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ABSTRACT 
 

Recently, IoT has revealed a key value in the smart cities. Our living comfortability level has been 
improved. Such technology requires extensive data processing especially when it is a real time driven data. 
Apache Hadoop framework is a necessary and efficient model that can be incorporated with the IoT 
technology. Hadoop, the open-source framework, is typically used for off-line batch processing on large-
scale clusters. It has a wide range of applications in the big data industry due to its capability in processing 
massive data in distributed and parallel environments. However, several aspects should be carefully 
evaluated before deploying Hadoop-based solutions. The authors thoroughly investigate the Apache 
Hadoop framework with the focus on factors that directly affect its performance. The work discusses and 
evaluates two crucial dimensions of Hadoop systems; monitoring tools and their impact on the performance 
of the Apache Hadoop based clusters, and the most influential parameters and the optimization techniques 
of Apache Hadoop based systems. Results showed that monitoring tools play a major role in Hadoop-based 
solutions planning and maintenance. According to the used experimental settings, the Cacti monitoring tool 
consumes around 45% of the memory usage, however memory usage in Ganglia is more efficient than 
Cacti tool (i.e., on average around 2.5%). For CPU utilization, both monitoring tools are efficient and the 
monitoring tool usage amount is almost negligible. The results also showed that there is a shortlist of 
critical parameters that significantly affect the overall performance. Based on the results, the authors 
conclude the paper by future directions and possible improvements that need further explorations and 
experiments. 
Keywords: Big data, IoT, distributed system, high performance computing, artificial intelligence, smart 
sensors.  
 
1. INTRODUCTION  
 
The new technology Internet of Things (IoT) is 
powering the future of digital data processing. 
Precisely, the amount of generated data between the 
interconnected devices and sensors is relatively 
high. The way of storing, processing, and getting 
insight from data is a major issue. Apache Hadoop 
is considered a vital choice to incorporate it with 
IoT technology. Incorporating the Apache Hadoop 
framework in the IoT technology can reshape the 
data processing at the devices level, and the smart 
cities applications level. In general, the smart city 
architecture consists of three main tiers as shown in 

Figure 1. The front tier includes both peripheral 
sensors and devices nodes. Usually, the common 
characteristics of all nodes in this tier are the 
limited space and processing capability. Specially, 
when we deal with embedded computing 
environment the resources are limited and 
constrained [1][2]. 

The second tier is the middle tier, and it represents 
the smart gateway controller. It has the ability to 
issue smart decisions regarding data collection, 
summarizing, and routing [3]. At the same time, it 
forms the bridge that controls the movement of data 
between the Apache Hadoop and front tier devices 
and sensors. The third and back-end tier is the 
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Apache Hadoop framework. The majority of 
storage management and data processing are 
executred in this tier. The scope of this paper is to 
focus on the Apache Hadoop framework in terms of 
performance. 

 

 
Figure 1: Example of a smart city architecture integrated 
with IoT technology. A smart gateway controller controls 
all the peripheral sensors. 
 
Figure 2 is an efficient solution for processing large 
datasets. MapReduce has been studied and 
evaluated in terms of performance, scalability, and 
failure recovery in [4]. The work [5] discusses the 
MapReduce framework uses in Google search 
engine and its capability. Studying the trade-off 
between data locality a load balancing in 
MapReduce in order to maximize the throughput 
has been investigated in [6]. 
In MapReduce, the whole processing task is broken 
down into two stages: the map stage, and the reduce 
stage. At the beginning, data is divided into chunks 
and each chunk is assigned to a single mapper unit. 
Each mapper receives a chunk as an input and 
produces a value as an output. This process creates 
key-value pairs, which depend on the nature of the 
chunk content. Outputs from mappers apply further 
processing including sorting and grouping based on 
the key-value. The second stage is the reduce 
process. In this stage, the reducers combine and 
aggregate the results from mappers. Precisely, 
outputs resulted from sorting and grouping key-
value pairs are assigned into different reducers. In 
each one, the reducer aggregates its input and 
produces a single output value. Several producers 
produce several outputs and store them in the 
HDFS.  
Hadoop has the ability to handle large loads of 
datasets from different users in a consistent and 
efficient manner. Also, it can rearrange the usage of 
computational resources on the basis of the incurred 
load. Any enterprise uses Hadoop services can 
dynamically scale to any number of computing 
resources on the basis of traffic spikes and the 
changing environment. 

