
Journal of Theoretical and Applied Information Technology
15th June 2021. Vol.99. No 11
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2770

FACTORIZATION OF SMALL RPRIME RSA MODULUS
USING FERMAT’S DIFFERENCE OF SQUARES AND

KRAITCHIK’S ALGORITHMS IN PYTHON

1 MAYA SILVI LYDIA, 2 MOHAMMAD ANDRI BUDIMAN, 3 DIAN RACHMAWATI
1, 2, 3 Departemen Ilmu Komputer, Fakultas Ilmu Komputer dan Teknologi Informasi, Universitas Sumatera

Utara, Jl. Universitas No. 9-A, Kampus USU, Medan 20155, Indonesia

E-mail: 1 maya.silvi@usu.ac.id, 2 mandrib@usu.ac.id, 3 dian.rachmawati@usu.ac.id

ABSTRACT

The RPrime RSA is one among many public key algorithms that relies its security on the hardness of finding
prime factors of a very large integer. While its predecessor, the RSA, utilizes two large prime numbers to
formulate its modulus, the RPrime RSA can utilize two or more prime numbers. Therefore, the RPrime RSA
is intuitively taken into account to be securer the than the RSA. The modulus of the RPrime RSA, n, is the
public key whose size determines the security of the entire cryptosystem: the larger the modulus, the securer
the cryptosystem. In this study, we shall show the way to factorize small modulus of the RPrime RSA using
two factorization algorithms, which are the Fermat’s difference of squares algorithm and the Kraitchik’s
algorithm. The programming of the factorization is completed using Python programming language. Our
study shows that both of Fermat’s difference of squares and Kraitchik’s algorithms can be used effectively
as methods to factorize small modulus of RPrime RSA. The time both algorithms take to factorize is mostly
directly proportional to the size of n. However, Fermat’s difference of squares is much faster than Kraitchik’s
algorithm: while factoring six digits to eleven digits of n, Fermat’s is about 24 to 550 times faster than
Kraitchik.

Keywords: Cryptography, Public Key Cryptosystem, Cryptanalysis, Rprime RSA, Difference of Squares,
Kraitchik

1. INTRODUCTION

Cryptography is generally viewed as a science
and strategy of using mathematical operations to
secure communication [1]. One aspect to maintain
secure communication is to maintain confidentiality.
Maintaining confidentiality is done by encryption
algorithm which consists of two mathematical
functions: encryption function and decryption
function. The decryption function is the inverse of
the encryption function.

There are two kinds of encryption algorithms:
symmetric and public key. In symmetric encryption
algorithm, message is passed into encryption
function, obfuscated into absurd form using a secret
key. This secret key is generated by the sender. The
obfuscated message is sent to a legitimate recipient
via a communication channel. The secret key is also
sent to this recipient, but a secure channel must be
used to send it. Upon receiving the key, the recipient
uses the decryption function to convert the
obfuscated message into the original message.

Public key encryption is a part of public key
cryptography, a term brought forward by Whitfield
Diffie and Martin E. Hellman in 1976 [2]. In public
key encryption, a recipient generates two kinds of
keys: public key and private key. The public key is
published by electronic meanings and the private key
is kept as a secret. Anyone who wants to send a
message to this recipient must know his or her public
key. The encryption function makes use of this
public key to encrypt the message. The encrypted
message is then sent to the recipient. With his or her
private key, the recipient can then decrypt the
message using the decryption function.

The Rivest-Shamir-Adleman (RSA) algorithm
[3] was among the first algorithm to implement the
Diffie-Hellman concept of public key cryptography.
Formulated in 1978 by Ronald Rivest, Adi Shamir,
and Leonard Adleman, the RSA has been the most
popular and the most widely used public key
encryption algorithm until now. The RSA utilizes
two very large prime numbers to formulate its
modulus. The larger the prime numbers, the securer
the RSA.

Journal of Theoretical and Applied Information Technology
15th June 2021. Vol.99. No 11
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2771

The RSA modulus, n, is simply the
multiplication of p and q, two large distinct prime
numbers. The modulus is published, so every party
knows its value. However, the two prime numbers
are kept private. If a cryptanalyst wants to break the
RSA cryptosystem, he or she must be able to factor
the modulus into its prime factors. If the modulus is
too small, for example, n = 1691, it only takes
seconds for the cryptanalyst to determine that 1691
= 89 × 19 using brute force search, and the RSA
cryptosystem is compromised. Therefore, only two
very large distinct prime numbers should be used to
formulate the modulus.

The RPrime RSA cryptosystem [4] is one of
various variants of the RSA cryptosystem. The
RPrime RSA is actually a combination of two
previous variants of RSA: the Mprime RSA and the
Rebalanced RSA [5]. The encryption method is the
same as the original RSA, while the key generation
method is similar to the Rebalanced RSA and the
decryption method is similar to the Mprime RSA.

Unlike the original RSA, the RPrime RSA uses
three or more large distinct prime numbers to
construct its modulus. Therefore, one may notice that
RPrime RSA is securer than the original RSA, since
a cryptanalyst will find that factoring an integer that
has three or more prime factors is certainly harder
than factoring another integer that has only two
prime factors.

