
Journal of Theoretical and Applied Information Technology
15th June 2021. Vol.99. No 11
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2734

 APACHE HADOOP PERFORMANCE EVALUATION WITH
RESOURCES MONITORING TOOLS, AND PARAMETERS

OPTIMIZATION: IOT EMERGING DEMAND

 MO'TAZ AL-HAMI1, MAJDI MAABREH1, SALAH TAAMNEH2, AAKASH PRADEEP3, HANI
BANI SALAMEH4

1Department of Computer Information Systems, The Hashemite University, Zarqa, Jordan 13115

2Department of Computer Science and Applications, The Hashemite University, Zarqa, Jordan 13115
3Salesforce, San Francisco, California, USA

4Department of Software Engineering, The Hashemite University, Zarqa, Jordan 13115

ABSTRACT

Recently, IoT has revealed a key value in the smart cities. Our living comfortability level has been
improved. Such technology requires extensive data processing especially when it is a real time driven data.
Apache Hadoop framework is a necessary and efficient model that can be incorporated with the IoT
technology. Hadoop, the open-source framework, is typically used for off-line batch processing on large-
scale clusters. It has a wide range of applications in the big data industry due to its capability in processing
massive data in distributed and parallel environments. However, several aspects should be carefully
evaluated before deploying Hadoop-based solutions. The authors thoroughly investigate the Apache
Hadoop framework with the focus on factors that directly affect its performance. The work discusses and
evaluates two crucial dimensions of Hadoop systems; monitoring tools and their impact on the performance
of the Apache Hadoop based clusters, and the most influential parameters and the optimization techniques
of Apache Hadoop based systems. Results showed that monitoring tools play a major role in Hadoop-based
solutions planning and maintenance. According to the used experimental settings, the Cacti monitoring tool
consumes around 45% of the memory usage, however memory usage in Ganglia is more efficient than
Cacti tool (i.e., on average around 2.5%). For CPU utilization, both monitoring tools are efficient and the
monitoring tool usage amount is almost negligible. The results also showed that there is a shortlist of
critical parameters that significantly affect the overall performance. Based on the results, the authors
conclude the paper by future directions and possible improvements that need further explorations and
experiments.
Keywords: Big data, IoT, distributed system, high performance computing, artificial intelligence, smart
sensors.

1. INTRODUCTION

The new technology Internet of Things (IoT) is
powering the future of digital data processing.
Precisely, the amount of generated data between the
interconnected devices and sensors is relatively
high. The way of storing, processing, and getting
insight from data is a major issue. Apache Hadoop
is considered a vital choice to incorporate it with
IoT technology. Incorporating the Apache Hadoop
framework in the IoT technology can reshape the
data processing at the devices level, and the smart
cities applications level. In general, the smart city
architecture consists of three main tiers as shown in

Figure 1. The front tier includes both peripheral
sensors and devices nodes. Usually, the common
characteristics of all nodes in this tier are the
limited space and processing capability. Specially,
when we deal with embedded computing
environment the resources are limited and
constrained [1][2].

The second tier is the middle tier, and it represents
the smart gateway controller. It has the ability to
issue smart decisions regarding data collection,
summarizing, and routing [3]. At the same time, it
forms the bridge that controls the movement of data
between the Apache Hadoop and front tier devices
and sensors. The third and back-end tier is the

Journal of Theoretical and Applied Information Technology
15th June 2021. Vol.99. No 11
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2735

Apache Hadoop framework. The majority of
storage management and data processing are
executred in this tier. The scope of this paper is to
focus on the Apache Hadoop framework in terms of
performance.

Figure 1: Example of a smart city architecture integrated
with IoT technology. A smart gateway controller controls
all the peripheral sensors.

Figure 2 is an efficient solution for processing large
datasets. MapReduce has been studied and
evaluated in terms of performance, scalability, and
failure recovery in [4]. The work [5] discusses the
MapReduce framework uses in Google search
engine and its capability. Studying the trade-off
between data locality a load balancing in
MapReduce in order to maximize the throughput
has been investigated in [6].
In MapReduce, the whole processing task is broken
down into two stages: the map stage, and the reduce
stage. At the beginning, data is divided into chunks
and each chunk is assigned to a single mapper unit.
Each mapper receives a chunk as an input and
produces a value as an output. This process creates
key-value pairs, which depend on the nature of the
chunk content. Outputs from mappers apply further
processing including sorting and grouping based on
the key-value. The second stage is the reduce
process. In this stage, the reducers combine and
aggregate the results from mappers. Precisely,
outputs resulted from sorting and grouping key-
value pairs are assigned into different reducers. In
each one, the reducer aggregates its input and
produces a single output value. Several producers
produce several outputs and store them in the
HDFS.
Hadoop has the ability to handle large loads of
datasets from different users in a consistent and
efficient manner. Also, it can rearrange the usage of
computational resources on the basis of the incurred
load. Any enterprise uses Hadoop services can
dynamically scale to any number of computing
resources on the basis of traffic spikes and the
changing environment.

Figure 2: MapReduce framework. The tasks are divided
into smaller chunks and used by mappers to produce key-
value pairs. The reducers combine and aggregate results
from mappers.

One of the main problems in the distributed
environment is the hardware failure. Accessing a
large number of hardware pieces increases the
chance of failure that may happen among one of
these hardware pieces. Hadoop Distributed File
System (HDFS) is designed to store and manage a
huge amount of data, running on a cluster on a
commodity hardware. Since these commodity
hardware resources maybe available from multiple
vendors, the chance of a probable failure in any
cluster node is probably high. The architecture
design of the HDFS is constructed to manage and
solve such interruption failures.

HDFS is highly fault-tolerant and is designed to be
deployed on a low-cost hardware. HDFS provides a
high throughput access to an application data and is
suitable for applications that have large datasets [7].
Failure in HDFS has a nontrivial probability, which
means that some components of HDFS might be
non-functional. Therefore, the detection of any
potential failures and the quick automatic recovery
is a core architectural goal of HDFS. Monitoring
HDFS is not a trivial task due to its large scale and
distributed nature. At the same time, debugging
Hadoop programs through monitoring logs is
painful and impractical since it is excessively large.

Nowadays, there are many monitoring tools. These
monitoring tools are effective and make the
monitoring process simple. The main tasks of these
tools are: first, extract HDFS metrics from the
Hadoop logs. Second, correlate these metrics with
the operating system level metrics such as CPU and
memory utilization. This correlation is based on a
per-job/per-task basis [7]. To clarify the system
behavior, these tools collect the interaction of
metrics information and visualize them in an

Journal of Theoretical and Applied Information Technology
15th June 2021. Vol.99. No 11
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2736

interesting way, which increases the understanding
level of the system behavior. Java Management
Extensions (JMX) is a standard Java API for
monitoring and managing applications. Different
components of Hadoop: NameNode, DataNode,
JobTracker, TaskTracker and RPC implement the
JMX interfaces in order to report the data logs to
JMX [8][9].