 
Figure 2: MapReduce framework. The tasks are divided 
into smaller chunks and used by mappers to produce key-
value pairs. The reducers combine and aggregate results 
from mappers. 
 
 
One of the main problems in the distributed 
environment is the hardware failure. Accessing a 
large number of hardware pieces increases the 
chance of failure that may happen among one of 
these hardware pieces. Hadoop Distributed File 
System (HDFS) is designed to store and manage a 
huge amount of data, running on a cluster on a 
commodity hardware. Since these commodity 
hardware resources maybe available from multiple 
vendors, the chance of a probable failure in any 
cluster node is probably high. The architecture 
design of the HDFS is constructed to manage and 
solve such interruption failures. 

HDFS is highly fault-tolerant and is designed to be 
deployed on a low-cost hardware. HDFS provides a 
high throughput access to an application data and is 
suitable for applications that have large datasets [7]. 
Failure in HDFS has a nontrivial probability, which 
means that some components of HDFS might be 
non-functional. Therefore, the detection of any 
potential failures and the quick automatic recovery 
is a core architectural goal of HDFS. Monitoring 
HDFS is not a trivial task due to its large scale and 
distributed nature. At the same time, debugging 
Hadoop programs through monitoring logs is 
painful and impractical since it is excessively large. 

Nowadays, there are many monitoring tools. These 
monitoring tools are effective and make the 
monitoring process simple. The main tasks of these 
tools are: first, extract HDFS metrics from the 
Hadoop logs. Second, correlate these metrics with 
the operating system level metrics such as CPU and 
memory utilization. This correlation is based on a 
per-job/per-task basis [7]. To clarify the system 
behavior, these tools collect the interaction of 
metrics information and visualize them in an 
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interesting way, which increases the understanding 
level of the system behavior. Java Management 
Extensions (JMX) is a standard Java API for 
monitoring and managing applications. Different 
components of Hadoop: NameNode, DataNode, 
JobTracker, TaskTracker and RPC implement the 
JMX interfaces in order to report the data logs to 
JMX [8][9]. 

Monitoring the CPU utilization and the memory 
overhead is a key aspect of the performance 
[10][11]. The CPU utilization level affects the 
scalability of the whole cluster in terms of the 
number of used cores and the power consumption 
[10]. The work [11] studies the relationship of CPU 
load between host and guest machines under 
varying workloads conditions. Since the 
virtualization technology is gaining an increasing 
importance in cloud computing, the virtualization 
process has a strong relation with the infrastructure 
resources including CPU and memory usage 
amount [12]. Part of this work focuses on studying 
the amount of CPU utilization and the incurred 
memory amount while using such monitoring tools 
(i.e., Ganglia and Cacti). Since monitoring tools can 
add additional overhead, it is beneficial to take a 
look on the incurred overhead through using these 
tools. The nature of the architecture of each tool 
may affect the way used to monitor the cloud, and 
in turn the incurred overhead level. Such 
understanding of the monitoring performance can 
characterize the overhead amount, and the sources 
of that overhead. 