In order to understand how hard it is to
cryptanalize the RPrime RSA, in this study we try to
factor some small RPrime RSA moduli using two
factorization algorithms: the difference of squares
algorithm and the Kraitchik algorithm.

The difference of squares algorithm is a classic
integer factorization algorithm proposed by Pierre de
Fermat in the 1600s. The difference of squares
algorithm is shown to be efficient if the difference
between the two factors is small [7].

The Kraitchik algorithm is a factoring
algorithm that is based on congruence [8]. The
algorithm employs the concept of perfect squares
and Euclidean greatest common divisors at the core
of its computations.

It is noted that both Fermat’s difference of
squares and Kraitchik’s algorithms can factor an
integer to its two factors. However, the RPrime RSA
modulus can consist of two or more factors  and
these factors must be prime numbers. Therefore, if
these two algorithms are going to be utilized to factor
the RPrime RSA modulus, we need to make some
appropriate adjustments.

In this study, several RPrime RSA moduli
ranging from 44745833 (8 digits) to
171464936134901 (15 digits) are factored by the
Fermat’s difference of squares and Kraitchik’s
algorithms. These RPrime RSA moduli (n) are
products of five Rprime RSA private keys, so that n
= p × q × r × s × t. The parameters p, q, r, s, and t
are distinct prime numbers that were generated
randomly. The factoring time of both algorithms is
recorded to conclude which of these two algorithms
can factor the Rprime RSA modulus most efficiently.

2. THE RPRIME RSA

The RPrime RSA [4] is a variant of the RSA
cryptosystem [3] that combines the key generation
method of the Rebalanced RSA [5] and the
decryption method of the Mprime RSA [8]. As many
other public key cryptosystems, the RPrime RSA
cryptosystem consists of three stages, namely key
generation, encryption, and decryption.

 The key generation stage is conducted by the
recipient. The steps are as follows [4]:

1. Choose k, the numbers of prime numbers to
be employed.

2. Generate k random and distinct prime
numbers, p1, p2, …, pk. This can be done
using primality test, such as Fermat Little
Theorem [10] or Agrawal-Biswas algorithm
[11]. The larger the primes, the securer the
cryptosystem, but the slower the encryption
and decryption processes.

3. Compute n = p1 × p2 × … × pk.
4. Choose dp1, dp2, … dpk, such that:

a. dp1, dp2, … dpk are odd numbers.
b. gcd(dp1, p1 – 1) = gcd(dp2, p2 – 1)

= … = gcd(dpk, pk – 1) = 1.
5. Find the solution of these Chinese

Remainder Theorem (CRT) equations (for
examples on CRT, see [12]):
 d ≡dp1 (mod p1 – 1)
 d ≡dp2 (mod p2 – 1)
 …
 d ≡dpk (mod pk – 1)
The value of d will be the decryption key.

6. Calculate Φ(n) = (p1 - 1) × (p2 – 1) × … ×
(pk – 1).

7. Calculate e ≡ d-1 (mod Φ(n)). Examples on
how to compute a multiplicative inverse can
be found on [13]).

8. Publish the public key (n, e).
9. Keep the private key (p1, p2, … pk, dp1, dp2,

… dpk, d, Φ(n)).

Journal of Theoretical and Applied Information Technology
15th June 2021. Vol.99. No 11
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2772

 The encryption stage is conducted by the
sender. The steps are as follows [4]:

1. Obtain the public key (n, e) from the
recipient.

2. Let m be the message the sender wants the
recipient to transmit securely.

3. Calculate the ciphertext c = me mod n.
4. Send the ciphertext c to the recipient.

 The decryption stage is conducted by the
recipient. The steps are as follows [4]:

1. Get the ciphertext c from the sender.
2. Calculate the original message m = cd mod

n.

 Now, let us illustrates how the RPrime RSA
cryptosystem works. Suppose a sender, Alice, would
like to send a simple message to a recipient, Bob. In
the key generation stage, Bob will generate his
public and private keys as follows:

1. Bob chooses k = 3.
2. With his chosen primality test algorithm,

Bob generates 3 primes: p1 = 907, p2 = 149,
and p3 = 359.

3. Bob computes n = p1 × p2 × p3 = 907 × 149
× 359 = 48516337.

4. Obeying the mathematical requirements,
Bob chooses dp1 = 77, dp2 = 95, and dp3 =
243.

5. Using CRT, Bob computes the decryption
key d = 31578707.

6. Bob calculates Φ(n) = (p1 - 1) × (p2 – 1) ×
(p3 – 1) = (907 – 1) × (149 – 1) × (359 – 1)
= 48003504.

7. Bob calculates e ≡ d-1 (mod Φ(n)). Thus, e ≡
31578707-1 ≡ 41046683 (mod 48003504).

8. Bob publishes his public key (n, e) =
(48516337, 48003504).

9. Bob keeps his private key (p1, p2, p3, dp1,
dp2, dp3, d, Φ(n)) = (907, 149, 359, 77, 95,
243, 31578707, 48003504).

 In the encryption stage, Alice will do as
follows:

1. From Bob, Alice obtains Bob’s public key
(n, e) = (48516337, 48003504).

2. Suppose Alice wants to send a simple
message that only contains one letter “B”.
Alice looks up the ASCII table and finds out
that the letter “B” corresponds to the value
of 66. Therefore, Alice lets the message m =
66.

