 
in the corresponding determinants does not appear. 
Accordingly, vector (28) turns into vector 

 
𝑤ሬሬ⃗ ൌ ሺ1,1,3, െ2ሻ           (30) 

 
This reflection operation can be applied to other 

columns, to pairs of columns, or to all of them at 
once. All these operations correspond to certain 
symmetry operations applied to the triplet of points 
shown in Fig. 2, which leave their relative position 
unchanged. 

 
Hence it follows that the chosen topology does 

indeed generate a whole class of 4-planes, which in 
general case are characterized by vectors 

 
𝑤ሬሬ⃗ ൌ ሺേ1, േ1, േ3, േ2ሻ              (31) 

 

where characters can be chosen in arbitrary 
combinations. 

 
Following that approach, we can summarize the 

result obtained in [12], where it was shown that all 
non-degenerate neurons with three inputs de facto 
correspond to vectors 

 
𝑤ሬሬ⃗ ൌ ሺേ1, േ1, േ1ሻ         (32) 

 
where characters can also be chosen in arbitrary 

combinations. 
 
The same conclusion proves that it is really 

possible to propose a geometric classification of 
neurons based on the analysis of the topology of the 
mutual arrangement of points defining a hyperplane 
dividing a hypercube centered at the origin into two 
parts. 

 
The next configuration of points defining a 4-

plane can be reached further by rotating the plane 
passing through the points shown in Fig. 1, until the 
next intersection with a point located in the center of 
the edge of the three-dimensional cube (Fig. 4). 

 

 
a) 

 

 
b) 

Figure 4: The scheme of the location of points on the 
edges of the cube, in which the hyperplane specified by 

cuts off 4 points (at position 1 of the original two points, 
Fig. 1); three-dimensional construction (a) and 

construction in projection (b). 
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The following equation of the 4-plane 
corresponds to such an arrangement of three 
reference points. 

 

𝑑𝑒𝑡 ቌ

𝑥ଵ 𝑥ଶ
0 1

𝑥ଷ 𝑥ସ
1 1

െ1 0
1 0

1 1
െ1 1

ቍ ൌ 0    (33) 

 
In accordance with the above, the coordinates of 

this hyperplane are determined by the following 
expressions. 

 

𝑤ଵ ൌ det ൭
1 1 1
0 1 1
0 െ1 1

൱ ൌ 2     (34) 

 

െ𝑤ଶ ൌ det ൭
0 1 1

െ1 1 1
1 െ1 1

൱ ൌ 2      (35) 

 

𝑤ଷ ൌ det ൭
0 1 1

െ1 0 1
1 0 1

൱ ൌ 2    (36) 

 

െ𝑤ସ ൌ det ൭
0 1 1

െ1 0 1
1 0 െ1

൱ ൌ 0     (37) 

 
From where 
 

𝑤ሬሬ⃗ ൌ ሺേ2, േ2, േ2,0ሻ              (38) 
 
Equation (38) immediately considers that this 

configuration can be transformed using the operation 
of reflection relative to the coordinate planes. There 
is a well-defined class of 4-planes, the coordinates of 
which differ in the choice of a combination of signs 
in formula (38); it can be anything. 

It is essential that the neuron corresponding to 
such a hyperplane is degenerated, i.e., the number of 
its entries is de facto three, not four. Indeed, 
substituting expression (38) into formula (6) 
describing the functioning of a neuron, we obtain 

 
𝑌 ൌ 𝜃ሺ𝑤ଵ𝑋ଵ ൅ 𝑤ଶ𝑋ଶ ൅ 𝑤ଷ𝑋ଷሻ,      (39) 

 
which corresponds to a neuron with three inputs. 
 
To illustrate the fact that the coordinates of the 4-

plane do not depend on the choice of points on the 
edges of the cube (if these points lie in this plane), 
consider the arrangement of the defining points 
shown in Fig. 5. We emphasize that this example, 
despite the apparent obviousness, demonstrates a 
very remarkable fact: the coordinates of a 
hyperplane do not depend on the choice of points on 

the edges of the cube, if only the set of vertices cut 
off by this plane remains unchanged. Otherwise, we 
are de facto talking about the choice of the vertices` 
set cut off by the hyperplane, which specific edges 
are used to mark such a partition of the vertices set, 
is secondary. 

