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ABSTRACT 
 

The RPrime RSA is one among many public key algorithms that relies its security on the hardness of finding 
prime factors of a very large integer. While its predecessor, the RSA, utilizes two large prime numbers to 
formulate its modulus, the RPrime RSA can utilize two or more prime numbers. Therefore, the RPrime RSA 
is intuitively taken into account to be securer the than the RSA. The modulus of the RPrime RSA, n, is the 
public key whose size determines the security of the entire cryptosystem: the larger the modulus, the securer 
the cryptosystem. In this study, we shall show the way to factorize small modulus of the RPrime RSA using 
two factorization algorithms, which are the Fermat’s difference of squares algorithm and the Kraitchik’s 
algorithm. The programming of the factorization is completed using Python programming language. Our 
study shows that both of Fermat’s difference of squares and Kraitchik’s algorithms can be used effectively 
as methods to factorize small modulus of RPrime RSA. The time both algorithms take to factorize is mostly 
directly proportional to the size of n. However, Fermat’s difference of squares is much faster than Kraitchik’s 
algorithm: while factoring six digits to eleven digits of n, Fermat’s is about 24 to 550 times faster than 
Kraitchik. 

Keywords: Cryptography, Public Key Cryptosystem, Cryptanalysis, Rprime RSA, Difference of Squares, 
Kraitchik 

 
1. INTRODUCTION  
 

Cryptography is generally viewed as a science 
and strategy of using mathematical operations to 
secure communication [1]. One aspect to maintain 
secure communication is to maintain confidentiality. 
Maintaining confidentiality is done by encryption 
algorithm which consists of two mathematical 
functions: encryption function and decryption 
function. The decryption function is the inverse of 
the encryption function. 

There are two kinds of encryption algorithms: 
symmetric and public key. In symmetric encryption 
algorithm, message is passed into encryption 
function, obfuscated into absurd form using a secret 
key. This secret key is generated by the sender. The 
obfuscated message is sent to a legitimate recipient 
via a communication channel. The secret key is also 
sent to this recipient, but a secure channel must be 
used to send it. Upon receiving the key, the recipient 
uses the decryption function to convert the 
obfuscated message into the original message.  

Public key encryption is a part of public key 
cryptography, a term brought forward by Whitfield 
Diffie and Martin E. Hellman in 1976 [2]. In public 
key encryption, a recipient generates two kinds of 
keys: public key and private key. The public key is 
published by electronic meanings and the private key 
is kept as a secret. Anyone who wants to send a 
message to this recipient must know his or her public 
key. The encryption function makes use of this 
public key to encrypt the message. The encrypted 
message is then sent to the recipient. With his or her 
private key, the recipient can then decrypt the 
message using the decryption function. 

The Rivest-Shamir-Adleman (RSA) algorithm 
[3] was among the first algorithm to implement the 
Diffie-Hellman concept of public key cryptography. 
Formulated in 1978 by Ronald Rivest, Adi Shamir, 
and Leonard Adleman, the RSA has been the most 
popular and the most widely used public key 
encryption algorithm until now. The RSA utilizes 
two very large prime numbers to formulate its 
modulus. The larger the prime numbers, the securer 
the RSA.  
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The RSA modulus, n, is simply the 
multiplication of p and q, two large distinct prime 
numbers. The modulus is published, so every party 
knows its value. However, the two prime numbers 
are kept private. If a cryptanalyst wants to break the 
RSA cryptosystem, he or she must be able to factor 
the modulus into its prime factors. If the modulus is 
too small, for example, n = 1691, it only takes 
seconds for the cryptanalyst to determine that 1691 
= 89 × 19 using brute force search, and the RSA 
cryptosystem is compromised. Therefore, only two 
very large distinct prime numbers should be used to 
formulate the modulus. 

The RPrime RSA cryptosystem [4] is one of 
various variants of the RSA cryptosystem. The 
RPrime RSA is actually a combination of two 
previous variants of RSA: the Mprime RSA and the 
Rebalanced RSA [5]. The encryption method is the 
same as the original RSA, while the key generation 
method is similar to the Rebalanced RSA and the 
decryption method is similar to the Mprime RSA. 

Unlike the original RSA, the RPrime RSA uses 
three or more large distinct prime numbers to 
construct its modulus. Therefore, one may notice that 
RPrime RSA is securer than the original RSA, since 
a cryptanalyst will find that factoring an integer that 
has three or more prime factors is certainly harder 
than factoring another integer that has only two 
prime factors.  

In order to understand how hard it is to 
cryptanalize the RPrime RSA, in this study we try to 
factor some small RPrime RSA moduli using two 
factorization algorithms: the difference of squares 
algorithm and the Kraitchik algorithm.  