Monitoring the CPU utilization and the memory
overhead is a key aspect of the performance
[10][11]. The CPU utilization level affects the
scalability of the whole cluster in terms of the
number of used cores and the power consumption
[10]. The work [11] studies the relationship of CPU
load between host and guest machines under
varying workloads conditions. Since the
virtualization technology is gaining an increasing
importance in cloud computing, the virtualization
process has a strong relation with the infrastructure
resources including CPU and memory usage
amount [12]. Part of this work focuses on studying
the amount of CPU utilization and the incurred
memory amount while using such monitoring tools
(i.e., Ganglia and Cacti). Since monitoring tools can
add additional overhead, it is beneficial to take a
look on the incurred overhead through using these
tools. The nature of the architecture of each tool
may affect the way used to monitor the cloud, and
in turn the incurred overhead level. Such
understanding of the monitoring performance can
characterize the overhead amount, and the sources
of that overhead.

Hadoop has been widely used for processing big
data in a variety of domains. It is becoming a de
facto for patch processing. In Hadoop, massive
amount of collected data over a specific period of
time is processed in a distributed fashion using the
MadReduce programming model. The key reasons
that make Apache Hadoop attractive for analyzing
big data include: scalability, cost efficiency,
flexibility, speed, and resilience to failures. Apache
Hadoop has been adopted in many different
disciplines. Hadoop has many applications in the
field of the large-scale graph analysis. A subgraph
analysis using Hadoop algorithm was developed by
[13]. A new approach for graph management and
analysis based on Hadoop was introduced in [14].
The approach uses a new set of operators for
analyzing both single graph and collections of
graphs. Moreover, a domain-specific language was
proposed to define analytical workflows. Hadoop
has also been used to compute the diameters of
petabyte-scale graphs [15]. Additionally, several
specialized distributed graph processing

frameworks were built on top of the Hadoop, such
as Giraph [16] and Hama [17].

Hadoop has also been used for medical big data.
One study developed a Hadoop-based system to
intelligently process medical big data and uncover
some features of a hospital information system
user’s behavior [18]. Hadoop was intensively used
for mining huge datasets. In clustering, a large
number of Hadoop-based clustering algorithms
have been proposed in order to reduce the
execution time and to increase resilience
[19][20][21]. The work [19] proposes a parallelize
Genetic algorithm using MapReduce framework to
apply clustering technique. In [20], parallel
KMedoids algorithm is incorporated with
MapReduce framework to breakdown the time
complexity when dealing with big data. K-Means
algorithm has also been used to cluster large
datasets using MapReduce [21]. Several
classification algorithms based on Hadoop, such as
naïve bayes, nearest neighbor, and decision tree,
have also been proposed [22][23]. C4.5 decision
tree algorithm used the Hadoop framework to
classify networks traffic [22]. In [23] satellite
images are classified using the Hadoop framework.
The aforementioned algorithms were mainly used
for image classification, weather prediction,
network traffic, and sentiment classification.
Association rule learning has also been improved
with the use of Hadoop. The apriori algorithm was
among the most investigated algorithm in
association rule learning [24][25]. The work [24]
uses MapReduce Apriori algorithm based on
Hadoop to find frequent pattern and apply data
mining techniques.

Although it has been extensively used for analyzing
data in a variety of domains, Hadoop has its own
limitations when dealing with large data. The
advantages and disadvantages of using Hadoop are
summarized in Table 1 for some of the domains
using Hadoop intensively.

Table 1: The advantages and disadvantages of using
Hadoop in a variety of domains.

Domain Disadvantage Advantages

Log
analysis

Slow
processing
speed: The
fact the
Hadoop reads
and writes the
data from and
to the disk
for every stage

Highly
available:
Hadoop can
continue
functioning
even if some
of the
NameNode
nodes crash.

Journal of Theoretical and Applied Information Technology
15th June 2021. Vol.99. No 11
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2737

of processing
makes the
whole process
very slow.

Highly
scalable: The
number of
nodes can be
increased or de
creased as
needed.

Fault-tolerant:
Hadoop uses
replication to
ensure data
availability
even if any
node fails.

Compatibility:
Hadoop is
compatible
with a wide
range of big
data
tools. In fact,
Hadoop is used
as a data
storage for
many tools.

Cost-effective:
Hadoop is open
source and can
be installed on
commodity
machines.

Graph
analysis

Hadoop is not
fit for small
files: Hadoop
was designed
to deal with
small number
of large files.
When dealing
with large
number of
small files
Hadoop fails
to provide
satisfactory
performance.

Medical
data

Hadoop
supports only
batch
processing:
This
makes Hadoop
inefficient for
online
processing
needed in the
medical field.

Sentiment
classificat
ion

Hadoop is not
secure
enough: to
deal with
sensitive data
generated by
social
networks.
Hadoop has
no encryption
or decryptions
at the storage
and network
levels.

Weather
prediction

Hadoop does
not support
real-time
data
processing.

Network
traffic

Hadoop does
not support
real-time

data
processing.

Bioinform
atics data
analysis

Hadoop is not
efficient for
iterative
processing.

The contributions in this paper are: First, the
authors study the Apache Hadoop framework effect
on resources through measuring the incurred
overhead. Two monitoring tools were used (i.e.,
Ganglia and Cacti). Showing the performance of
CPU and memory utilization while using these
tools can improve the decision of choosing the
monitoring tool in any cloud/cluster environment.
Second, the authors study the optimization part of
the Apache Hadoop that affects the framework
performance. There are too many parameters
control the framework performance. However,
some parameters significantly impact the overall
performance and they need to be evaluated
carefully while deploying the Hadoop solutions.

In this study, the focus is distributed in two
dimensions. The first dimension is to measure the
Apache Hadoop framework performance. We
measured the performance through two popular and
widely used monitoring tools. The used monitoring
tools are samples from a large number of available
monitoring tools. The goal is to signify the
importance of the choice of the used monitoring
tool. Each monitoring tool has a different load on
the used resources (i.e., CPU and memory). In case
of using different monitoring tools, the analysis
criteria would be the same. In the second
dimension, the work study the major sensitive
parameters that affect the Apache Hadoop
performance. The best-used values that enhance
the Apache Hadoop performance are analyzed and
showed in an appropriate way. These parameters
are very important for the overall performance
based on the used cluster resources settings. Default
parameters do not guarantee the best performance.
The study shows that, the best-used parameters are
different from the default settings.