3. Alice computes the ciphertext c = me mod n
= 6648003504 mod 48516337 = 21723622.

4. Via a channel, which can be secured or
unsecured, Alice transmits the ciphertext c
to Bob.

 In the decryption stage, Bob will do as follows:

1. From Alice, Bob gets the ciphertext c =
21723622.

2. Bob calculates the original message m = cd
mod n = 2172362231578707 mod 48516337 =
66. Bob looks up the ASCII table for the
value of 66 and gets the letter “B” which is
the message Alice wants him to read.

3. THE FERMAT’S DIFFERENCE OF

SQUARES FACTORIZATION
ALGORITHM

 The difference of squares algorithm is a classic
integer factorization algorithm made by French
mathematician Pierre de Fermat. The difference of
squares algorithm can factor an integer into its two
factors. The algorithm works as follows [7][14]:

1. Let n be the integer to be factorized.
2. Compute rൌ⌈ √n ⌉.
3. Compute s = r2 – n.
4. While s is not a perfect square, then do step

4a, 4b, 4c:
a. Increment r by 1, i.e., r = r + 1.
b. Compute s = r2 – n.
c. If s is a perfect square, then go to

step 5, else go to step 4.
5. Output r - √𝑠 as a factor of n.

 For example, let us find the factor of 85. The
algorithm works as follows.

1. Let n = 85.
2. Compute rൌ⌈ √n ⌉ ൌ⌈ √85 ⌉ൌ⌈ 9.22 ⌉ ൌ

10.
3. Compute s = r2 – n = 102 – 85 = 100 – 85 =

15.
4. Since s is not a perfect square, we do:

a. r = r + 1 = 10 + 1 = 11.
b. s = r2 – n = 112 – 85 = 121 – 85 = 36
c. s is a perfect square, so we go to

step 5.
5. Output r ‐ √𝑠 = 11 ‐ √36 = 11 – 6 = 5.

 Here we have 5 as a factor of 85. The other
factor is 85/5 = 17.

 From this example, we have 5 and 17 as the
factors of 85. Interestingly, 5 and 17 are prime
numbers. Thus, it begs the question: does the

Journal of Theoretical and Applied Information Technology
15th June 2021. Vol.99. No 11
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2773

Fermat’s difference of squares always return prime
number as the factors?

 To answer the question, let us try to factorize n
= 135. So, rൌ⌈ √n ⌉ ൌ ⌈ √135 ⌉ ൌ ⌈11,62⌉ ൌ 12.
Compute s = r2 – n = 122 – 135 = 144 – 135 = 9.
Since s is a perfect square, the algorithm terminates,
and we output r - √𝑠 = 12 - √9 ൌ 12 െ 3 ൌ 9 as the
factor of n. The other factor is 135/9 = 15. Thus, the
factors of 135 are 9 and 15, and both are not prime
numbers. Therefore, we conclude that:

1. The Fermat’s difference of squares does not
always return prime number as the factors.

2. As the modulus of RPrime RSA are
constructed as a multiplication of some
distinct prime numbers, the Fermat’s
difference of square algorithm must be
modified so it can factorize the modulus.

4. THE KRAITCHIK’S FACTORIZATION

ALGORITHM

 The Kraitchik’s algorithm is a newer integer
factorization algorithm proposed by Maurice
Kraitchik in the 1920’s [8]. Kraitchik’s algorithm is
an improvement to Fermat’s difference of square
algorithm [15] [16] [17] [18] [19] [20]: while Fermat
pondered at the relation 𝑛 ൌ 𝑥ଶ െ 𝑦ଶ ൌ ሺ𝑥 ൅
𝑦ሻሺ𝑥 െ 𝑦ሻ to get the intuitive idea of factoring 𝑛,
Kraitchik reformulated the relation into 𝑥ଶ െ
𝑦ଶ 0 ሺmod 𝑛ሻ. Kraitchik detected that 𝑥ଶ െ 𝑦ଶ was
indeed a multiple of 𝑛, so that it can be written as
𝑥ଶ െ 𝑦ଶ ൌ 𝑘𝑛, assuming that 𝑥 ൐ 𝑦.

The Kraitchik’s factorization algorithm is as follows
[8]:

1. Let n be the integer to factor.
2. Compute 𝑥 ൌ ⌈ √n ⌉
3. While the factor of 𝑛 is not found do:

a. Let 𝑘 ൌ 1
b. While 𝑥ଶ െ 𝑘𝑛 ൒ 0 do the

following:
i. 𝑦 ൌ √𝑥ଶ െ 𝑘𝑛

ii. If y is a perfect square and
ሺ𝑥 ൅ 𝑦ሻ 𝑚𝑜𝑑 𝑛 ് 0 and
ሺ𝑥 െ 𝑦ሻ𝑚𝑜𝑑 𝑛 ് 0 then
the factor of 𝑛 is 𝑝 ൌ
gcdሺ𝑥 ൅ 𝑦, 𝑛ሻ and 𝑞 ൌ
gcd ሺ𝑥 െ 𝑦, 𝑛ሻ, then stop.

iii. Else let 𝑘 ൌ 𝑘 ൅ 2
c. Let 𝑥 ൌ 𝑥 ൅ 1

Let us again find the factors of 85. So we let n = 85.
We compute xൌ⌈ √n ⌉ ൌ⌈ √85 ⌉ൌ⌈ 9.22 ⌉ ൌ 10

At the outer loop, we let 𝑘 ൌ 1

Since 𝑥ଶ െ 𝑘𝑛 ൌ 10ଶ െ 1 ൈ 85 ൌ 15 ൒ 0 we get
into the inner loop.