The difference of squares algorithm is a classic 
integer factorization algorithm proposed by Pierre de 
Fermat in the 1600s. The difference of squares 
algorithm is shown to be efficient if the difference 
between the two factors is small [7].  

The Kraitchik algorithm is a factoring 
algorithm that is based on congruence [8]. The 
algorithm employs the concept of perfect squares 
and Euclidean greatest common divisors at the core 
of its computations.  

It is noted that both Fermat’s difference of 
squares and Kraitchik’s algorithms can factor an 
integer to its two factors. However, the RPrime RSA 
modulus can consist of two or more factors  and 
these factors must be prime numbers. Therefore, if 
these two algorithms are going to be utilized to factor 
the RPrime RSA modulus, we need to make some 
appropriate adjustments.  

In this study, several RPrime RSA moduli 
ranging from 44745833 (8 digits) to 
171464936134901 (15 digits) are factored by the 
Fermat’s difference of squares and Kraitchik’s 
algorithms. These RPrime RSA moduli (n) are 
products of five Rprime RSA private keys, so that n 
= p × q × r × s × t. The parameters p, q, r, s, and t 
are distinct prime numbers that were generated 
randomly. The factoring time of both algorithms is 
recorded to conclude which of these two algorithms 
can factor the Rprime RSA modulus most efficiently. 

2. THE RPRIME RSA  

The RPrime RSA [4] is a variant of the RSA 
cryptosystem [3] that combines the key generation 
method of the Rebalanced RSA [5] and the 
decryption method of the Mprime RSA [8]. As many 
other public key cryptosystems, the RPrime RSA 
cryptosystem consists of three stages, namely key 
generation, encryption, and decryption. 

 The key generation stage is conducted by the 
recipient. The steps are as follows [4]: 

1. Choose k, the numbers of prime numbers to 
be employed.  

2. Generate k random and distinct prime 
numbers, p1, p2, …, pk. This can be done 
using primality test, such as Fermat Little 
Theorem [10] or Agrawal-Biswas algorithm 
[11]. The larger the primes, the securer the 
cryptosystem, but the slower the encryption 
and decryption processes.  

3. Compute n = p1 × p2 × … × pk.  
4. Choose dp1, dp2, … dpk, such that: 

a. dp1, dp2, … dpk are odd numbers. 
b. gcd(dp1, p1 – 1) = gcd(dp2, p2 – 1) 

= … = gcd(dpk, pk – 1) = 1. 
5. Find the solution of these Chinese 

Remainder Theorem (CRT) equations (for 
examples on CRT, see [12]):  
  d ≡dp1 (mod p1 – 1) 
  d ≡dp2 (mod p2 – 1) 
   … 
  d ≡dpk (mod pk – 1) 
The value of d will be the decryption key. 

6. Calculate Φ(n) = (p1 - 1) × (p2 – 1) × … × 
(pk – 1). 

7. Calculate e ≡ d-1 (mod Φ(n)). Examples on 
how to compute a multiplicative inverse can 
be found on [13]).  

8. Publish the public key (n, e). 
9. Keep the private key (p1, p2, … pk, dp1, dp2, 

… dpk, d, Φ(n)). 
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 The encryption stage is conducted by the 
sender. The steps are as follows [4]: 

1. Obtain the public key (n, e) from the 
recipient. 

2. Let m be the message the sender wants the 
recipient to transmit securely. 

3. Calculate the ciphertext c = me mod n. 
4. Send the ciphertext c to the recipient. 

  
 The decryption stage is conducted by the 
recipient. The steps are as follows [4]: 

1. Get the ciphertext c from the sender. 
2. Calculate the original message m = cd mod 

n. 
 
 Now, let us illustrates how the RPrime RSA 
cryptosystem works. Suppose a sender, Alice, would 
like to send a simple message to a recipient, Bob. In 
the key generation stage, Bob will generate his 
public and private keys as follows: 

1. Bob chooses k = 3. 
2. With his chosen primality test algorithm, 

Bob generates 3 primes: p1 = 907, p2 = 149, 
and p3 = 359. 