The paper is organized as follows. The introduction
appears in Section Error! Reference source not
found.. Monitoring tools and Apache Hadoop
optimization are studied in Section 2. The
evaluation and analysis are described in 3.
Conclusion remarks appear in Section 4.

Journal of Theoretical and Applied Information Technology
15th June 2021. Vol.99. No 11
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2738

2. MONITROING TOOLS

Ganglia is a scalable distributed monitoring system
used to monitor several computing systems, such as
clusters and grids. The Ganglia design depends on a
hierarchical structure of federations of clusters (see
Figure 3). The architecture of this hierarchical
structure is implemented in a light weight overhead
occurred in the cluster nodes, and at the same time
assures high concurrency [26]. To visualize cluster
metric results, Ganglia uses XML representation
and RDtool for data storage and visualization. In
addition, External Data Representation (XDR)
format is used to serialize compact portable data
transport. The architecture of Ganglia depends on
multicast-based listen/announce protocol for
monitoring process. To manage the membership
inside a cluster, Ganglia uses a periodic heartbeat
message on a predefined and announced multicast
address. This periodic heartbeat message, identifies
cluster members, so each node should receive a
heartbeat messages from all other nodes in the
cluster. At the same time, it reacts by sending a
multicast heartbeat message to the other cluster
nodes. In this way, cluster membership can be
saved [26]. Figure 3 shows Ganglia architecture
where leaf nodes specify cluster nodes, while the
internal nodes specify aggregation points.

Figure 3: Ganglia tool architecture adopted from [26]. It
uses gmond (i.e., Ganglia monitoring daemon) and
gmetad (i.e., Ganglia monitoring daemon) daemons to
monitor the cluster. leaf nodes specify cluster nodes,
while the internal nodes specify aggregation points.

In Ganglia architecture, there are two daemons,
gmond and gmetad, where each of these daemons
has a specific task. At a single cluster level, gmond
daemon provides a monitoring using
listen/announce protocol, and it exists in every
node. To respond to a client request, gmond uses an
XML representation to retrieve the monitored data.
On the other hand, Ganglia gmetad supports a

federation between a group of clusters, where this
allows monitoring across multiple clusters using a
tree of TCP connections [26]. Since this work
focuses on a single cluster, the authors support
more details about single cluster monitoring using
gmond.

Figure 4: Cacti tool architecture. Cacti has three main
operations: data retrieval, data storage, and data
representation. Cacti uses a specific application
executed at constant periods called poller, to collect data
from the cluster nodes.
In gmond daemon, there are three different kinds of
threads used to organize the monitoring process,
and these threads are:

 Collect and Publish Thread: which is

responsible on managing the node local state, so
it collects the node information and publishes it
for other nodes in the same cluster using a well-
known multicast channel.

 Listening Thread: which is responsible on

listening to the other nodes on the same cluster
using a well-known multicast channel, and
updates the node local memory state.

 Export Thread: which is responsible on
managing and processing client’s requests.

2.1 Cacti Monitoring Tool

Cacti is an open-source monitoring tool, which uses
PHP/MySQL graphical representation. The design
in Cacti depends on Simple Network Management
Protocol (SNMP) that uses Round Robin Database
Tool (RRD-Tool) engine to collect data. Cacti has
three main operations: data retrieval, data storage,
and data representation [27]. For data collection,
Cacti uses a specific application executed at
constant periods called poller, to collect data from
the cluster nodes. Data fetched by Cacti is stored in
RRD files. Regarding the tool management data,

Journal of Theoretical and Applied Information Technology
15th June 2021. Vol.99. No 11
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2739

like user management and RRD files mapping, both
are saved in MYSQL. RRDTool supports a
customized graphical representation report to view
the collected data from cluster nodes. Figure 4
shows the Cacti architecture.

2.2 Apache Hadoop Optimization

This section could be a good reference for
newcomers and interested in the optimization
problems in the Hadoop framework. It could be a
good starting point to find the required research
path that might link different dimensions together
in more efficient and generic solutions especially
for users of different technical backgrounds.

There are several issues need to be considered
carefully when studying the performance of the
Apache Hadoop framework. These issues include
the cluster resources including the used CPUs
power, and the used memory capacity. The shape of
the used resources can control the used Apache
Hadoop framework structure including the number
of mappers and reducers used in the framework.

Next, the application characteristics and its relation
to the available resources is an important issue has
to be studied carefully. The effort of tuning Hadoop
systems is mainly to find the best function, which
can describe the relationship among the parameters,
hardware, and application characteristics that
maximize the capacity and system performance.

Generally speaking, computational systems are
governed by a set of parameters that should be
adjusted to end up by the desired capacity and
performance. Sometimes, a parameter may play a
major role in systems crash and failure by selecting
either higher or lower values of what is needed.
Hadoop has hundreds of interconnected parameters
that need to be carefully studied before deploying
Hadoop systems. The focus could be on those
related to I/O, memory, and CPU utilization.
Besides, given the size of data intended to be
processed in Hadoop on a commodity hardware,
finding the optimal values of Hadoop parameters is
a challenge [28].

Hadoop provides different ways to facilitate the
configurations to maximize the benefit of Hadoop
power and capacity, and also to manage the
different needs of applications and the available
hardware. Parameters values can be set by updating
the XML files of parameters (core-default.xml,
hdfs-default.xml, hdfs-rbf-default.xml, mapred-
default.xml, yarn-default.xml), using the command

line, or by some lines of code using Configuration
class [29].

The effort of tuning Hadoop systems is mainly to
find the best function which can describe the
relationship among the parameters, hardware, and
application characteristics that maximize the
capacity and system performance. Out of hundreds
of parameters, few of them are the most influential
on the overall performance [29][30] based on
several empirical studies. The work [29] provides a
customizable Apache Hadoop framework that
allows the user to customize some functionality
parameters that control resources like CPU and
memory. summarizes the common parameters that
have a considerable impact on Hadoop systems. In
terms of different applications, there is a clear
variation in parameter values from one to another
and from dataset size to a larger or smaller one.
This is one motivation of several studies to find the
best recipe for Hadoop parameters to maximize the
performance and resource utilization of the
MapReduce application.