 

 
a) 

 
b) 
 

Fig. 5. An alternative of the points location on the 
edges of the cube, in which the hyperplane specified by 
them cuts off 4 points (at position 1 of the original two 
points, Fig. 1); three-dimensional construction (a) and 

construction in projection (b). 

The hyperplane defined by such an arrangement 
of points is described by the following equation 

 

𝑑𝑒𝑡 ቌ

𝑥ଵ 𝑥ଶ
0 1

𝑥ଷ 𝑥ସ
1 1

െ1 0
1 1

1 1
0 1

ቍ ൌ 0         (40) 

 
that is, the coordinates of the 4-plane are given 

by the expressions 
 

𝑤ଵ ൌ det ൭
1 1 1
0 1 1
1 0 1

൱ ൌ 1       (41) 

 

െ𝑤ଶ ൌ det ൭
0 1 1

െ1 1 1
1 0 1

൱ ൌ 1         (42) 
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𝑤ଷ ൌ det ൭
0 1 1

െ1 0 1
1 1 1

൱ ൌ 1         (43) 

 

െ𝑤ସ ൌ det ൭
0 1 1

െ1 0 1
1 1 0

൱ ൌ 0         (44) 

 
As a result, 
 

𝑤ሬሬ⃗ ൌ ሺേ1, േ1, േ1,0ሻ             (45) 
 
The possibility of choosing an arbitrary 

combination of signs in formula (45) is determined 
by the same symmetry considerations as above. It is 
also seen that expression (45) coincides with 
expression (38) up to a constant factor, i.e., 
configuration Fig. 4 and Fig. 5, as one would expect, 
do indeed define the same plane. 

 
The next class of 4-planes can also be found in 

the same way as above. The corresponding 
configuration of three points defining a 4-plane is 
shown in Fig. 6. 

 

 
a) 

 
b) 

Figure 6: The scheme of the points location on the 
edges of the cube, in which the hyperplane specified by 

them cuts off 6 (or 2) points (at position 1 of the original 
two points, Fig. 1); three-dimensional construction (a) 

and construction in projection (b). 

 

The equation of the 4-plane corresponding to 
such an arrangement of the setting points, as shown 
in Fig. 6, has the form 

 

𝑑𝑒𝑡 ቌ

𝑥ଵ 𝑥ଶ
0 1

𝑥ଷ 𝑥ସ
1 1

െ1 0
0 1

1 1
െ1 1

ቍ ൌ 0       (46) 

 
Accordingly, the coordinates of the straight line 

are given by the expressions 
 

𝑤ଵ ൌ det ൭
1 1 1
0 1 1
1 െ1 1

൱ ൌ 2             (47) 

 

െ𝑤ଶ ൌ det ൭
0 1 1

െ1 1 1
0 െ1 1

൱ ൌ 2            (48) 

 

𝑤ଷ ൌ det ൭
0 1 1

െ1 0 1
0 1 1

൱ ൌ 0             (49) 

 

െ𝑤ସ ൌ det ൭
0 1 1

െ1 0 1
0 1 െ1

൱ ൌ െ2          (50) 

 
𝑤ሬሬ⃗ ൌ ሺേ2, േ2,0, േ2ሻ                 (51) 

 
It can be seen that a neuron with weight 

coefficients corresponding to the configuration in 
Fig. 6 is also degenerated, i.e., it de facto has not 
four, but three entrances. 

 
The last possible configuration of the considered 

type, obtained according to the same scheme as 
above, is shown in Fig. 7. 

 
 

 
а) 
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b) 

Figure 7: The scheme of the points location on the 
edges of the cube, in which the hyperplane specified by 

them cuts off 7 (or 1) points (at position 1 of the original 
two points, Fig. 1); three-dimensional construction (a) 

and construction in projection (b). 