3. Bob computes n = p1 × p2 × p3 = 907 × 149 
× 359 = 48516337. 

4. Obeying the mathematical requirements, 
Bob chooses dp1 = 77, dp2 = 95, and dp3 = 
243. 

5. Using CRT, Bob computes the decryption 
key d = 31578707. 

6. Bob calculates Φ(n) = (p1 - 1) × (p2 – 1) × 
(p3 – 1) = (907 – 1) × (149 – 1) × (359 – 1) 
= 48003504. 

7. Bob calculates e ≡ d-1 (mod Φ(n)). Thus, e ≡ 
31578707-1 ≡ 41046683 (mod 48003504). 

8. Bob publishes his public key (n, e) = 
(48516337, 48003504). 

9. Bob keeps his private key (p1, p2, p3, dp1, 
dp2, dp3, d, Φ(n) ) = (907, 149, 359, 77, 95, 
243, 31578707, 48003504). 

 
 In the encryption stage, Alice will do as 
follows: 

1. From Bob, Alice obtains Bob’s public key 
(n, e) = (48516337, 48003504). 

2. Suppose Alice wants to send a simple 
message that only contains one letter “B”. 
Alice looks up the ASCII table and finds out 
that the letter “B” corresponds to the value 
of 66. Therefore, Alice lets the message m = 
66. 

3. Alice computes the ciphertext c = me mod n 
= 6648003504 mod 48516337 = 21723622.  

4. Via a channel, which can be secured or 
unsecured, Alice transmits the ciphertext c 
to Bob. 

 
 In the decryption stage, Bob will do as follows: 

1. From Alice, Bob gets the ciphertext c = 
21723622. 

2. Bob calculates the original message m = cd 
mod n = 2172362231578707 mod 48516337 = 
66. Bob looks up the ASCII table for the 
value of 66 and gets the letter “B” which is 
the message Alice wants him to read.  

 
 
3. THE FERMAT’S DIFFERENCE OF 

SQUARES FACTORIZATION 
ALGORITHM 

 
 The difference of squares algorithm is a classic 
integer factorization algorithm made by French 
mathematician Pierre de Fermat. The difference of 
squares algorithm can factor an integer into its two 
factors. The algorithm works as follows [7][14]: 

1. Let n be the integer to be factorized. 
2. Compute rൌ⌈ √n  ⌉. 
3. Compute s = r2 – n. 
4. While s is not a perfect square, then do step 

4a, 4b, 4c: 
a. Increment r by 1, i.e.,  r = r + 1. 
b. Compute s = r2 – n. 
c. If s is a perfect square, then go to 

step 5, else go to step 4. 
5. Output r - √𝑠 as a factor of n. 

 
 For example, let us find the factor of 85. The 
algorithm works as follows. 

1. Let n = 85. 
2. Compute rൌ⌈ √n  ⌉ ൌ⌈ √85  ⌉ൌ⌈ 9.22 ⌉ ൌ

10. 
3. Compute s = r2 – n = 102 – 85 = 100 – 85 = 

15. 
4. Since s is not a perfect square, we do: 

a. r = r + 1 = 10 + 1 = 11. 
b. s = r2 – n = 112 – 85 = 121 – 85 = 36 
c. s is a perfect square, so we go to 

step 5. 
5. Output r ‐ √𝑠 = 11 ‐ √36 = 11 – 6 = 5.  

 
 Here we have 5 as a factor of 85. The other 
factor is 85/5 = 17.  
 
 From this example, we have 5 and 17 as the 
factors of 85. Interestingly, 5 and 17 are prime 
numbers. Thus, it begs the question: does the 



Journal of Theoretical and Applied Information Technology 
15th June 2021. Vol.99. No 11 
© 2021 Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
2773 

 

Fermat’s difference of squares always return prime 
number as the factors?  
 
 To answer the question, let us try to factorize n 
= 135. So, rൌ⌈ √n  ⌉ ൌ  ⌈ √135  ⌉ ൌ ⌈11,62⌉ ൌ 12. 
Compute s = r2 – n = 122 – 135 = 144 – 135 = 9. 
Since s is a perfect square, the algorithm terminates, 
and we output r - √𝑠 = 12 - √9 ൌ 12 െ 3 ൌ 9 as the 
factor of n. The other factor is 135/9 = 15. Thus, the 
factors of 135 are 9 and 15, and both are not prime 
numbers. Therefore, we conclude that: 

1.  The Fermat’s difference of squares does not 
always return prime number as the factors. 

2.  As the modulus of RPrime RSA are 
constructed as a multiplication of some 
distinct prime numbers, the Fermat’s 
difference of square algorithm must be 
modified so it can factorize the modulus.  
 

 
4. THE KRAITCHIK’S FACTORIZATION 

ALGORITHM 
 
 The Kraitchik’s algorithm is a newer integer 
factorization algorithm proposed by Maurice 
Kraitchik in the 1920’s [8]. Kraitchik’s algorithm is 
an improvement to Fermat’s difference of square 
algorithm [15] [16] [17] [18] [19] [20]: while Fermat 
pondered at the relation 𝑛 ൌ 𝑥ଶ െ 𝑦ଶ ൌ ሺ𝑥 ൅
𝑦ሻሺ𝑥 െ 𝑦ሻ to get the intuitive idea of factoring 𝑛, 
Kraitchik reformulated the relation into 𝑥ଶ െ
𝑦ଶ 0 ሺmod 𝑛ሻ. Kraitchik detected that 𝑥ଶ െ 𝑦ଶ was 
indeed a multiple of 𝑛, so that it can be written as 
𝑥ଶ െ 𝑦ଶ ൌ 𝑘𝑛, assuming that 𝑥 ൐ 𝑦.  
 