The contributions in Mapreduce parameters' tuning
fall into five main categories; rule of thump, expert
developers and engineers like [28], machine
learning Models, cost-based models, and search-
based solutions. However, profiling is the major
process that paving the way for them. Another
taxonomy is discussed in recent research [31]
where the tuners of Hadoop come in six categories;
rule-based, cost modeling, simulation-based,
experiment-driven, machine learning, and adaptive
tuning. One could see them in two categories in
terms of their methodology as online such as [32]
[33] or offline such as the solution [34]. The work
[33] proposes an online approach for performance
tuning which monitors a job’s execution
performance, and tunes associated performance-
tuning parameters using some collected statistics.
Starfish [35] is considered a very early attempt in
Hadoop parameters tuning. The work has been built
on the basis that the overall performance of the
Hadoop-based (MapReduce) systems is an
optimization problem of three main inputs; the
configuration of job parameters, the resources
allocated to run a job, and the properties of the
dataset being processed. Given a large number of
parameters in this optimization problem, Starfish
focuses on some parameters where the empirical
study highlighted some of the Hadoop parameters
that have more effect on the performance. Besides,
more complex interaction among the parameters
where, for example, "io.sort.factor" showed a

Journal of Theoretical and Applied Information Technology
15th June 2021. Vol.99. No 11
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2740

significant improvement in the execution time
while "mapred.reduce.tasks" parameters assigned
values less than 50, and almost no effect if
"mapred.reduce.tasks" set to higher values, like
300. Another example is a recent experiment shows
that optimizing concurrent tasks on the same node
along with the block size parameter that shows
significant improvements in the overall YARN
system [36]. A recent experiment [37] applied a
feature selection approach to find those more
important parameters than others which could
narrow down the list of parameters that need to be
adjusted. The results highly conformed with the
empirical evaluation in different studies and report
"mapreduce.job.reduces", "mapreduce.job.maps",
"mapred.child.java.opts",
"mapreduce.task.io.sort.mb" may have the most
impact on the execution time of the MapReduce
process. The same parameters were reported of
about 8 years before this study when [38] evaluate
the MapReduce parameters using principal
component analysis, PCA.

Starfish is a cost-based solution depends on
measuring the CPU and I/O while profiling jobs.
Machine learning-based solutions could be a good
solution, however, the lack of large enough data
could result in inefficient models, thus poor results
and performance. The work [34] proposed and
evaluates search-based solutions by Genetic
algorithm. The adaptive solution can find semi-
optimal parameters' values in less than 30 trials.
Despite the encouraging results compared to
Starfish and manual tuning, we need to evaluate
this solution with larger datasets that are currently
the challenge of many platforms and solutions. [39]
is another cost-based solution that uses a search-
based algorithm to find good configurations
through sequential steps on profiling data.
One of the obstacles of applying the Starfish
approach for ad-hoc systems is the properties or
data distribution and statistics are not defined ahead
of MapReduce processing. An efficient data
sampling could add value to the overall solution by
task distribution and load balancing. Compared to
the Starfish tuner, [40] proposed a machine
learning-based approach where support vector
regression (SVR) was able to set more parameters
in an adaptive solution which depends mainly on
the observations of the systems on different
applications. Datasets were collected from multiple
experiments on different benchmarks of different
sizes. Next, the sampling technique is used
gradually to avoid random sampling and to quickly
build a machine learning model (i.e., hypothesis)

instead of using the whole dataset, which is
relatively large.

Ant [32] is a search-based tool that starts tasks with
random configurations and then gradually improves
them while tasks are running. Ant shows
improvement with large tasks and I/O intensive
compared to itself with small and CPU intensive
tasks. That is tuning the parameters needs some
time and small jobs are usually done before the
decision. Ant still works under the assumption that
the tasks are long and have a uniform completion
time on the same hardware. To handle a different
case, [33] proposed MRONLINE, an online tool,
which allows different configurations of different
tasks instead of having the same values of
parameters for all tasks.

Jellyfish [41], is an online tool, which still utilizes
the cost-based and profiling methods in online
tuning. The main idea is using the statistics
collected from different tasks with different
configurations and then decide the best setup.
Jellyfish separates searching space into map-related
parameters and reduce-related parameters, which,
in turn, dramatically speedup the searching process.
It also provides a resource re-schedule mechanism
that maximizes the busy time of the resources.

Different machine learning methods such as
clustering and classification are used along with the
cost-based model in multi-phases tuners. [42]
provides a self-tuning solution by applying the
profiling and clustering methods on the
applications. Mapreduce-based applications could
be separated into different clusters based on their
usage of CPU, I/O, and Memory. The second phase
of the solution is mainly to identify the class the
new job belongs to. This is by running the job on a
small sample of data and then collect system
performance data (CPU, I/O,...) where the classifier
decides which values of parameters should be used
that could maximize the performance.

RFHOC tool [43] consists of subsequent phases and
also depends on profiling to collect data about
MapReduce tasks execution times and
configurations to feed the Random forest algorithm
and then the Genetic algorithm in the next
subsequent phase to find the best configuration.
The speedups are significant compared to cost-
based optimization on various sizes of datasets;
from 50 GB to 1 TB. The training dataset is
collected from running random different
configurations on a subset of the original dataset

Journal of Theoretical and Applied Information Technology
15th June 2021. Vol.99. No 11
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2741

being processed. The experiments also showed that
generating the training dataset for random forest
could need days, but to train a random forest model
is typically a very fast task on small matrix; about
2000 records.

Linear regression is utilized in [44] to predict the
execution time of MapReduce jobs. The model was
trained on log files data and then the outcomes are
consumed by a process to reduce the makespan of a
job. This, in turn, reduces the overall execution
time and also improves resource utilization. KNN
algorithm was also used to train a model over a 10
months log history of MapReduce Yahoo data [45].
The main objectives are to find similar jobs in
terms of resource needs and to build a model
predicting the completion time. "Dstat" tool collects
CPU and Disk usage data and represents the main
source of training data to build support vector
machine (SVM) which is the heart of AROMA tool
[46]. Tree-based regression and ensemble methods
are used to estimate the performance of MapReduce
distributed jobs [47]. Random forest feature
importance is also utilized in this solution to narrow
down the parameters list. The solution reaches
about more than 90\% of accuracy on Terasort and
wordcount benchmarks algorithms.

Profiling and data collection like in [43] could be
considered a time-consuming task and also needs
resources, however, this overhead is not a frequent
task since the built model could be used for future
tasks and no need to roll the ball again. This case
would be changed if the datasets being processed
vary from time to time, thus the task to revisit the
configurations becomes a frequent task which
increases the overhead over the infrastructure. The
interesting question would be about the role of
machine learning and how much help can provide
to predict the best configuration after a long time of
profiling data so that minimizing the need to keep
profiling the applications?