 
The equation of the 4-plane corresponding to 

such an arrangement of the setting points, as shown 
in Fig. 7, has the form 

 

𝑑𝑒𝑡 ቌ

𝑥ଵ 𝑥ଶ
0 1

𝑥ଷ 𝑥ସ
1 1

െ1 0
െ1 1

1 1
0 1

ቍ ൌ 0          (52) 

 
The coordinates of the 4-plane are given by 

expressions completely similar to those written 
above 

 

𝑤ଵ ൌ det ൭
1 1 1
0 1 1
1 0 1

൱ ൌ 1             (53) 

 

െ𝑤ଶ ൌ det ൭
0 1 1

െ1 1 1
െ1 0 1

൱ ൌ 1           (54) 

 

𝑤ଷ ൌ det ൭
0 1 1

െ1 0 1
െ1 1 1

൱ ൌ െ1          (55) 

െ𝑤ସ ൌ det ൭
0 1 1

െ1 0 1
െ1 1 0

൱ ൌ െ2          (56) 

 
The vector defining the 4-plane, respectively, is 

given by the expression, where symmetry 
considerations are also considered, as above. 

 
𝑤ሬሬ⃗ ൌ ሺേ1, േ1, േ1, േ2ሻ               (57) 

 
Thus, among all the classes of 4-planes 

considered, there are only two non-degenerate ones. 
This fact can be interpreted as follows. 
Arrangements of reference points, such as shown in 
Fig. 6, assume that the 4-plane is parallel to one of 

the edges of both the 3-cube and the 4-cube. 
Therefore, it is parallel to all those edges that are 
parallel to this particular edge. This means that when 
you move the point which coordinates are 
substituted into formula (6) along any of these edges, 
the result given by the specified formula will not 
change. Otherwise, the result of the calculation by 
this formula does not depend on one of the 
coordinates of a point on a 4-cube (or a cube of 
greater dimension with a different number of inputs). 
From a computational point of view, this input is 
"disabled", which corresponds to a degenerate 
neuron. 

 
Let us show that these two non-degenerate 

combinations, in essence, exhaust the description of 
all non-degenerate neurons with four inputs. 

 
The geometric classification presented above is 

based on two points selected on the face of a 4-cube 
that meets the condition 

 
xଷ ൌ xସ ൌ 1                      (58) 

 
Exactly in the same way, you can carry out the 

same constructions, but starting from other faces 
 

𝑥௜భ ൌ 𝑥௜మ ൌ 1                        (59) 
 

Passing to other faces leads to the same 
expressions for determinants (23), (33), etc. with the 
difference where the position of the 𝑥௜variables in 
the top line should be swapped. It is easy to see that 
this will only lead to a change in the order of the 
values േ1, േ2, and േ3 in the expressions for the 
vectors w ⃗, in particular, in expression (57). Note 
also that the faces identified by a condition of the 
form (58), but with a change in sign to the opposite, 
can be ignored separately, since the corresponding 
arrangement of the setting points appears 
automatically when using symmetry operations, 
justifying the variability of signs in expressions of 
the form (57). 

 
The same reasoning is applicable to another 

initial arrangement of points on a cube face that 
satisfies condition (58), Fig. 8 (Position 2). One of 
the possible locations of points defining a 4-plane, 
which is obtained by attaching one more point to 
Position 2, is shown in Fig. 9. 
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Figure 8: Additional scheme of the points location, 

used to construct a geometric classification of neurons 
with four inputs, on the upper face ("Position 2"). 

 

 
а) 

 

 
b) 

Figure 9:  The scheme of the points location on the 
edges of the cube, in which the hyperplane specified by 
them cuts off 2 or 6 points (at position 2 of the original 
two points, Fig. 8); three-dimensional construction (a) 

and construction in projection (b). 

It can be argued in advance that such an 
arrangement of points will lead to a degenerated 
neuron. More precisely, any configuration of three 
reference points, which can be reached, starting from 
"Position 2", leads to degenerating neurons spread. 
This follows from the fact that two original points 
themselves do not lie in parallel to one of the edges. 

 
This can be proved directly, again by composing 

the equation of the 4-plane through the determinant. 