𝑦 ൌ √𝑥ଶ െ 𝑘𝑛ൌ√15 ൌ 3.87 so 𝑦 is not a perfect
square then we let 𝑘 ൌ 𝑘 ൅ 2 ൌ 1 ൅ 2 ൌ 3.

Since 𝑥ଶ െ 𝑘𝑛 ൌ 10ଶ െ 3 ൈ 85 ൌ െ155 ൏0 we
exit the inner loop and we compute 𝑥 ൌ 𝑥 ൅ 1 ൌ
10 ൅ 1 ൌ 11.

The factor is still not found so we get into the
outer loop and we let 𝑘 ൌ 1.

Since 𝑥ଶ െ 𝑘𝑛 ൌ 11ଶ െ 1 ൈ 85 ൌ 36 ൒ 0 we get
into the inner loop.

𝑦 ൌ √𝑥ଶ െ 𝑘𝑛ൌ√36 ൌ 6 so 𝑦 is not a perfect
square then we let 𝑘 ൌ 𝑘 ൅ 2 ൌ 1 ൅ 2 ൌ 3.

Since 𝑥ଶ െ 𝑘𝑛 ൌ 11ଶ െ 3 ൈ 85 ൌ െ134 ൏ 0 we
exit the inner loop and we compute 𝑥 ൌ 𝑥 ൅ 1 ൌ
11 ൅ 1 ൌ 12.

The factor is still not found so again we get into
the outer loop and we let 𝑘 ൌ 1.

Since 𝑥ଶ െ 𝑘𝑛 ൌ 12ଶ െ 1 ൈ 85 ൌ 59 ൒ 0 we get
into the inner loop.

𝑦 ൌ √𝑥ଶ െ 𝑘𝑛ൌ√59 ൌ 7.68 so 𝑦 is not a perfect
square then we let 𝑘 ൌ 𝑘 ൅ 2 ൌ 1 ൅ 2 ൌ 3.

Since 𝑥ଶ െ 𝑘𝑛 ൌ 12ଶ െ 3 ൈ 85 ൌ െ111 ൏ 0 we
exit the inner loop and we compute 𝑥 ൌ 𝑥 ൅ 1 ൌ
12 ൅ 1 ൌ 13.

The factor is still not found so again we get into
the outer loop and we let 𝑘 ൌ 1.

Since 𝑥ଶ െ 𝑘𝑛 ൌ 13ଶ െ 1 ൈ 85 ൌ 84 ൒ 0 we get
into the inner loop.

𝑦 ൌ √𝑥ଶ െ 𝑘𝑛ൌ√84 ൌ 9.16 so 𝑦 is not a perfect
square then we let 𝑘 ൌ 𝑘 ൅ 2 ൌ 1 ൅ 2 ൌ 3.

Since 𝑥ଶ െ 𝑘𝑛 ൌ 13ଶ െ 3 ൈ 85 ൌ െ86 ൏ 0 we
exit the inner loop and we compute 𝑥 ൌ 𝑥 ൅ 1 ൌ
13 ൅ 1 ൌ 14.

Journal of Theoretical and Applied Information Technology
15th June 2021. Vol.99. No 11
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2774

The factor is still not found so again we get into
the outer loop and we let 𝑘 ൌ 1.

Since 𝑥ଶ െ 𝑘𝑛 ൌ 14ଶ െ 1 ൈ 85 ൌ 111 ൒ 0 we get
into the inner loop.

𝑦 ൌ √𝑥ଶ െ 𝑘𝑛ൌ√111 ൌ 10.54 so 𝑦 is not a
perfect square then we let 𝑘 ൌ 𝑘 ൅ 2 ൌ 1 ൅ 2 ൌ
3.

Since 𝑥ଶ െ 𝑘𝑛 ൌ 14ଶ െ 3 ൈ 85 ൌ െ59 ൏ 0 we
exit the inner loop and we compute 𝑥 ൌ 𝑥 ൅ 1 ൌ
14 ൅ 1 ൌ 15.

The factor is still not found so again we get into
the outer loop and we let 𝑘 ൌ 1.

Since 𝑥ଶ െ 𝑘𝑛 ൌ 15ଶ െ 1 ൈ 85 ൌ 140 ൒ 0 we get
into the inner loop.

𝑦 ൌ √𝑥ଶ െ 𝑘𝑛ൌ√140 ൌ 11.83 so 𝑦 is not a
perfect square then we let 𝑘 ൌ 𝑘 ൅ 2 ൌ 1 ൅ 2 ൌ
3.