The Kraitchik’s factorization algorithm is as follows  
[8]: 

1. Let n be the integer to factor. 
2. Compute 𝑥 ൌ ⌈ √n  ⌉ 
3. While the factor of 𝑛 is not found do: 

a. Let 𝑘 ൌ 1 
b. While 𝑥ଶ െ 𝑘𝑛 ൒ 0 do the 

following: 
i. 𝑦 ൌ √𝑥ଶ െ 𝑘𝑛 

ii. If y is a perfect square and 
ሺ𝑥 ൅ 𝑦ሻ 𝑚𝑜𝑑 𝑛 ് 0 and 
ሺ𝑥 െ 𝑦ሻ𝑚𝑜𝑑 𝑛 ് 0 then 
the factor of 𝑛 is 𝑝 ൌ
gcdሺ𝑥 ൅ 𝑦, 𝑛ሻ and 𝑞 ൌ
gcd ሺ𝑥 െ 𝑦, 𝑛ሻ, then stop.  

iii. Else let 𝑘 ൌ 𝑘 ൅ 2  
c. Let 𝑥 ൌ 𝑥 ൅ 1 

 
 

Let us again find the factors of 85. So we let n = 85. 
We compute xൌ⌈ √n  ⌉ ൌ⌈ √85  ⌉ൌ⌈ 9.22 ⌉ ൌ 10 
 
At the outer loop, we let 𝑘 ൌ 1 
 
Since 𝑥ଶ െ 𝑘𝑛 ൌ 10ଶ െ 1 ൈ 85 ൌ 15 ൒ 0 we get 
into the inner loop. 
 
𝑦 ൌ √𝑥ଶ െ 𝑘𝑛ൌ√15  ൌ 3.87 so 𝑦 is not a perfect 
square then we let 𝑘 ൌ 𝑘 ൅ 2 ൌ 1 ൅ 2 ൌ 3.  
 
Since 𝑥ଶ െ 𝑘𝑛 ൌ 10ଶ െ 3 ൈ 85 ൌ െ155 ൏0 we 
exit the inner loop and we compute 𝑥 ൌ 𝑥 ൅ 1 ൌ
10 ൅ 1 ൌ 11. 
 
The factor is still not found so we get into the 
outer loop and we let 𝑘 ൌ 1.  
 
Since 𝑥ଶ െ 𝑘𝑛 ൌ 11ଶ െ 1 ൈ 85 ൌ 36 ൒ 0 we get 
into the inner loop. 
 
𝑦 ൌ √𝑥ଶ െ 𝑘𝑛ൌ√36  ൌ 6 so 𝑦 is not a perfect 
square then we let 𝑘 ൌ 𝑘 ൅ 2 ൌ 1 ൅ 2 ൌ 3.  
 
Since 𝑥ଶ െ 𝑘𝑛 ൌ 11ଶ െ 3 ൈ 85 ൌ െ134 ൏ 0 we 
exit the inner loop and we compute 𝑥 ൌ 𝑥 ൅ 1 ൌ
11 ൅ 1 ൌ 12. 
 
The factor is still not found so again we get into 
the outer loop and we let 𝑘 ൌ 1.  
 
Since 𝑥ଶ െ 𝑘𝑛 ൌ 12ଶ െ 1 ൈ 85 ൌ 59 ൒ 0 we get 
into the inner loop. 
 
𝑦 ൌ √𝑥ଶ െ 𝑘𝑛ൌ√59  ൌ 7.68 so 𝑦 is not a perfect 
square then we let 𝑘 ൌ 𝑘 ൅ 2 ൌ 1 ൅ 2 ൌ 3.  
 
Since 𝑥ଶ െ 𝑘𝑛 ൌ 12ଶ െ 3 ൈ 85 ൌ െ111 ൏ 0 we 
exit the inner loop and we compute 𝑥 ൌ 𝑥 ൅ 1 ൌ
12 ൅ 1 ൌ 13. 
 
The factor is still not found so again we get into 
the outer loop and we let 𝑘 ൌ 1.  
 
Since 𝑥ଶ െ 𝑘𝑛 ൌ 13ଶ െ 1 ൈ 85 ൌ 84 ൒ 0 we get 
into the inner loop. 
 