Hadoop has been widely used for processing big 
data in a variety of domains. It is becoming a de 
facto for patch processing. In Hadoop, massive 
amount of collected data over a specific period of 
time is processed in a distributed fashion using the 
MadReduce programming model. The key reasons 
that make Apache Hadoop attractive for analyzing 
big data include: scalability, cost efficiency, 
flexibility, speed, and resilience to failures. Apache 
Hadoop has been adopted in many different 
disciplines. Hadoop has many applications in the 
field of the large-scale graph analysis. A subgraph 
analysis using Hadoop algorithm was developed by 
[13]. A new approach for graph management and 
analysis based on Hadoop was introduced in [14]. 
The approach uses a new set of operators for 
analyzing both single graph and collections of 
graphs. Moreover, a domain-specific language was 
proposed to define analytical workflows. Hadoop 
has also been used to compute the diameters of 
petabyte-scale graphs [15]. Additionally, several 
specialized distributed graph processing 

frameworks were built on top of the Hadoop, such 
as Giraph  [16] and Hama [17].  

Hadoop has also been used for medical big data. 
One study developed a Hadoop-based system to 
intelligently process medical big data and uncover 
some features of a hospital information system 
user’s behavior [18]. Hadoop was intensively used 
for mining huge datasets. In clustering, a large 
number of Hadoop-based clustering algorithms 
have been proposed in order to reduce the 
execution time and to increase resilience 
[19][20][21].  The work [19] proposes a parallelize 
Genetic algorithm using MapReduce framework to 
apply clustering technique. In [20], parallel 
KMedoids algorithm is incorporated with 
MapReduce framework to breakdown the time 
complexity when dealing with big data. K-Means 
algorithm has also been used to cluster large 
datasets using MapReduce [21]. Several 
classification algorithms based on Hadoop, such as 
naïve bayes, nearest neighbor, and decision tree, 
have also been proposed [22][23]. C4.5 decision 
tree algorithm used the Hadoop framework to 
classify networks traffic [22]. In [23] satellite 
images are classified using the Hadoop framework. 
The aforementioned algorithms were mainly used 
for image classification, weather prediction, 
network traffic, and sentiment classification. 
Association rule learning has also been improved 
with the use of Hadoop. The apriori algorithm was 
among the most investigated algorithm in 
association rule learning [24][25]. The work [24] 
uses MapReduce Apriori algorithm based on 
Hadoop to find frequent pattern and apply data 
mining techniques. 

Although it has been extensively used for analyzing 
data in a variety of domains, Hadoop has its own 
limitations when dealing with large data.  The 
advantages and disadvantages of using Hadoop are 
summarized in Table 1 for some of the domains 
using Hadoop intensively. 

 
Table 1: The advantages and disadvantages of using 
Hadoop in a variety of domains. 

Domain Disadvantage  Advantages

Log 
analysis 

Slow 
processing 
speed: The 
fact the 
Hadoop reads 
and writes the 
data from and 
to the disk 
for every stage 

Highly 
available: 
Hadoop can
continue 
functioning 
even if some
of the 
NameNode 
nodes crash.
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of processing 
makes the 
whole process 
very slow. 
 

 
 
Highly 
scalable: The 
number of
nodes can be 
increased or de
creased as 
needed. 
 
 
Fault-tolerant: 
Hadoop uses 
replication to 
ensure data 
availability 
even if any 
node fails. 
 
Compatibility: 
Hadoop is 
compatible 
with a wide 
range of big 
data 
tools. In fact, 
Hadoop is used 
as a data 
storage for 
many tools. 
 
Cost-effective: 
Hadoop is open
source and can 
be installed on 
commodity 
machines. 
 

Graph 
analysis 
 

Hadoop is not 
fit for small 
files: Hadoop 
was designed 
to deal with 
small number 
of large files. 
When dealing 
with large 
number of 
small files 
Hadoop fails 
to provide 
satisfactory 
performance. 
 

Medical 
data 

Hadoop 
supports only 
batch 
processing: 
This 
makes Hadoop 
inefficient for 
online 
processing 
needed in the 
medical field. 

Sentiment 
classificat
ion 
 

Hadoop is not 
secure 
enough: to 
deal with 
sensitive data 
generated by 
social 
networks. 
Hadoop has 
no encryption 
or decryptions 
at the storage 
and network 
levels. 