We have: 
 

𝑑𝑒𝑡 ቌ

𝑥ଵ 𝑥ଶ
െ1 0

𝑥ଷ 𝑥ସ
1 1

1 0
1 െ1

1 1
0 1

ቍ ൌ 0       (60) 

 
Accordingly, the coordinates of the 4-plane 

under consideration are given by the expressions 
 

𝑤ଵ ൌ det ൭
0 1 1
0 1 1

െ1 0 1
൱ ൌ 0            (61) 

 

െ𝑤ଶ ൌ det ൭
െ1 1 1
1 1 1
1 0 1

൱ ൌ െ2          (62) 

 

𝑤ଷ ൌ det ൭
െ1 0 1
1 0 1
1 െ1 1

൱ ൌ 0          (63) 

 

െ𝑤ସ ൌ det ൭
െ1 0 1
1 0 1
1 െ1 0

൱ ൌ 0         (64) 

 
It can be seen that, as expected, the normal vector 

to the given 4-plane corresponds to a degenerated 
neuron, specifically 

 
𝑤ሬሬ⃗ ൌ ሺ0, േ2,0,0ሻ                  (65) 

 
By direct calculation, it can be shown that the 

neurons corresponding to the configurations of the 
control points shown in Fig. 10 and Fig. 11 are also 
degenerated. 

 

 
а) 
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b) 

Figure 10: The scheme of the points location on the 
edges of the cube, in which the hyperplane specified by 
them cuts off 4 points (at position 2 of the original two 
points, Fig. 8); three-dimensional construction (a) and 

construction in projection (b). 

 

 
а) 

 
b) 

Figure 11: The scheme of the points location on the 
edges of the cube, in which the hyperplane specified by 
them cuts off 6 or 2 points (at position 2 of the original 
two points, Fig.8); three-dimensional construction (a) 

and construction in projection (b). 

 

 
a) 

 

 
b) 

Figure 12: An example of a scheme for the points 
location on the edges of a cube that define a plane of 

non-general position 

 
Thus, even more significant restrictions are 

imposed on the variability of the sequences of 
weight coefficients corresponding to neurons with 
four inputs, than it follows from the estimate (22). 
The choice of possible options is de facto limited 
only by sets of the form (31) and (57), in which it is 
allowed to change the places of the values 𝑤௜ - the 
coordinates of the 4-plane. 

 
4. TO THE METHOD OF CUTTING THE 
HYPERCUBE FACE IN TRAINING NEURAL 
NETWORKS: THE POSSIBILITY OF USING 
TERNARY CODES 
 

In the previous section, in fact, a method of 
"cutting edges" was proposed, which in the future 
can be used to train neural networks of at least 
certain types (for example, those that are designed to 
solve classification problems associated with the use 
of neurons with a relatively small number of inputs 
[2]). 

 
Of course, a separate example of the analysis of 

a neuron with four inputs, albeit a detailed one, 
cannot serve as a justification for this method, 
however, additional considerations can be made that 
confirm the advisability of its further development. 
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Let's turn to Fig. 13, which shows a graph 
corresponding to a four-dimensional cube. The 
edges that define the cutting of this graph by means 
of the plane given by equation (23) are marked. 

 
The diagram in Fig. 13 is actually selected one of 

the four-dimensional hypercube vertices with 
coordinates (1, -1, 1, -1). This is a vertex which 
scalar product by the normal vector to the considered 
plane (28) reaches its maximum value. Since all 
coordinates of any of the hypercube vertices are 
equal to േ1, the choice of the coordinates of the 
vertex is actually determined only by the alternation 
of signs in formula (28). 

 
Scheme Fig. 13 emphasizes the following 

circumstances. A hyperplane corresponding to any 
combination of weights divides the set of vertices 
into two subsets, each of which contains the same 
number of elements. The enumeration of the 
elements of each these subsets can be given in terms 
of Hamming coding distances (which once again 
returns to the question of the relationship between 

the theory of neural networks and the theory of error-
correcting coding [15]). 

In particular, Fig. 13 emphasizes that the same 
set to which the vertex with coordinates (1, -1, 1, -1) 
belongs, and the vertices which coordinates differ 
from the vertex coordinates (1, -1, 1, -1) by the 
Hamming distance, equal to 1. 

 
The peculiarity of a neuron with four inputs is 

that this set must also include three vertices that are 
spaced from the vertex (1, -1, 1, -1). Three other 
vertices, also spaced from the indicated one by 
Hamming distance 2, will enter another set due to 
obvious symmetry, as Fig. 13. Any other neurons 
with an even number of inputs will have the same 
feature. This follows from the fact that for an even 
number of neurons, the maximum Hamming 
distance on the corresponding hypercube is also 
even, therefore, when constructing a diagram similar 

 to Fig. 13, vertices will appear on it, spaced from 
both the selected one and from it symmetric at the 
same Hamming distance. 