𝑦 ൌ √𝑥ଶ െ 𝑘𝑛ൌ√84  ൌ 9.16 so 𝑦 is not a perfect 
square then we let 𝑘 ൌ 𝑘 ൅ 2 ൌ 1 ൅ 2 ൌ 3.  
 
Since 𝑥ଶ െ 𝑘𝑛 ൌ 13ଶ െ 3 ൈ 85 ൌ െ86 ൏ 0 we 
exit the inner loop and we compute 𝑥 ൌ 𝑥 ൅ 1 ൌ
13 ൅ 1 ൌ 14. 
 



Journal of Theoretical and Applied Information Technology 
15th June 2021. Vol.99. No 11 
© 2021 Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
2774 

 

The factor is still not found so again we get into 
the outer loop and we let 𝑘 ൌ 1.  
 
Since 𝑥ଶ െ 𝑘𝑛 ൌ 14ଶ െ 1 ൈ 85 ൌ 111 ൒ 0 we get 
into the inner loop. 
 
𝑦 ൌ √𝑥ଶ െ 𝑘𝑛ൌ√111  ൌ 10.54 so 𝑦 is not a 
perfect square then we let 𝑘 ൌ 𝑘 ൅ 2 ൌ 1 ൅ 2 ൌ
3.  
 
Since 𝑥ଶ െ 𝑘𝑛 ൌ 14ଶ െ 3 ൈ 85 ൌ െ59 ൏ 0 we 
exit the inner loop and we compute 𝑥 ൌ 𝑥 ൅ 1 ൌ
14 ൅ 1 ൌ 15. 
 
The factor is still not found so again we get into 
the outer loop and we let 𝑘 ൌ 1.  
 
Since 𝑥ଶ െ 𝑘𝑛 ൌ 15ଶ െ 1 ൈ 85 ൌ 140 ൒ 0 we get 
into the inner loop. 
 
𝑦 ൌ √𝑥ଶ െ 𝑘𝑛ൌ√140  ൌ 11.83 so 𝑦 is not a 
perfect square then we let 𝑘 ൌ 𝑘 ൅ 2 ൌ 1 ൅ 2 ൌ
3.  
 
Since 𝑥ଶ െ 𝑘𝑛 ൌ 15ଶ െ 3 ൈ 85 ൌ െ30 ൏ 0 we 
exit the inner loop and we compute 𝑥 ൌ 𝑥 ൅ 1 ൌ
15 ൅ 1 ൌ 16. 
 
The factor is still not found so again we get into 
the outer loop and we let 𝑘 ൌ 1.  
 
Since 𝑥ଶ െ 𝑘𝑛 ൌ 16ଶ െ 1 ൈ 85 ൌ 171 ൒ 0 we get 
into the inner loop. 
 
𝑦 ൌ √𝑥ଶ െ 𝑘𝑛ൌ√171  ൌ 13.08 so 𝑦 is not a 
perfect square then we let 𝑘 ൌ 𝑘 ൅ 2 ൌ 1 ൅ 2 ൌ
3.  
 
Since 𝑥ଶ െ 𝑘𝑛 ൌ 16ଶ െ 3 ൈ 85 ൌ 1 ൒ 0 we are 
still entering the inner loop for the next iteration. 
 
𝑦 ൌ √𝑥ଶ െ 𝑘𝑛 ൌ √1  ൌ 1 so 𝑦 is a perfect square. 
We also know that ሺ𝑥 ൅ 𝑦ሻ mod 𝑛 ൌ ሺ16 ൅
1ሻ mod 85 ൌ 17 ് 0 and ሺ𝑥 െ 𝑦ሻ mod 𝑛 ൌ ሺ16 െ
1ሻ mod 85 ൌ 15 ് 0.  
 
Thus, the factor of 𝑛 is 𝑝 ൌ gcdሺ𝑥 ൅ 𝑦, 𝑛ሻ ൌ
gcd ሺ16 ൅ 1, 85ሻ ൌ 17 and 𝑞 ൌ gcdሺ𝑥 െ 𝑦, 𝑛ሻ ൌ
gcdሺ16 െ 1, 85ሻ ൌ 5.  
 
 The result is indeed correct since 𝑛 ൌ 85 ൌ
𝑝 ൈ 𝑞 ൌ 17 ൈ 5; this is exactly the same result we 
got with Fermat’s algorithm before.   
 