A recent study [48] showed that applications that
belong to the same pattern or share pattern
characteristics are likely to share also the
performance characteristics on the same data size.
This interesting result may guide the research to
evaluate patterns-based solutions on big data.
Machine learning models could have more accurate
results and the need for continuous
training/retraining the model might be minimized
especially that another recent study [37] narrows
down the list of important parameters to a shorter
list.

3. EVALUATION

In the evaluation, the authors focus on studying
Apache Hadoop effect on memory and CPU. For
this purpose, two different monitoring tools Cacti
and Ganglia were used. Both monitoring tools show
memory and CPU status while running.

3.1 Experimental Setup
 The experiment were executed on a local
experimental on-premise HPC. It is used as a
service private cloud geared towards scientific
computing research. The used cloud includes two
main parts: virtual machines, and elastic block
storage. In this work, the authors created a cluster
consists of three virtual machines. In these virtual
machines, only a single CPU is used, the used
memory size is 128 MB, and the disk space is 2
GB. Figure 5 shows the used cluster setup. For all
the experiments, Hadoop-0.20 version and Puppet
installation tool for it were used. During the
experiments, the incurred overhead in the CPU and
memory using the monitoring tools is measured.

Figure 5: The used cluster setup. The authors created a
cluster consists of three virtual machines. In these virtual
machines, only a single CPU was used, the used memory
size is 128 MB, and the disk space is 2 GB.

3.2 Cacti Analysis

Cacti monitoring tool uses a pulling approach for
accessing metrics in the cluster nodes. Precisely, to
read the measured CPU overhead and the incurred
memory usage metrics, polling mechanism is used.
The polling process is organized in regular
intervals. In this work, the authors used the Cacti
plugin Hadoop-Cacti-jtg, which is designed for
graphing JMX attributes from Hadoop with Cacti.
Figure 6: shows the scripts

Journal of Theoretical and Applied Information Technology
15th June 2021. Vol.99. No 11
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2742

Figure 6: Scripts for polling data from Hadoop using
Hadoop-Cacti-jtg (i.e., Cacti plugin for graphing JMX).

provided by the Hadoop-Cacti-jtg for polling data
from Hadoop. For this purpose, the Cacti was
configured to use these scripts to poll Hadoop data
from the master and slave nodes. For example, to
get the Namenode data FSNamesystemState.sh and
NameNodeActivity.sh scripts were used [49].

In the used experiment setup, the polling process is
applied to read the memory usage and the CPU
overhead. For memory usage, the observed
overhead is relatively high specially in the peak
periods. Since the cluster is not performing any
tasks other than Cacti monitoring tool, the incurred
memory usage is related to the Cacti tool. Figure 15
shows the measured memory usage for four
different types of daemons; Cacti, Apache HTTP
server, SNMP, and MySQL. The polling process
time is measured in seconds. The observed reads
show that Cacti and Apache HTTP server consumes
amount of memory around 45% in the peak periods,
and this is relatively high. The memory usage by
other daemons like SNMP and MySQL around 5%

which is relatively low and negligible. The
observed CPU usage of the Cacti is 0% most of the
time.

3.3 Ganglia Analysis
For Ganglia monitoring tool, three different
scenarios were used to measure the CPU overhead
and the memory usage in every node in the cluster:
 When Apache Hadoop framework is idle (i.e.,

not doing any kind of processing or file
read/write operations). In this experiment, the

authors tried to capture the absolute overhead of
Ganglia.

 When Apache Hadoop framework executing
Tera sort algorithm, which involves (1)
generating the data using Teragen unit, (2)
sorting the data using Tera sort and then (3)
validating the sorted data. Here, the main goal is
to capture the effect of preforming Apache
Hadoop framework with Ganglia.

The aforementioned scenarios can measure the
effect of Apache Hadoop and its overload, also they
show the effect of Ganglia monitoring tool when
using to monitor Apache Hadoop framework.

Figure 7: CPU utilization using gmond tool (i.e., Ganglia
monitoring daemon) [10 seconds].

Figure 8: CPU utilization using gmond tool (i.e., Ganglia
monitoring daemon) [30 seconds].

Polling mechanism in Ganglia has an effect on the
incurred overhead. To show the effect of the polling
process, three different intervals for polling process
were used: 10 seconds, 30 seconds, and 60 seconds.
Throughout the analysis, Cluster_node 0 refers to
the master node (i.e., Hadoop server node) and it
runs gmond and gmetad daemons at the same time.
Cluster_node 1 and Cluster_node 2 refer to the
Hadoop slave nodes and they run gmond daemon
only. In Figure 3, the daemon gmond is located at
the leafs level, were slave nodes reside there. The
polling process at this level follows XDR over UDP

Journal of Theoretical and Applied Information Technology
15th June 2021. Vol.99. No 11
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2743

transmission protocol, were in case of any potential
failure slave nodes do not react to the polling
process. For the master node, were Hadoop server
resides, XML over TCP transmission is included
beside gmond daemon.

Figure 9: CPU utilization using gmond tool (i.e., Ganglia
monitoring daemon) [60 seconds].

Figure 10: CPU utilization using gmond tool (i.e.,
Ganglia monitoring daemon) [Tera sort].

Figure 11: Memory utilization using gmond tool (i.e.,
Ganglia monitoring daemon) [10 seconds].

For the first scenario when Apache Hadoop is idle,
the generated CPU overhead is negligible. In all
different polling intervals, the CPU has no
overhead, which means the polling process does not
cause overhead (see Figure 7 - Figure 9). The
observed difference between the master node
Cluster_node 0 and the slave nodes Cluster_node
1, and Cluster_node 2 is almost negligible.

Figure 12: Memory utilization using gmond tool (i.e.,
Ganglia monitoring daemon) [30 seconds].

Figure 13: Memory utilization using gmond tool (i.e.,
Ganglia monitoring daemon) [60 seconds].

Figure 14: Memory utilization using gmond tool (i.e.,
Ganglia monitoring daemon) [Tera sort].

As a conclusion, the Ganglia monitoring tool is
very efficient in the first scenario (i.e., when the
Apache Hadoop framework is idle) and using
different polling periods.