Weather 
prediction 

Hadoop does 
not support 
real-time 
data 
processing. 
 

Network 
traffic 

Hadoop does 
not support 
real-time 

data 
processing. 
 

Bioinform
atics data 
analysis 
 

Hadoop is not 
efficient for 
iterative 
processing.

 

The contributions in this paper are: First, the 
authors study the Apache Hadoop framework effect 
on resources through measuring the incurred 
overhead. Two monitoring tools were used (i.e., 
Ganglia and Cacti). Showing the performance of 
CPU and memory utilization while using these 
tools can improve the decision of choosing the 
monitoring tool in any cloud/cluster environment. 
Second, the authors study the optimization part of 
the Apache Hadoop that affects the framework 
performance. There are too many parameters 
control the framework performance. However, 
some parameters significantly impact the overall 
performance and they need to be evaluated 
carefully while deploying the Hadoop solutions.  

 
In this study, the focus is distributed in two 
dimensions. The first dimension is to measure the 
Apache Hadoop framework performance. We 
measured the performance through two popular and 
widely used monitoring tools. The used monitoring 
tools are samples from a large number of available 
monitoring tools. The goal is to signify the 
importance of the choice of the used monitoring 
tool. Each monitoring tool has a different load on 
the used resources (i.e., CPU and memory). In case 
of using different monitoring tools, the analysis 
criteria would be the same. In the second 
dimension, the work study the major sensitive 
parameters that affect the Apache Hadoop 
performance.  The best-used values that enhance 
the Apache Hadoop performance are analyzed and 
showed in an appropriate way. These parameters 
are very important for the overall performance 
based on the used cluster resources settings. Default 
parameters do not guarantee the best performance. 
The study shows that, the best-used parameters are 
different from the default settings. 

The paper is organized as follows. The introduction 
appears in Section Error! Reference source not 
found.. Monitoring tools and Apache Hadoop 
optimization are studied in Section 2. The 
evaluation and analysis are described in 3. 
Conclusion remarks appear in Section 4. 
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2. MONITROING TOOLS 

Ganglia is a scalable distributed monitoring system 
used to monitor several computing systems, such as 
clusters and grids. The Ganglia design depends on a 
hierarchical structure of federations of clusters (see 
Figure 3). The architecture of this hierarchical 
structure is implemented in a light weight overhead 
occurred in the cluster nodes, and at the same time 
assures high concurrency [26]. To visualize cluster 
metric results, Ganglia uses XML representation 
and RDtool for data storage and visualization. In 
addition, External Data Representation (XDR) 
format is used to serialize compact portable data 
transport. The architecture of Ganglia depends on 
multicast-based listen/announce protocol for 
monitoring process. To manage the membership 
inside a cluster, Ganglia uses a periodic heartbeat 
message on a predefined and announced multicast 
address. This periodic heartbeat message, identifies 
cluster members, so each node should receive a 
heartbeat messages from all other nodes in the 
cluster. At the same time, it reacts by sending a 
multicast heartbeat message to the other cluster 
nodes. In this way, cluster membership can be 
saved [26]. Figure 3 shows Ganglia architecture 
where leaf nodes specify cluster nodes, while the 
internal nodes specify aggregation points. 
 

 
Figure 3: Ganglia tool architecture adopted from [26]. It 
uses gmond (i.e., Ganglia monitoring daemon) and 
gmetad (i.e., Ganglia monitoring daemon) daemons to 
monitor the cluster. leaf nodes specify cluster nodes, 
while the internal nodes specify aggregation points.  