 
 

 

 

Figure 13: The graph corresponding to the vertices of the four-dimensional cube, the edges, cutting along 
which defines the plane given by equation (23), are marked. 
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Figure 14: Scheme corresponding to cutting the graph of a 5-dimensional cube, corresponding to the selection 
one of the vertices. 

  
On the contrary, if the number of inputs of a 

neuron is even, then the selection of one – arbitrary 
– vertex generates a well-defined division of vertices 
into two subsets according to the Hamming distance 
(Fig. 14). 

 
Moreover, there is a close and quite obvious 

connection between the edges that the hyperplane 
cuts and the coordinates of such a selected vertex, 
and this connection takes place for neurons with the 
number of inputs of any parity. This connection is 
most conveniently reflected in terms of ternary 
sequences and, consequently, ternary logic. Indeed, 
the method used above actually assumes a well-
defined identification of the edges of the hypercube 
– through the coordinates of their center points. In 
other words, sequences in which only coordinate 
values equal to േ1 appear to mark the vertices of the 
hypercube. Similar sequences, in which all elements 
except one are equal to േ1, and this one element is 
equal to 0 – the edges of the hypercube, etc. 

 
More precisely, the number of zeros in such a 

sequence corresponds to a certain geometric element 
of the hypercube. 

 
In the most illustrative three-dimensional case, 

there is no sequence of the form ሺ𝑎ଵ, 𝑎ଶ, 𝑎ଷሻ,, where 
all 𝑎௜ ൌ േ1 mark the vertex. If one of the elements  
𝑎௜ vanishes, it marks an edge, if two – a face. A 
sequence in which all elements are equal to zero 
corresponds to the coordinates of the center of the 
cube and can be considered to mark the cube as a 
whole. 

Therefore, using ternary sequences, you can 
determine an analogue of the Hamming distance to 
determine the distance between any geometric 
elements of the hypercube. 

 
It is easy to show that the points marking the 

edges, through which the plane cutting the 
hypercube into two parts passes, will lag behind the 
selected (in the sense of Fig. 13) vertex by the 
maximum distance. 

 
In particular, if you first specify only one edge, 

through which the hyperplane will pass, cutting the 
hypercube into two parts, then a certain set of 
vertices will already be selected, which are located 
at the maximum distance from its center. 

 
Selecting the next edge narrows this set, etc., 

thus, it becomes possible to implement a learning 
algorithm for neural networks with threshold 
activation functions, starting from the analog of the 
Hamming distance for ternary sequences. 
Consequently, there is a definite scope for the 
development of learning algorithms for neural 
networks, which consider the real degree of 
variability of the weight coefficients. 

 
The convenience of the method for analyzing the 

functioning of neurons by cutting the edges of a 
hypercube is also that it allows one to carry out a 
sequential classification of neurons with different 
sets of weight coefficients starting from diagrams 
similar to Fig. 13. 
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In particular, this method can be used to show 
that any non-degenerated neuron with an odd 
number of inputs can be immediately assigned to a 
sequence of weight coefficients of the form 

 
𝑤ሬሬ⃗ ൌ ሺ𝑎ଵ, 𝑎ଶ, … , 𝑎ଶ௠ାଵሻ; 𝑎௝ ൌ േ1       (66) 

 
For the proof, it is sufficient to refer to the 

diagram in Fig. 4: if there is a hypercube vertex such 
that the product of its radius vector by the normal to 
the cutting hyperplane reaches its maximum value, 
then this hyperplane can be replaced by a hyperplane 
defined by a vector of the form (66) without 
changing the sets of vertices into which the 
hypercube is cut. 

 
This conclusion shows that there is a fairly 

extensive class of neural networks built on non-
degenerated neurons with an odd number of inputs, 
the neurons in which de facto perform the operation 
of the scalar product of one binary sequence of the 
form (66) to another similar sequence. One of these 
sequences corresponds to the hypercube vertex (i.e., 
describes a set of logical variables entering the input 
of the neuron), and the other corresponds to the 
hyperplane cutting the hypercube (i.e., a set of 
weight coefficients). The symmetry between these 
sequences makes it much easier to train this type of 
neural network. 