In the second scenario, when there is an application
running (in our case Tera sort). In this Scenario, the
Hadoop framework with MapReduce was able to
elevate the incurred overhead in a way makes it
negligible. The CPU deals mainly with two main
parts, the Hadoop framework, and the Ganglia
monitoring tool at the same time. Figure 10 shows
the generated overhead in the CPU for each node.
The results show that the amount of overhead is

Journal of Theoretical and Applied Information Technology
15th June 2021. Vol.99. No 11
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2744

slightly negligible and the Ganglia tool is a
lightweight process in generating overhead. The
master node Cluster_node 0 has a little more
overhead since it is the Hadoop server node. As a
conclusion from this experiment, the Apache
Hadoop framework is efficient when dealing with
the CPU. Regarding the memory utilization when
using the Ganglia monitoring tool, the same
experiment was repeated. Figure 11 - Figure 14
show the memory utilization for Ganglia
monitoring tool. The same aforementioned
scenarios were followed. When Apache Hadoop is
idle, the memory utilization is shown in (Figure 11 -
Figure 13). For different polling periods the
memory utilization in all the cluster nodes is
negligible. Thus, the polling period has no effect on
the memory utilization. In the second scenario,
when using Tera sort (Figure 14), the memory
utilization variation appears to be more than the
scenario when Hadoop is idle. However, the
memory utilization is still negligible in all the
cluster nodes, making the ganglia tool as an
efficient choice for all scenarios.

In (Figure 16 - Figure 18), a comparison between
gmetad and gmond in Ganglia monitoring tool. The
goal is to study the difference between the
generated reads through using these different
daemons. The same aforementioned scenarios when
the Apache Hadoop is idle are followed. Each
daemon has a different memory utilization and
incurred CPU overhead. Using different polling
periods (Figure 16 - Figure 18), the memory
utilization level for both daemons is always larger
than the incurred overhead in the CPU, however
both of them are relatively low. As a conclusion,
Apache Hadoop framework does not cause any
heavy overhead in the CPU, however the memory
utilization vary based on the used monitoring tool
(i.e., Ganglia or Cacti) beside the Hadoop
framework.

3.4 Parameters in Ganglia and Cacti

In the previous sections, the authors noticed that the
monitoring tools Ganglia and Cacti each has a
different architecture and polling strategy. The
polling strategy has an effect on the memory
utilization especially for Cacti were the poller is
centralized in the Apache Hadoop server node. It is
important to compare between the main available
parameters in Ganglia and Cacti. Table 2 shows the
main parameters settings in Ganglia and Cacti.

These parameters in general capture different
monitoring aspects like CPU status, memory status,
network status, visualizing process, and the type of
the used database.

Table 2: Ganglia and Cacti Parameters Comparison.

Parameter Monitoring Tool
Ganglia Cacti

License BSD GNU
Default
monitor with
Hadoop

Default Not
Default

Web
interface

Available Available

Extensibility Yes Yes
User
Management

No Yes

RRD Tool Yes Yes
JMX Yes Yes
Hadoop data
retrieval
model

Push Pull

Hadoop alert Yes Yes
XML based
data transfer

Yes No

CPU
monitoring

Yes Yes

Memory
monitoring

Yes Yes

3.5 Parameters and Optimization

The experiments were conducted using a virtual
machine running on Google cloud, with 32 vCPUs
and 256 GB of RAM. The main goal, behind the
experiment in this section, is to show the effect of
changing the default values of the parameters
understudy on the overall performance. To achieve
this goal, the common wordcount algorithm has
been used on around a 6 GB dataset. The
experiments show a significant improvement in the
execution times using the same dataset but with
different values of parameter a little far from the
default values (see Table 3). Of course, the values
could be different if another high specs cluster is
used or a larger dataset is fed to the algorithm. The
proposed values of the parameters range from the
defaults and gradually increased till the execution
time does not significantly change. Table 3 also
shows that these parameters got attention in
different studies and the range of tuned values,
sometimes, relatively large.

Journal of Theoretical and Applied Information Technology
15th June 2021. Vol.99. No 11
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2745

Table 3: Parameters optimization for wordcount
problem.

Parameter name The
experiment
parameter
value

dfs.replication 4
dfs.block.size 100, 128
mapreduce.task.io.sort.mb 100-128
mapreduce.task.io.sort.factor 200, 256
mapreduce.map.sort.spill.percent 0.7
mapreduce.job.reduces 16
mapreduce.job.maps 48
mapred.child.java.opts 512
mapreduce.reduce.shuffle.
parallelcopies

8

4. CONCLUSION

The IoT technology has become a key technology
in several applications including smart cities
applications. However, an extensive data
processing is required especially for real-time
applications. Apache Hadoop is a core component
framework necessary for processing such data. The
authors thoroughly investigate the Apache Hadoop
framework through studying the factors that
directly affects the framework performance.
The work discusses and evaluates two crucial
dimensions of Hadoop systems; monitoring tools
and their impact on the performance of the Apache
Hadoop based clusters, and the most influential
parameters and the optimization techniques of
Apache Hadoop based systems. The authors mainly
discuss and evaluate two crucial aspects of Hadoop-
based systems that might be risky in the sense that
arbitrary decisions on them could be costly and/or
distract users from their main projects goals. When
talking about IoT technology, Apache Hadoop is
one of the main things we need to consider.
Resources monitoring and parameters optimizations
show a significant impact on the overall
performance of Hadoop systems. The authors focus
their study on two commonly used monitoring tools
of the Hadoop framework; Ganglia and Cacti, in a
distributed environment. The focus was on CPU
and memory utilization. One important observation,
the result revealed that changing the frequency of
polling time has no major effect on the monitoring
process, and both tools can send useful feedback
about the infrastructure status while running

Hadoop using different polling time values. This
observation could help the administrators in setting
up Hadoop solutions where the resources usually
busy in Hadoop processes.
The second dimension of the study showed that the
Hadoop framework is sensitive for a few
parameters, out of hundreds, where they need to be
adjusted wisely. The authors found that previous
works in Hadoop performance tuning can be one of
five major approaches; the rules of thump, expert
developers and engineers, machine learning
Models, cost-based models, and search-based
solutions. Some solutions may come in a hybrid
model of the above. However, all of them need
profiling data on different applications and
environments.
Results showed that monitoring tools play a major
role in Hadoop-based solutions planning and
maintenance. The choice of the used monitoring
tool has an effect on the available resources (i.e.,
CPU and memory). The results also showed that
there is a shortlist of critical parameters that
significantly affect the overall performance.
Future research could focus more on designing
tools for cloud-based Hadoop solutions where data
fusion techniques may help in collecting
performance data from cloud resources (i.e. might
be in different places). In terms of profiling for
parameter optimization, the current process of
profiling is time-consuming, especially on big data.
One suggestion that needs further experiments is to
cluster applications based on their design patterns
or design characteristics. One more dimension is
the employment of machine learning to analyze
profiling data of different
applications/environments to predict the best
configuration. Given the increasing size of daily
data, Hadoop monitoring, and performance tuning
are major challenges that need extensive practical
studies on cloud infrastructure.