 
In Ganglia architecture, there are two daemons, 
gmond and gmetad, where each of these daemons 
has a specific task. At a single cluster level, gmond 
daemon provides a monitoring using 
listen/announce protocol, and it exists in every 
node. To respond to a client request, gmond uses an 
XML representation to retrieve the monitored data. 
On the other hand, Ganglia gmetad supports a 

federation between a group of clusters, where this 
allows monitoring across multiple clusters using a 
tree of TCP connections [26]. Since this work 
focuses on a single cluster, the authors support 
more details about single cluster monitoring using 
gmond. 

 
Figure 4: Cacti tool architecture. Cacti has three main 
operations: data retrieval, data storage, and data 
representation.  Cacti uses a specific application 
executed at constant periods called poller, to collect data 
from the cluster nodes. 
In gmond daemon, there are three different kinds of 
threads used to organize the monitoring process, 
and these threads are: 
 
 Collect and Publish Thread: which is 

responsible on managing the node local state, so 
it collects the node information and publishes it 
for other nodes in the same cluster using a well-
known multicast channel. 

 
 Listening Thread: which is responsible on 

listening to the other nodes on the same cluster 
using a well-known multicast channel, and 
updates the node local memory state. 
 

 Export Thread: which is responsible on 
managing and processing client’s requests. 

2.1  Cacti Monitoring Tool 

Cacti is an open-source monitoring tool, which uses 
PHP/MySQL graphical representation. The design 
in Cacti depends on Simple Network Management 
Protocol (SNMP) that uses Round Robin Database 
Tool (RRD-Tool) engine to collect data. Cacti has 
three main operations: data retrieval, data storage, 
and data representation [27]. For data collection, 
Cacti uses a specific application executed at 
constant periods called poller, to collect data from 
the cluster nodes. Data fetched by Cacti is stored in 
RRD files. Regarding the tool management data, 



Journal of Theoretical and Applied Information Technology 
15th June 2021. Vol.99. No 11 
© 2021 Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
2739 

 

like user management and RRD files mapping, both 
are saved in MYSQL. RRDTool supports a 
customized graphical representation report to view 
the collected data from cluster nodes. Figure 4 
shows the Cacti architecture. 
 

2.2  Apache Hadoop Optimization 

This section could be a good reference for 
newcomers and interested in the optimization 
problems in the Hadoop framework. It could be a 
good starting point to find the required research 
path that might link different dimensions together 
in more efficient and generic solutions especially 
for users of different technical backgrounds. 
 
There are several issues need to be considered 
carefully when studying the performance of the 
Apache Hadoop framework. These issues include 
the cluster resources including the used CPUs 
power, and the used memory capacity. The shape of 
the used resources can control the used Apache 
Hadoop framework structure including the number 
of mappers and reducers used in the framework.  
 
Next, the application characteristics and its relation 
to the available resources is an important issue has 
to be studied carefully. The effort of tuning Hadoop 
systems is mainly to find the best function, which 
can describe the relationship among the parameters, 
hardware, and application characteristics that 
maximize the capacity and system performance. 
 
Generally speaking, computational systems are 
governed by a set of parameters that should be 
adjusted to end up by the desired capacity and 
performance. Sometimes, a parameter may play a 
major role in systems crash and failure by selecting 
either higher or lower values of what is needed. 
Hadoop has hundreds of interconnected parameters 
that need to be carefully studied before deploying 
Hadoop systems. The focus could be on those 
related to I/O, memory, and CPU utilization. 
Besides, given the size of data intended to be 
processed in Hadoop on a commodity hardware, 
finding the optimal values of Hadoop parameters is 
a challenge [28]. 
 
Hadoop provides different ways to facilitate the 
configurations to maximize the benefit of Hadoop 
power and capacity, and also to manage the 
different needs of applications and the available 
hardware. Parameters values can be set by updating 
the XML files of parameters (core-default.xml, 
hdfs-default.xml, hdfs-rbf-default.xml, mapred-
default.xml, yarn-default.xml), using the command 

line, or by some lines of code using Configuration 
class [29]. 
 