 Since 𝑝 and 𝑞 are prime numbers, it could 
make one wonder if Kraitchik’s algorithm always 
returns prime numbers. To answer this question, we 
again try to factor 𝑛 ൌ 135 with Kraitchik. 
Following the similar steps as above, we got 𝑝 ൌ 27 
and 𝑞 ൌ 5, which is correct since 135 ൌ 27 ൈ 5. 
However, 27 ൌ 3 ൈ 3 ൈ 3, so it is not a prime 
number. Thus, we conclude that: 

1.  The Kraitchik’s algorithm does not always 
return prime number as the factors. 

2.  Since the modulus of RPrime RSA are 
formulated as a multiplication of two or 
more distinct prime numbers, the 
Kraitchik’s algorithm must also be altered so 
it can factorize the modulus.  
 

 

5. FACTORIZATION OF RPRIME RSA 
MODULUS USING FERMAT’S 
DIFFERENCE OF SQUARES IN PYTHON 

 
 The entire computation of our proposed 
scheme is done in Python programming language. 
The version of Python is 2.7.17 and the IDE is 
Wing Personal version 7.2.1.0. The operating 
system is MacOS 11.1 ሺ20C69ሻ, the processor is 
1.4 GHz Dual-Core Intel Core i5, and the memory 
is 4 GB 1600 MHz DDR3. The Python codes of 
factoring RPrime RSA modulus using Fermat’s 
difference of squares is as follows. 
 
#title: Factoring RPrime RSA modulus with 
Fermat's Difference of square 
#author: Mohammad Andri Budiman, Maya 
Silvi Lydia, Dian Rachmawati 
#version: 1.07 
#date: October 7th 2020 
#time: 21.30 
 
import math, random, time 
 
def rndሺmini, maxiሻ: #get random number 
between mini and maxi ሺand including mini 
and maxiሻ 
 return random.randintሺmini, maxiሻ 
 
def isFermatPrimeሺpሻ: 
 t ൌ 5 * lenሺstrሺpሻሻ 
 for i in rangeሺtሻ: 
  w ൌ rndሺ2, p - 1ሻ 
  if powሺw, p - 1, pሻ !ൌ 1: 
   return False 
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 return True 
  
def issquareሺbሻ: 
 if math.fabsሺmath.sqrtሺbሻ - 
intሺmath.sqrtሺbሻሻሻ ൐ 0: 
  return False 
 return True 
 
def FermatDiffሺnሻ: 
 assert n % 2 ൌൌ 1 
 r ൌ intሺmath.ceilሺmath.sqrtሺnሻሻሻ 
 s ൌ r * r - n 
 #print "\nr ൌ", r 
 #print "\ns ൌ", s 
 while notሺissquareሺsሻሻ: 
  r ൅ൌ 1 
  s ൌ r * r - n 
  #print "\nr ൌ", r 
  #print "\ns ൌ", s 
 return r - intሺmath.sqrtሺsሻሻ 
 
def getAllFactorsWithFermatDiffሺnሻ: 
 all_factors ൌ ሾሿ 
 while n % 2 ൌൌ 0: 
  all_factors.appendሺ2ሻ 
  n ൌ n // 2 
 s ൌ 1 
 while notሺisFermatPrimeሺnሻሻ: 
  s ൌ FermatDiffሺnሻ 
  if isFermatPrimeሺsሻ: 
   all_factors.appendሺsሻ 
  else: 
   all_factors.extendሺ 
getAllFactorsWithFermatDiff ሺsሻ ሻ 
  n ൌ n // s 
  #print all_factors 
 all_factors.appendሺnሻ 
 return all_factors  
  
def getAllFactorsWithFermatDiff2ሺnሻ: 
 all_factors ൌ ሾሿ 
 while n % 2 ൌൌ 0: 
  all_.appendሺ2ሻ 
  n ൌ n // 2 
 s ൌ 1 
 while notሺisFermatPrimeሺnሻሻ: 
  s ൌ FermatDiffሺnሻ 
  all_factors.appendሺsሻ 
  n ൌ n // s 

  print all_factors 
 all_factors.appendሺnሻ 
 return all_factors  
 
 
print "Factoring RPrime RSA with Fermat's 
Difference of Squares Factorization 
Algorithm\n" 
 
#test  
n ൌ 837233419 
 
 
print "n ൌ", n 
print 
print "Calculating..." 
 
start ൌ time.timeሺሻ 
fs ൌ getAllFactorsWithFermatDiff ሺnሻ 
stop ൌ time.timeሺሻ  
print 
print "factors of ", n, "are", fs 
print 
print "time ൌ", stop - start, "secs" 
print 
 
 
6. FACTORIZATION OF RPRIME RSA 

MODULUS USING KRAITCHIK’S 
DIFFERENCE OF SQUARES IN PYTHON 

 
The Python codes of factoring RPrime RSA modulus 
using Kraitchik difference of squares is as follows. 
  