ACKNOWLEDGMENT: Dr. Maabreh (the
second author) acknowledges that the Deanship of
Scientific Research at The Hashemite University
has provided a financial support for partially
funding this research.

Journal of Theoretical and Applied Information Technology
15th June 2021. Vol.99. No 11
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2746

REFERENCES

[1] M. Al-Hami, M. Pietron, R. Casas, M.

Wielgosz, "Methodologies of compressing a
stable performance convolutional neural
networks in image classification," Neural
Processing Letters, pp. 105--127, 2020.

[2] M. Al-Hami, M. Pietron, R. Casas, S. Hijazi,
P. Kaul, "Towards a stable quantized
convolutional neural networks: An embedded
perspective," in Proceedings of the
International Conference on Agents and
Artificial Intelligence, Madeira, Portugal,
2018.

[3] V. Diaconita, A. Bologa, R. Bologa, "Hadoop
oriented smart cities architecture," Sensors,
vol. 18, no. 4, 2018.

[4] J. Dean, S. Ghemawat, "MapReduce:
simplified data processing on large clusters,"
Communications of the ACM, vol. 51, no. 1,
pp. 107--113, 2008.

[5] J. Dean, S. Ghemawat, "MapReduce: a
flexible data processing tool,"
Communications of the ACM, vol. 53, no. 1,
pp. 72--77, 2010.

[6] W. Wang, K. Zhu, L. Ying, J. Tan, L. Zhang,
"Maptask scheduling in mapreduce with data
locality: Throughput and heavy-traffic
optimality," IEEE/ACM Transactions on
Networking (TON), vol. 24, no. 1, pp. 190--
203, 2016.

[7] K. Shvachko, H. Kuang, S. Radia, R.
Chansler, "The hadoop distributed file
system," in IEEE 26th symposium on mass
storage systems and technologies (MSST),
2010.

[8] J. Venner, Pro hadoop, Apress, 2009.

[9] T. White, Hadoop: The definitive guide,
O'Reilly Media, Inc, 2012.

[10] M. Gusev, S. Ristov, M. Simjanoska, G.
Velkoski, "Cpu utilization while scaling
resources in the cloud," Cloud Computing, pp.
131--137, 2013.

[11] K. V. Chivukula, Monitoring and Analysis of
CPU load relationships between Host and
Guests in a Cloud Networking Infrastructure:
An Empirical Study, 2015.

[12] N. Huber, Q. M. von Quast, M. Hauck, S.
Kounev, "Evaluating and Modeling
Virtualization Performance Overhead for
Cloud Environments.," in CLOSER, 2011.

[13] Z. Zhao, G. Wang, A. R. Butt, M. Khan, V. A.

Kumar, M. V. Marathe, "Sahad: Subgraph
analysis in massive networks using hadoop," in
2012 IEEE 26th International Parallel and
Distributed Processing Symposium, 2012.

[14] A. P. K. G. E. R. M. Junghanns, "Gradoop:
Scalable graph data management and
analytics with hadoop," arXiv preprint
arXiv:1506.00548, 2015.

[15] U. Kang, C. Tsourakakis, A. P. Appel, C.
Faloutsos, J. Leskovec, "Hadi: Fast
diameter estimation and mining in massive
graphs with hadoop," ACM Trasactions on
Knowledge Discovery from Data (TKDD),
vol. 5, no. 2, 2008.

[16] C. Martella, R. Shaposhnik, D. Logothetis,
S. Harenberg, Practical graph analytics
with apache giraph, Springer, 2015.

[17] S. Seo, E. J. Yoon J, J. Kim, S. Jin, J. Kim,
S. Maeng, "Hama: An efficient matrix
computation with the mapreduce
framework," in 2010 IEEE Second
International Conference on Cloud
Computing Technology and Science, 2010.

[18] Q. Yao, Y. Tian, P. Li, L. Tian, Y. Qian, J.
Li, "Design and development of a medical
big data processing system based on
Hadoop," Journal of medical systems, vol.
39, no. 3, 2015.

[19] N. Hans, S. Mahajan, S. Omkar, "Big data
clustering using genetic algorithm on
hadoop mapreduce," Int. J. Sci. Technol.
Res, vol. 4, pp. 58--62, 2015.

[20] Y. Jiang, J. Zhang, "Parallel K-Medoids
clustering algorithm based on Hadoop," in
2014 IEEE 5th International Conference on
Software Engineering and Service Science,
2014.

[21] C. Sreedhar, N. Kasiviswanath, P. C.
Reddy, "Clustering large datasets using K-
means modified inter and intra clustering
(KM-I2C) in Hadoop," Journal of Big Data,
vol. 4, no. 1, 2017.

[22] Z. Yuan, C. Wang, "An improved network
traffic classification algorithm based on
Hadoop decision tree," in 2016 IEEE
International Conference of Online
Analysis and Computing Science
(ICOACS), 2016.

[23] I. Chebbi, W. Boulila, I. R. Farah,
"Improvement of satellite image
classification: Approach based on
Hadoop/MapReduce," in 2016 2nd

Journal of Theoretical and Applied Information Technology
15th June 2021. Vol.99. No 11
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2747

International Conference on Advanced
Technologies for Signal and Image
Processing (ATSIP), 2016.

[24] O. Yahya, O. Hegazy, E. Ezat, "An
efficient implementation of a-priori
algorithm based on hadoop-MapReduce
model," International Journal of Reviews in
Computing, vol. 12, 2012.

[25] X. Lin, "Mr-apriori: Association rules
algorithm based on mapreduce," in 2014
IEEE 5th international conference on
software engineering and service science,
2014.

[26] M. L. Massie, B. N. Chun, D. E. Culler,
"The ganglia distributed monitoring
system: design, implementation, and
experience," Parallel Computing, vol. 30,
no. 7, pp. 817--840, 2004.

[27] D. Kundu, S. I. Lavl, Cacti 0.8 network
monitoring, Packt Publishing Ltd, 2009.

[28] S. B. Joshi, "Apache hadoop performance-
tuning methodologies and best practices,"
in Proceedings of the 3rd acm/spec
international conference on performance
engineering, 2012.

[29] B. J. Mathiya, V. L. Desai, "Apache
Hadoop Yarn Parameter configuration
Challenges and Optimization," in 2015
International Conference on Soft-
Computing and Networks Security
(ICSNS), 2015.

[30] C. Li, H. Zhuang, K. Lu, M. Sun, J. Zhou,
D. Dai, X. Zhou, "An adaptive auto-
configuration tool for hadoop," in 19th
International Conference on Engineering of
Complex Computer Systems, 2014.