The effort of tuning Hadoop systems is mainly to 
find the best function which can describe the 
relationship among the parameters, hardware, and 
application characteristics that maximize the 
capacity and system performance. Out of hundreds 
of parameters, few of them are the most influential 
on the overall performance [29][30] based on 
several empirical studies. The work [29] provides a 
customizable Apache Hadoop framework that 
allows the user to customize some functionality 
parameters that control resources like CPU and 
memory.  summarizes the common parameters that 
have a considerable impact on Hadoop systems. In 
terms of different applications, there is a clear 
variation in parameter values from one to another 
and from dataset size to a larger or smaller one. 
This is one motivation of several studies to find the 
best recipe for Hadoop parameters to maximize the 
performance and resource utilization of the 
MapReduce application. 
 
The contributions in Mapreduce parameters' tuning 
fall into five main categories; rule of thump, expert 
developers and engineers like [28], machine 
learning Models, cost-based models, and search-
based solutions. However, profiling is the major 
process that paving the way for them. Another 
taxonomy is discussed in recent research [31] 
where the tuners of Hadoop come in six categories; 
rule-based, cost modeling, simulation-based, 
experiment-driven, machine learning, and adaptive 
tuning. One could see them in two categories in 
terms of their methodology as online such as [32] 
[33] or offline such as the solution [34]. The work 
[33] proposes an online approach for performance 
tuning which monitors a job’s execution 
performance, and tunes associated performance-
tuning parameters using some collected statistics. 
Starfish [35] is considered a very early attempt in 
Hadoop parameters tuning. The work has been built 
on the basis that the overall performance of the 
Hadoop-based (MapReduce) systems is an 
optimization problem of three main inputs; the 
configuration of job parameters, the resources 
allocated to run a job, and the properties of the 
dataset being processed. Given a large number of 
parameters in this optimization problem, Starfish 
focuses on some parameters where the empirical 
study highlighted some of the Hadoop parameters 
that have more effect on the performance. Besides, 
more complex interaction among the parameters 
where, for example, "io.sort.factor" showed a 
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significant improvement in the execution time 
while "mapred.reduce.tasks" parameters assigned 
values less than 50, and almost no effect if 
"mapred.reduce.tasks" set to higher values, like 
300. Another example is a recent experiment shows 
that optimizing concurrent tasks on the same node 
along with the block size parameter that shows 
significant improvements in the overall YARN 
system [36]. A recent experiment [37] applied a 
feature selection approach to find those more 
important parameters than others which could 
narrow down the list of parameters that need to be 
adjusted. The results highly conformed with the 
empirical evaluation in different studies and report 
"mapreduce.job.reduces", "mapreduce.job.maps", 
"mapred.child.java.opts", 
"mapreduce.task.io.sort.mb" may have the most 
impact on the execution time of the MapReduce 
process. The same parameters were reported of 
about 8 years before this study when [38] evaluate 
the MapReduce parameters using principal 
component analysis, PCA. 
 
Starfish is a cost-based solution depends on 
measuring the CPU and I/O while profiling jobs. 
Machine learning-based solutions could be a good 
solution, however, the lack of large enough data 
could result in inefficient models, thus poor results 
and performance. The work [34] proposed and 
evaluates search-based solutions by Genetic 
algorithm. The adaptive solution can find semi-
optimal parameters' values in less than 30 trials. 
Despite the encouraging results compared to 
Starfish and manual tuning, we need to evaluate 
this solution with larger datasets that are currently 
the challenge of many platforms and solutions. [39] 
is another cost-based solution that uses a search-
based algorithm to find good configurations 
through sequential steps on profiling data. 
One of the obstacles of applying the Starfish 
approach for ad-hoc systems is the properties or 
data distribution and statistics are not defined ahead 
of MapReduce processing. An efficient data 
sampling could add value to the overall solution by 
task distribution and load balancing. Compared to 
the Starfish tuner, [40] proposed a machine 
learning-based approach where support vector 
regression (SVR) was able to set more parameters 
in an adaptive solution which depends mainly on 
the observations of the systems on different 
applications. Datasets were collected from multiple 
experiments on different benchmarks of different 
sizes. Next, the sampling technique is used 
gradually to avoid random sampling and to quickly 
build a machine learning model (i.e., hypothesis) 

instead of using the whole dataset, which is 
relatively large. 
 