Since 𝑥ଶ െ 𝑘𝑛 ൌ 15ଶ െ 3 ൈ 85 ൌ െ30 ൏ 0 we
exit the inner loop and we compute 𝑥 ൌ 𝑥 ൅ 1 ൌ
15 ൅ 1 ൌ 16.

The factor is still not found so again we get into
the outer loop and we let 𝑘 ൌ 1.

Since 𝑥ଶ െ 𝑘𝑛 ൌ 16ଶ െ 1 ൈ 85 ൌ 171 ൒ 0 we get
into the inner loop.

𝑦 ൌ √𝑥ଶ െ 𝑘𝑛ൌ√171 ൌ 13.08 so 𝑦 is not a
perfect square then we let 𝑘 ൌ 𝑘 ൅ 2 ൌ 1 ൅ 2 ൌ
3.

Since 𝑥ଶ െ 𝑘𝑛 ൌ 16ଶ െ 3 ൈ 85 ൌ 1 ൒ 0 we are
still entering the inner loop for the next iteration.

𝑦 ൌ √𝑥ଶ െ 𝑘𝑛 ൌ √1 ൌ 1 so 𝑦 is a perfect square.
We also know that ሺ𝑥 ൅ 𝑦ሻ mod 𝑛 ൌ ሺ16 ൅
1ሻ mod 85 ൌ 17 ് 0 and ሺ𝑥 െ 𝑦ሻ mod 𝑛 ൌ ሺ16 െ
1ሻ mod 85 ൌ 15 ് 0.

Thus, the factor of 𝑛 is 𝑝 ൌ gcdሺ𝑥 ൅ 𝑦, 𝑛ሻ ൌ
gcd ሺ16 ൅ 1, 85ሻ ൌ 17 and 𝑞 ൌ gcdሺ𝑥 െ 𝑦, 𝑛ሻ ൌ
gcdሺ16 െ 1, 85ሻ ൌ 5.

 The result is indeed correct since 𝑛 ൌ 85 ൌ
𝑝 ൈ 𝑞 ൌ 17 ൈ 5; this is exactly the same result we
got with Fermat’s algorithm before.

 Since 𝑝 and 𝑞 are prime numbers, it could
make one wonder if Kraitchik’s algorithm always
returns prime numbers. To answer this question, we
again try to factor 𝑛 ൌ 135 with Kraitchik.
Following the similar steps as above, we got 𝑝 ൌ 27
and 𝑞 ൌ 5, which is correct since 135 ൌ 27 ൈ 5.
However, 27 ൌ 3 ൈ 3 ൈ 3, so it is not a prime
number. Thus, we conclude that:

1. The Kraitchik’s algorithm does not always
return prime number as the factors.

2. Since the modulus of RPrime RSA are
formulated as a multiplication of two or
more distinct prime numbers, the
Kraitchik’s algorithm must also be altered so
it can factorize the modulus.

5. FACTORIZATION OF RPRIME RSA
MODULUS USING FERMAT’S
DIFFERENCE OF SQUARES IN PYTHON

 The entire computation of our proposed
scheme is done in Python programming language.
The version of Python is 2.7.17 and the IDE is
Wing Personal version 7.2.1.0. The operating
system is MacOS 11.1 ሺ20C69ሻ, the processor is
1.4 GHz Dual-Core Intel Core i5, and the memory
is 4 GB 1600 MHz DDR3. The Python codes of
factoring RPrime RSA modulus using Fermat’s
difference of squares is as follows.

#title: Factoring RPrime RSA modulus with
Fermat's Difference of square
#author: Mohammad Andri Budiman, Maya
Silvi Lydia, Dian Rachmawati
#version: 1.07
#date: October 7th 2020
#time: 21.30

import math, random, time

def rndሺmini, maxiሻ: #get random number
between mini and maxi ሺand including mini
and maxiሻ
 return random.randintሺmini, maxiሻ

def isFermatPrimeሺpሻ:
 t ൌ 5 * lenሺstrሺpሻሻ
 for i in rangeሺtሻ:
 w ൌ rndሺ2, p - 1ሻ
 if powሺw, p - 1, pሻ !ൌ 1:
 return False

Journal of Theoretical and Applied Information Technology
15th June 2021. Vol.99. No 11
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2775

 return True

def issquareሺbሻ:
 if math.fabsሺmath.sqrtሺbሻ -
intሺmath.sqrtሺbሻሻሻ ൐ 0:
 return False
 return True

def FermatDiffሺnሻ:
 assert n % 2 ൌൌ 1
 r ൌ intሺmath.ceilሺmath.sqrtሺnሻሻሻ
 s ൌ r * r - n
 #print "\nr ൌ", r
 #print "\ns ൌ", s
 while notሺissquareሺsሻሻ:
 r ൅ൌ 1
 s ൌ r * r - n
 #print "\nr ൌ", r
 #print "\ns ൌ", s
 return r - intሺmath.sqrtሺsሻሻ