[31] H. Herodotou, Y. Chen, J. Lu, "A Survey
on Automatic Parameter Tuning for Big
Data Processing Systems," ACM
Computing Surveys (CSUR), vol. 53, no. 2,
pp. 1--37, 2020.

[32] D. Cheng, J. Rao, Y. Guo, X. Zhou,
"Improving mapreduce performance in
heterogeneous environments with adaptive
task tuning," in Proceedings of the 15th
International Middleware Conference,
2014.

[33] M. Li, L. Zeng, S. Meng, J. Tan, L. Zhang,
A. R. Butt, N. Fuller, "Mronline:
Mapreduce online performance tuning," in
Proceedings of the 23rd international
symposium on High-performance parallel

and distributed computing, 2014.

[34] G. Liao, K. Datta, T. L. Willke, "Gunther:
Search-based auto-tuning of mapreduce,"
in European Conference on Parallel
Processing, 2013.

[35] S. Babu, "Towards automatic optimization
of MapReduce programs," in Proceedings
of the 1st ACM symposium on Cloud
computing, 2010.

[36] T. T. Htay, S. Phyu, "Improving the
performance of Hadoop MapReduce
Applications via Optimization of
concurrent containers per Node," in IEEE
Conference on Computer Applications
(ICCA), 2020.

[37] J. Liu, S. Tang, G. Xu, C. Ma, M. Lin, "A
Novel Configuration Tuning Method Based
on Feature Selection for Hadoop
MapReduce," IEEE Access, vol. 8, pp.
63862--63871, 2020.

[38] H. Yang, Z. Luan, W. Li, D. Qian, G.
Guan, "Statistics-based workload modeling
for mapreduce," in IEEE 26th International
Parallel and Distributed Processing
Symposium Workshops & PhD Forum,
2012.

[39] K. Wang, X. Lin, W. Tang, "Predator An
experience guided configuration optimizer
for Hadoop MapReduce," in 4Th IEEE
international conference on cloud
computing technology and science
proceedings, 2012.

[40] N. Yigitbasi, T. L. Willke, G. Liao, D.
Epema, "Towards machine learning-based
auto-tuning of mapreduce," in IEEE 21st
International Symposium on Modelling,
Analysis and Simulation of Computer and
Telecommunication Systems, 2013.

[41] X. Ding, Y. Liu, D. Qian, "Jellyfish: Online
performance tuning with adaptive
configuration and elastic container in
hadoop yarn," in IEEE 21st International
Conference on Parallel and Distributed
Systems (ICPADS), 2015.

[42] D. Wu, A. Gokhale, "A self-tuning system
based on application profiling and
performance analysis for optimizing
hadoop mapreduce cluster configuration,"
in 20th Annual International Conference on
High Performance Computing, 2013.

[43] Z. Bei, Z. Yu, H. Zhang, W. Xiong, C. Xu,
L. Eeckhout, S. Feng, "RFHOC: a random-

Journal of Theoretical and Applied Information Technology
15th June 2021. Vol.99. No 11
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2748

Forest approach to auto-tuning Hadoop's
configuration," IEEE Transactions on
Parallel and Distributed Systems, vol. 27,
no. 5, pp. 1470--1483, 2015.

[44] A. Gandomi, A. Movaghar, M. Reshadi, A.
Khademzadeh, "Designing a MapReduce
performance model in distributed
heterogeneous platforms based on
benchmarking approach," The Journal of
Supercomputing, pp. 1--27, 2020.

[45] S. Kavulya, J. Tan, R. Gandhi, P.
Narasimhan, "An analysis of traces from a
production mapreduce cluster," in 10th
IEEE/ACM International Conference on
Cluster, Cloud and Grid Computing, 2010.

[46] P. Lama, X. Zhou, "Aroma: Automated
resource allocation and configuration of
mapreduce environment in the cloud," in
Proceedings of the 9th international
conference on Autonomic computing,
2012.

[47] C. Chen, Y. Zhuo, C. Yeh, C. Lin, S. Liao,
"Machine learning-based configuration
parameter tuning on hadoop system," in
IEEE International Congress on Big Data,
2015.

[48] S. Ceesay, A. Barker, Y. Lin,
"Benchmarking and Performance Modelling
of MapReduce Communication Pattern,"
arXiv preprint arXiv:2005.11608, 2020.

[49] Hadoop Monitoring,
https://github.com/kovyrin/hadoop-cacti-
jtg/blob/master/src/com, [Accessed 11 12
2020].

Journal of Theoretical and Applied Information Technology
15th June 2021. Vol.99. No 11
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2749

Parameter Name Type Default
value

Description Examples of tuned
values

1 dfs.replication HDFS 3 Block replication 2,3,4
2 dfs.block.size HDFS 64MB HDFS block size 128MB,

256MB,374MB
3 mapreduce.task.io.sort.mb Memory 100MB The total amount of

buffer memory to use
while sorting files

100MB, 220MB,
240MB, 280MB

4 mapreduce.task.io.sort.factor

Memory 10 The number of
streams to merge at
once while sorting
files

200, 300, 50, 80, 30,
10-100

5 mapreduce.map.sort.spill.
percent

Memory 0.8 The soft
limit in the
serialization buffer

0.6, 0.67, 0.95

6 io.file.buffer.size Memory 4KB The size of the buffer
for use in sequence
files

8KB, 32KB

7 mapreduce.job.reduces CPU 1 The default number of
reduce tasks per job

16, 32-80, 99, 14, 1-
1000

8 mapreduce.job .maps CPU 2 The default number of
map tasks per job

400, 676, 752

9 mapred.child.java.opts Memory 200MB Memory heap size
childfern process

500MB, 800MB,1
GB

10 mapreduce.reduce.shuffle.
parallelcopies

CPU 5 The default number of
parallel transfers run
by reduce during the
copy(shuffle) phase

8, 10

Figure 15: Memory Utilization. A High Memory Consumption By Cacti And Apache HTTP Server, Which Is
Sometimes Going As High As A 45%.

Table 4: The Most Influential Parameters In Hadoop Systems.

Journal of Theoretical and Applied Information Technology
15th June 2021. Vol.99. No 11
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2750

Figure 17: CPU And Memory Utilization Using Ganglia Gmetad And Gmond Daemons For 10 Seconds Time Period.

Figure 16: CPU And Memory Utilization Using Ganglia Gmetad And Gmond Daemons For 60 Seconds Time Period.

Figure 18: CPU And Memory Utilization Using Ganglia Gmetad And Gmond Daemons For 30 Seconds Time Period.