#title: Factoring RPrime RSA Modulus with 
Kraitchik Algorithm 
#author: Mohammad Andri Budiman, Maya 
Silvi Lydia, Dian Rachmawati 
#version: 1.07 
#date: November 5th 2020 
#time: 21:00 
 
import math, random, time 
   
def rndሺmini, maxiሻ: 
 return random.randintሺmini, maxiሻ 
 
def isFermatPrimeሺpሻ: 
 t ൌ 5 * lenሺstrሺpሻሻ 
 for i in rangeሺtሻ: 
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  w ൌ rndሺ2, p - 1ሻ 
  if powሺw, p - 1, pሻ !ൌ 1: 
   return False 
 return True 
 
def euclid_gcdሺm, nሻ: 
 if m % n ൌൌ 0: 
  return n 
 return euclid_gcdሺn, m % nሻ 
  
def isPerfectSquareሺzሻ: 
 if math.fabsሺmath.sqrtሺzሻ - 
intሺmath.sqrtሺzሻሻሻ ൐ 0: 
  return False 
 return True 
 
def Kraitchikሺnሻ: 
 x ൌ intሺmath.ceilሺmath.sqrtሺnሻሻሻ 
 while True: 
  k ൌ 1 
  while x * x - k * n ൐ൌ 0: 
   y ൌ math.sqrtሺx * x - k * nሻ 
   if isPerfectSquareሺyሻ: 
    y ൌ intሺyሻ 
    if ሺx ൅ yሻ % n !ൌ 0 and ሺx - 
yሻ % n !ൌ 0: 
     p ൌ euclid_gcd ሺx ൅ y, 
nሻ 
     q ൌ euclid_gcd ሺx - y, 
nሻ 
     return p 
   k ൅ൌ 2 
  x ൅ൌ 1 
    
def getAllFactorsWithKraitchikሺnሻ: 
 all_factors ൌ ሾሿ 
 while n % 2 ൌൌ 0: 
  all_factors.appendሺ2ሻ 
  n ൌ n // 2 
 s ൌ 1 
 while notሺisFermatPrimeሺnሻሻ: 
  s ൌ Kraitchikሺnሻ 
  if isFermatPrimeሺsሻ: 
   all_factors.appendሺsሻ 
  else: 
   all_factors.extendሺ 
getAllFactorsWithKraitchik ሺsሻ ሻ 
  n ൌ n // s 
  #print all_factors 

 all_factors.appendሺnሻ 
 return all_factors  
  
#test  
n ൌ 837233419 
 
print "Factoring RPrime RSA with Kraitchik's 
Factorization Algorithm\n" 
 
 
print "n ൌ", n 
print 
print "Calculating..." 
 
start ൌ time.timeሺሻ 
fs ൌ getAllFactorsWithKraitchik ሺnሻ 
stop ൌ time.timeሺሻ  
print 
print "factors of ", n, "are", fs 
print 
print "time ൌ", stop - start, "secs" 
print 
 
 

7. THE RESULTS OF FACTORING RPRIME 
RSA USING FERMAT’S DIFFERENCE OF 
SQUARE 

 
The results of factoring RPrime RSA modulus using 
Fermat’s difference of squares is shown in Table 1 
and the relation between modulus and factoring time 
is depicted in Figure 1 as follows. 
 

Table 1. Factoring RPrime RSA modulus using 
Fermat’s difference of square 

RPrime RSA 
Modulus

The factors  Factori
ng time

n p q r s t time 
ሺsecon
dsሻ

44745833 53 71 47 11 23 0.002947
092

114070363 53 181 47 11 23 0.000624
895

837233419 47 389 181 11 23 0.007280
111

3544881923 199 11 23 18
1 

38
9 

0.002234
936

77525026403 389 503 199 11 18
1 

0.037840
128
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Figure 1 Factoring RPrime RSA with Fermat’s 
Difference of Squares  

(the x axis is the modulus and the y axis is the  
factoring time in seconds) 

 
 In Table 1, small RPrime RSA moduli are 
factored using Fermat’s difference of squares, with 
𝑛 ൌ 𝑝 ൈ 𝑞 ൈ 𝑟 ൈ 𝑠 ൈ 𝑡. The 𝑛 ranges between 
44745833 (eight digits) and 171464936134901 
(fifteen digits), with 𝑝, 𝑞, 𝑟, 𝑠, 𝑡 range between two 
digits and four digits. 
 