def getAllFactorsWithFermatDiffሺnሻ:
 all_factors ൌ ሾሿ
 while n % 2 ൌൌ 0:
 all_factors.appendሺ2ሻ
 n ൌ n // 2
 s ൌ 1
 while notሺisFermatPrimeሺnሻሻ:
 s ൌ FermatDiffሺnሻ
 if isFermatPrimeሺsሻ:
 all_factors.appendሺsሻ
 else:
 all_factors.extendሺ
getAllFactorsWithFermatDiff ሺsሻ ሻ
 n ൌ n // s
 #print all_factors
 all_factors.appendሺnሻ
 return all_factors

def getAllFactorsWithFermatDiff2ሺnሻ:
 all_factors ൌ ሾሿ
 while n % 2 ൌൌ 0:
 all_.appendሺ2ሻ
 n ൌ n // 2
 s ൌ 1
 while notሺisFermatPrimeሺnሻሻ:
 s ൌ FermatDiffሺnሻ
 all_factors.appendሺsሻ
 n ൌ n // s

 print all_factors
 all_factors.appendሺnሻ
 return all_factors

print "Factoring RPrime RSA with Fermat's
Difference of Squares Factorization
Algorithm\n"

#test
n ൌ 837233419

print "n ൌ", n
print
print "Calculating..."

start ൌ time.timeሺሻ
fs ൌ getAllFactorsWithFermatDiff ሺnሻ
stop ൌ time.timeሺሻ
print
print "factors of ", n, "are", fs
print
print "time ൌ", stop - start, "secs"
print

6. FACTORIZATION OF RPRIME RSA

MODULUS USING KRAITCHIK’S
DIFFERENCE OF SQUARES IN PYTHON

The Python codes of factoring RPrime RSA modulus
using Kraitchik difference of squares is as follows.

#title: Factoring RPrime RSA Modulus with
Kraitchik Algorithm
#author: Mohammad Andri Budiman, Maya
Silvi Lydia, Dian Rachmawati
#version: 1.07
#date: November 5th 2020
#time: 21:00

import math, random, time

def rndሺmini, maxiሻ:
 return random.randintሺmini, maxiሻ

def isFermatPrimeሺpሻ:
 t ൌ 5 * lenሺstrሺpሻሻ
 for i in rangeሺtሻ:

Journal of Theoretical and Applied Information Technology
15th June 2021. Vol.99. No 11
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2776

 w ൌ rndሺ2, p - 1ሻ
 if powሺw, p - 1, pሻ !ൌ 1:
 return False
 return True

def euclid_gcdሺm, nሻ:
 if m % n ൌൌ 0:
 return n
 return euclid_gcdሺn, m % nሻ

def isPerfectSquareሺzሻ:
 if math.fabsሺmath.sqrtሺzሻ -
intሺmath.sqrtሺzሻሻሻ ൐ 0:
 return False
 return True

def Kraitchikሺnሻ:
 x ൌ intሺmath.ceilሺmath.sqrtሺnሻሻሻ
 while True:
 k ൌ 1
 while x * x - k * n ൐ൌ 0:
 y ൌ math.sqrtሺx * x - k * nሻ
 if isPerfectSquareሺyሻ:
 y ൌ intሺyሻ
 if ሺx ൅ yሻ % n !ൌ 0 and ሺx -
yሻ % n !ൌ 0:
 p ൌ euclid_gcd ሺx ൅ y,
nሻ
 q ൌ euclid_gcd ሺx - y,
nሻ
 return p
 k ൅ൌ 2
 x ൅ൌ 1

def getAllFactorsWithKraitchikሺnሻ:
 all_factors ൌ ሾሿ
 while n % 2 ൌൌ 0:
 all_factors.appendሺ2ሻ
 n ൌ n // 2
 s ൌ 1
 while notሺisFermatPrimeሺnሻሻ:
 s ൌ Kraitchikሺnሻ
 if isFermatPrimeሺsሻ:
 all_factors.appendሺsሻ
 else:
 all_factors.extendሺ
getAllFactorsWithKraitchik ሺsሻ ሻ
 n ൌ n // s
 #print all_factors

 all_factors.appendሺnሻ
 return all_factors

#test
n ൌ 837233419

print "Factoring RPrime RSA with Kraitchik's
Factorization Algorithm\n"

print "n ൌ", n
print
print "Calculating..."

start ൌ time.timeሺሻ
fs ൌ getAllFactorsWithKraitchik ሺnሻ
stop ൌ time.timeሺሻ
print
print "factors of ", n, "are", fs
print
print "time ൌ", stop - start, "secs"
print

7. THE RESULTS OF FACTORING RPRIME
RSA USING FERMAT’S DIFFERENCE OF
SQUARE

The results of factoring RPrime RSA modulus using
Fermat’s difference of squares is shown in Table 1
and the relation between modulus and factoring time
is depicted in Figure 1 as follows.