 
Let us now discuss the question of the adequacy 

of using the threshold function of neuron activation. 
We emphasize that in a significant part of 
applications (especially those related to 
classification problems), continuous activation 
functions are used only because they provide the 
possibility of implementing those learning 
algorithms for neural networks for which the 
differentiability of the considered function is critical. 

 
All of these algorithms are ultimately based on 

the fact that they set certain rules for changing the 
vectors s 𝑤ሬሬ⃗  in the learning process. The proposed 
method for cutting edges allows you to implement a 
whole set of algorithms in which the change in these 
vectors in the learning process is displayed through 
the discrete movement of the image points in the 
ternary code space. 

 
The correspondence between the functioning of 

neural networks built on elements with threshold and 
continuous activation functions can also be 
established in terms of ternary logic. 

 

Let us turn to Fig. 15. It shows a "ternary" 
activation function, which changes abruptly at two 
points, as well as a continuous activation function, 
the length of the transition region of which 
corresponds to the length of the region of zero values 
for the "ternary" activation function. 

 

 

Figure 15: Comparison of the neuron activation 
function corresponding to ternary logic, with a piecewise 

linear activation function 

 

Obviously, the result obtained using these two 
functions will be different. However, the “ternary” 
activation function allows using simple methods to 
establish those ranges of values of input variables at 
which the value of the output variable will differ 
from േ1 . For many applications of neural networks, 
for example, solving classification problems, such 
values correspond to an incompletely trained neural 
network: any classification problem can be 
described in terms of logical functions. 

 
Consequently, the most significant conclusion 

that can be drawn from the comparison illustrated in 
Fig. 15 is that the use of continuous activation 
functions with a transition region imposes de facto 
additional restrictions on the variability of the 
sequences of weighting coefficients, at least for 
neural networks that solve certain types of problems. 

 
Indeed, from the admissible sequences of the 

weight coefficients of each individual neuron, all 
those sequences should be excluded that do not 
provide an exact division of the set of all vertices of 
the hypercube into two subsets. Simplifying, in this 
case, the separation is carried out not by an infinitely 
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thin plane, but by a region enclosed between two 
parallel hyperplanes. 

 
5. CONCLUSION 
 

Thus, a consistent geometric interpretation of the 
functioning of neurons included in an artificial 
neural network, which provides a mapping of a set 
of logical variables ("input image") to another set of 
logical variables, leads to the conclusion that the 
variability of the sequences of weight coefficients 
that define the functioning of an individual neuron, 
impose very serious restrictions. In particular, for 
neurons with a relatively small number of inputs, 
such sequences can be specified explicitly, which is 
done in this paper. 

 
This conclusion is a significant step forward in 

terms of overcoming the thesis about the logical 
opacity of neural networks, which de facto has 
become widespread only due to the fact that the 
training of neural networks used in practice is the 
result of a computer experiment. Indeed, the 
reduction of operations performed by a neural 
network to logical ones, de facto, makes it possible 
to reveal a specific algorithm according to which a 
specific neural network functions. This conclusion 
seems to be important, first of all from the point of 
view of methodological problems of artificial 
intelligence - until the thesis about the logical 
opacity of neural networks is finally overcome, there 
will be more than serious difficulties in order to 
reveal the essence of intelligence at a level sufficient 
for operationalization. of this concept. 

 
This conclusion in the long term creates the 

prerequisites for the development of learning 
algorithms for neural networks that provide a 
significant reduction in the number of computations, 
as well as the disclosure of the mechanism according 
to which the trained neural network makes a 
decision. Indeed, if there is a trained neural network, 
then from the sets of weight coefficients obtained 
empirically, using the proposed technique, one can 
go to the sets of weight coefficients corresponding to 
cutting certain edges of the hypercube, i.e. to well-
defined logical operations that each of the neurons 
performs. 

 
The most obvious practical application of the 

provided conclusions is associated with the 
replication of systems built on the use of trained 
neural networks. In this case, the analysis of sets of 
weight coefficients, will reduce the functioning of 
neurons to certain logical operations that, makes it 

possible to go over to explicitly prescribed 
algorithms built on the basis of logical operations, 
and here quite certain prospects for the use of ternary 
logic open up. 
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