 It can be seen from Table 1 and Figure 1 that 
the time the algorithm takes to factorize is mostly 
directly proportional to the size of 𝑛 
 
 

8. THE RESULTS OF FACTORING RPRIME 
RSA USING KRAITCHIK’S ALGORITHM 

 
The results of factoring RPrime RSA modulus using 
Kraitchick’s algorithm is shown in Table 2 and the 
relation between modulus and factoring time is 
depicted in Figure 2 as follows. 
 

 

 

 

 

 

Table 2. Factoring RPrime RSA modulus using 
Kraitchick’s Algorithm 

RPrime 
RSA 
Modulus

The factors  Factoring 
time 

n p q r s t time 
ሺsecondsሻ

44745833 53 71 47 11 23 0.07245898

11407036
3

53 18
1

47 11 23 3.73909402

83723341
9

47 38
9

18
1

11 23 3.51274085

35448819
23

19
9

11 23 18
1 

38
9 

103.126422
17 

77525026
403

38
9

50
3

19
9

11 18
1 

1240.25034
404 

 

 

Figure 2 Factoring RPrime RSA with Kraitchik 
algorithm 

(the x axis is the modulus and the y axis is the  
factoring time in seconds) 

 
 In Table 2, small RPrime RSA modulus are 
factored using Kraitchik, with 𝑛 ൌ 𝑝 ൈ 𝑞 ൈ 𝑟 ൈ 𝑠 ൈ
𝑡. The 𝑛 ranges between 44745833 (eight digits) and 
77525026403 (eleven digits), with 𝑝, 𝑞, 𝑟, 𝑠, 𝑡 range 
between two digits and three digits. 
  
 It can be concluded from Table 2 and Figure 2 
that the time this algorithm takes to factorize is also 
mostly directly proportional to the size of 𝑛 
 
  
9. THE COMPARISON OF RESULTS 
 
The Fermat’s difference of squares and the 
Kraitchik’s algorithms were primarily designed by 
their authors (Pierre de Fermat in the 1600s and 
Maurice Kraitchik in 1920s, correspondingly) to 
factor an integer to its two factors. These two factors 
may be both prime numbers, both composite 
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numbers, or a mixed of a prime number and a 
composite number. In contrast, our Python codes can 
be used to factor RPrime RSA modulus whose 
factors are two or more prime numbers. 
 
 Although it seems that Kraitchik does a fair job 
factoring the modulus, it should be noted that the 
performance of Kraitchik’s algorithm is worse than 
that of Fermat’s difference of squares. The 
explanation is below. 
 
 When factoring 𝑛 = 44745833, Fermat’s 
difference of squares only needs 0.002947092 
seconds, while Kratchik’s algorithm needs 
0.07245898 seconds. Thus, here Fermat’s is about 
24 times faster than Kraitchik’s.  
 
 When factoring 𝑛 = 77525026403, Fermat’s 
difference of squares only needs 0.002234936 
seconds, while Kratchik’s algorithm needs 
1240.25034404 seconds. Therefore, here Fermat’s is 
about 550 times faster than Kraitchik’s. 
 
 In this study, Fermat’s is used to factor up to 𝑛 
= 171464936134901, and it needs 14.90988517 
seconds to find all the five factors. Meanwhile, 
Kraitchik is only used to factor up to  𝑛 = 
77525026403, since here it already needs more than 
one thousand of seconds to compute all the factors. 
 
10. CONCLUSION 
  
Our major findings are as follows: 

1. Two Python codes based on the Fermat’s 
difference of squares and the Kraitchik’s 
algorithms were developed to factor the 
modulus of RPrime RSA. The Fermat’s 
difference of squares and the Kraitchik’s 
algorithms were originally introduced by 
their corresponding inventors to factor an 
integer to its two factors that can be prime 
or composite numbers; meanwhile, the two 
Python codes are able to handle integers 
that have more than two factors and these 
factors are guaranteed to be prime numbers. 
Therefore, these codes can factor the 
modulus RPrime RSA, since the modulus 
are products of two or more prime numbers.  

2. Both the Fermat’s difference of squares and 
the Kraitchik’s algorithms can be used as 
methods to factorize small 𝑛, the modulus 
of RPrime RSA.  

3. Based on the experiments using 𝑛 ൌ 𝑝 ൈ
𝑞 ൈ 𝑟 ൈ 𝑠 ൈ 𝑡 (with 𝑝, 𝑞, 𝑟, 𝑠, 𝑡 ranges 
between two and four digits and 𝑛 ranges 

from eight and fifteen digits), the time both 
algorithms take to factorize is mostly 
directly proportional to the size of 𝑛.  

4. By comparison, Fermat’s difference of 
squares is much faster than Kraitchik’s 
algorithm: while factoring six digits to 
eleven digits of 𝑛, Fermat’s is about 24 to 
550 times faster than Kraitchik.  
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