Table 1. Factoring RPrime RSA modulus using
Fermat’s difference of square

RPrime RSA
Modulus

The factors Factori
ng time

n p q r s t time
ሺsecon
dsሻ

44745833 53 71 47 11 23 0.002947
092

114070363 53 181 47 11 23 0.000624
895

837233419 47 389 181 11 23 0.007280
111

3544881923 199 11 23 18
1

38
9

0.002234
936

77525026403 389 503 199 11 18
1

0.037840
128

Journal of Theoretical and Applied Information Technology
15th June 2021. Vol.99. No 11
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2777

11487799366
99

389 503 199 16
3

18
1

3.650619
03

26332868131
49

389 115
3

199 16
3

18
1

3.037208
08

13653829054
297

115
3

201
7

199 16
3

18
1

0.787917
852

17146493613
4901

201
7

227
3

115
3

16
3

19
9

14.90988
517

Figure 1 Factoring RPrime RSA with Fermat’s
Difference of Squares

(the x axis is the modulus and the y axis is the
factoring time in seconds)

 In Table 1, small RPrime RSA moduli are
factored using Fermat’s difference of squares, with
𝑛 ൌ 𝑝 ൈ 𝑞 ൈ 𝑟 ൈ 𝑠 ൈ 𝑡. The 𝑛 ranges between
44745833 (eight digits) and 171464936134901
(fifteen digits), with 𝑝, 𝑞, 𝑟, 𝑠, 𝑡 range between two
digits and four digits.

 It can be seen from Table 1 and Figure 1 that
the time the algorithm takes to factorize is mostly
directly proportional to the size of 𝑛

8. THE RESULTS OF FACTORING RPRIME
RSA USING KRAITCHIK’S ALGORITHM

The results of factoring RPrime RSA modulus using
Kraitchick’s algorithm is shown in Table 2 and the
relation between modulus and factoring time is
depicted in Figure 2 as follows.

Table 2. Factoring RPrime RSA modulus using
Kraitchick’s Algorithm

RPrime
RSA
Modulus

The factors Factoring
time

n p q r s t time
ሺsecondsሻ

44745833 53 71 47 11 23 0.07245898

11407036
3

53 18
1

47 11 23 3.73909402

83723341
9

47 38
9

18
1

11 23 3.51274085

35448819
23

19
9

11 23 18
1

38
9

103.126422
17

77525026
403

38
9

50
3

19
9

11 18
1

1240.25034
404

Figure 2 Factoring RPrime RSA with Kraitchik
algorithm

(the x axis is the modulus and the y axis is the
factoring time in seconds)

 In Table 2, small RPrime RSA modulus are
factored using Kraitchik, with 𝑛 ൌ 𝑝 ൈ 𝑞 ൈ 𝑟 ൈ 𝑠 ൈ
𝑡. The 𝑛 ranges between 44745833 (eight digits) and
77525026403 (eleven digits), with 𝑝, 𝑞, 𝑟, 𝑠, 𝑡 range
between two digits and three digits.

 It can be concluded from Table 2 and Figure 2
that the time this algorithm takes to factorize is also
mostly directly proportional to the size of 𝑛

9. THE COMPARISON OF RESULTS

The Fermat’s difference of squares and the
Kraitchik’s algorithms were primarily designed by
their authors (Pierre de Fermat in the 1600s and
Maurice Kraitchik in 1920s, correspondingly) to
factor an integer to its two factors. These two factors
may be both prime numbers, both composite

‐2

0

2

4

6

8

10

12

14

16

‐50000000000000 0 50000000000000 100000000000000 150000000000000 200000000000000

Factoring RPrime RSA with Fermat's Difference of Squares

0

200

400

600

800

1000

1200

1400

0 20000000000 40000000000 60000000000 80000000000 100000000000

Factoring RPrime RSA with Kraitchik

Journal of Theoretical and Applied Information Technology
15th June 2021. Vol.99. No 11
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2778

numbers, or a mixed of a prime number and a
composite number. In contrast, our Python codes can
be used to factor RPrime RSA modulus whose
factors are two or more prime numbers.

 Although it seems that Kraitchik does a fair job
factoring the modulus, it should be noted that the
performance of Kraitchik’s algorithm is worse than
that of Fermat’s difference of squares. The
explanation is below.

 When factoring 𝑛 = 44745833, Fermat’s
difference of squares only needs 0.002947092
seconds, while Kratchik’s algorithm needs
0.07245898 seconds. Thus, here Fermat’s is about
24 times faster than Kraitchik’s.

 When factoring 𝑛 = 77525026403, Fermat’s
difference of squares only needs 0.002234936
seconds, while Kratchik’s algorithm needs
1240.25034404 seconds. Therefore, here Fermat’s is
about 550 times faster than Kraitchik’s.

 In this study, Fermat’s is used to factor up to 𝑛
= 171464936134901, and it needs 14.90988517
seconds to find all the five factors. Meanwhile,
Kraitchik is only used to factor up to 𝑛 =
77525026403, since here it already needs more than
one thousand of seconds to compute all the factors.

10. CONCLUSION

Our major findings are as follows:

1. Two Python codes based on the Fermat’s
difference of squares and the Kraitchik’s
algorithms were developed to factor the
modulus of RPrime RSA. The Fermat’s
difference of squares and the Kraitchik’s
algorithms were originally introduced by
their corresponding inventors to factor an
integer to its two factors that can be prime
or composite numbers; meanwhile, the two
Python codes are able to handle integers
that have more than two factors and these
factors are guaranteed to be prime numbers.
Therefore, these codes can factor the
modulus RPrime RSA, since the modulus
are products of two or more prime numbers.

2. Both the Fermat’s difference of squares and
the Kraitchik’s algorithms can be used as
methods to factorize small 𝑛, the modulus
of RPrime RSA.

3. Based on the experiments using 𝑛 ൌ 𝑝 ൈ
𝑞 ൈ 𝑟 ൈ 𝑠 ൈ 𝑡 (with 𝑝, 𝑞, 𝑟, 𝑠, 𝑡 ranges
between two and four digits and 𝑛 ranges

from eight and fifteen digits), the time both
algorithms take to factorize is mostly
directly proportional to the size of 𝑛.

4. By comparison, Fermat’s difference of
squares is much faster than Kraitchik’s
algorithm: while factoring six digits to
eleven digits of 𝑛, Fermat’s is about 24 to
550 times faster than Kraitchik.

ACKNOWLEDGEMENTS

We gratefully acknowledge that this research is
funded by Lembaga Penelitian Universitas Sumatera
Utara. The support is under the research grant DRPM
Kemenristekdikti of Year 2019 Contract Number:
222/UN5.2.3.1/PPM/KP-DRPM/2019.

REFERENCES

[1] Rachmawati, Dian, and Mohammad Andri

Budiman. “Using the RSA as as an asymmetric
non-public key encryption algorithm in the
Shamir three-pass protocol.” Journal of
Theoretical & Applied Information
Technology 96, no. 17 (2018).

[2] Diffie, Whitfield, and Martin Hellman. “New
directions in cryptography.” IEEE transactions
on Information Theory 22, no. 6 (1976): 644-
654.

[3] Rivest, Ronald L., Adi Shamir, and Leonard
Adleman. “A method for obtaining digital
signatures and public-key cryptosystems.”
Communications of the ACM 21, no. 2 (1978):
120-126.

[4] Paixao, Cesar Alison Monteiro, and Decio
Luiz Gazzoni Filho. “An efficient variant of
the RSA cryptosystem.” IACR Cryptology
ePrint Archive 2003 (2003): 159.

[5] Boneh, Dan, and Hovav Shacham. “Fast
variants of RSA.” CryptoBytes 5, no. 1 (2002):
1-9.

[6] Budiman, M. A., D. Rachmawati, and R.
Utami. “The cryptanalysis of the Rabin public
key algorithm using the Fermat factorization
method.” Journal of Physics: Conference
Series, vol. 1235, no. 1, p. 012084. IOP
Publishing, 2019.

[7] Somsuk, Kritsanapong. “The improvement of
initial value closer to the target for Fermat’s
factorization algorithm.” Journal of Discrete
Mathematical Sciences and Cryptography 21,
no. 7-8 (2018): 1573-1580.

[8] Pomerance, Carl. “The quadratic sieve
factoring algorithm.” In Workshop on the

Journal of Theoretical and Applied Information Technology
15th June 2021. Vol.99. No 11
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2779

Theory and Application of Cryptographic
Techniques, pp. 169-182. Springer, Berlin,
Heidelberg, 1984.

[9] Collins, Thomas, Dale Hopkins, Susan
Langford, and Michael Sabin. “Public key
cryptographic apparatus and method.” U.S.
Patent 5,848,159, issued December 8, 1998.

[10] Rosenthal, Daniel, David Rosenthal, and Peter
Rosenthal. “Fermat’s Little Theorem and
Wilson’s Theorem.” In A Readable
Introduction to Real Mathematics, pp. 37-42.
Springer, Cham, 2018.

[11] Kim, Hyun Jong. “On a Modification of the
Agrawal-Biswas Primality Test.” arXiv
preprint arXiv:1810.09651 (2018).

[12] Yu, Gavin. "Proof Methods, Computational
Algorithms and Applications of the Chinese
Remainder Theorem." Global Journal of Pure
and Applied Mathematics 15, no. 5 (2019):
667-673.

[13] Rosenthal, Daniel, David Rosenthal, and Peter
Rosenthal. “The Euclidean Algorithm and
Applications.” In A Readable Introduction to
Real Mathematics, pp. 49-61. Springer, Cham,
2018.

[14] Kraft, James, and Lawrence Washington. An
introduction to number theory with
cryptography. Chapman and Hall/CRC, 2018.

[15] Pieprzyk, Josef. "Integer Factorization–
Cryptology Meets Number Theory." Scientific
Journal of Gdynia Maritime University (2019).

[16] Lenstra, Arjen K. "General purpose integer
factoring." IACR Cryptol. ePrint Arch. 2017
(2017): 1087.

[17] Garrett, S. L. (2008). On the quadratic sieve.
The University of North Carolina at
Greensboro.

[18] Nguyen, S. T., Ghebregiorgish, S. T.,
Alabbasi, N., & Rong, C. (2011, November).
Integer factorization using Hadoop. In 2011
IEEE Third International Conference on Cloud
Computing Technology and Science (pp. 628-
633). IEEE.

[19] Buchanan, W., & Woodward, A. (2017). Will
quantum computers be the end of public key
encryption?. Journal of Cyber Security
Technology, 1(1), 1-22.

[20] Bressoud, D. M. (2012). Factorization and
primality testing. Springer Science & Business
Media.