Ant [32] is a search-based tool that starts tasks with 
random configurations and then gradually improves 
them while tasks are running. Ant shows 
improvement with large tasks and I/O intensive 
compared to itself with small and CPU intensive 
tasks. That is tuning the parameters needs some 
time and small jobs are usually done before the 
decision. Ant still works under the assumption that 
the tasks are long and have a uniform completion 
time on the same hardware. To handle a different 
case, [33] proposed MRONLINE, an online tool, 
which allows different configurations of different 
tasks instead of having the same values of 
parameters for all tasks. 
 
Jellyfish [41], is an online tool, which still utilizes 
the cost-based and profiling methods in online 
tuning. The main idea is using the statistics 
collected from different tasks with different 
configurations and then decide the best setup. 
Jellyfish separates searching space into map-related 
parameters and reduce-related parameters, which, 
in turn, dramatically speedup the searching process. 
It also provides a resource re-schedule mechanism 
that maximizes the busy time of the resources. 
 
Different machine learning methods such as 
clustering and classification are used along with the 
cost-based model in multi-phases tuners. [42] 
provides a self-tuning solution by applying the 
profiling and clustering methods on the 
applications. Mapreduce-based applications could 
be separated into different clusters based on their 
usage of CPU, I/O, and Memory. The second phase 
of the solution is mainly to identify the class the 
new job belongs to. This is by running the job on a 
small sample of data and then collect system 
performance data (CPU, I/O,...) where the classifier 
decides which values of parameters should be used 
that could maximize the performance. 
 
RFHOC tool [43] consists of subsequent phases and 
also depends on profiling to collect data about 
MapReduce tasks execution times and 
configurations to feed the Random forest algorithm 
and then the Genetic algorithm in the next 
subsequent phase to find the best configuration. 
The speedups are significant compared to cost-
based optimization on various sizes of datasets; 
from 50 GB to 1 TB. The training dataset is 
collected from running random different 
configurations on a subset of the original dataset 
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being processed. The experiments also showed that 
generating the training dataset for random forest 
could need days, but to train a random forest model 
is typically a very fast task on small matrix; about 
2000 records. 
 
Linear regression is utilized in [44] to predict the 
execution time of MapReduce jobs. The model was 
trained on log files data and then the outcomes are 
consumed by a process to reduce the makespan of a 
job. This, in turn, reduces the overall execution 
time and also improves resource utilization. KNN 
algorithm was also used to train a model over a 10 
months log history of MapReduce Yahoo data [45]. 
The main objectives are to find similar jobs in 
terms of resource needs and to build a model 
predicting the completion time. "Dstat" tool collects 
CPU and Disk usage data and represents the main 
source of training data to build support vector 
machine (SVM) which is the heart of AROMA tool 
[46]. Tree-based regression and ensemble methods 
are used to estimate the performance of MapReduce 
distributed jobs [47]. Random forest feature 
importance is also utilized in this solution to narrow 
down the parameters list. The solution reaches 
about more than 90\% of accuracy on Terasort and 
wordcount benchmarks algorithms. 
 
Profiling and data collection like in [43] could be 
considered a time-consuming task and also needs 
resources, however, this overhead is not a frequent 
task since the built model could be used for future 
tasks and no need to roll the ball again. This case 
would be changed if the datasets being processed 
vary from time to time, thus the task to revisit the 
configurations becomes a frequent task which 
increases the overhead over the infrastructure. The 
interesting question would be about the role of 
machine learning and how much help can provide 
to predict the best configuration after a long time of 
profiling data so that minimizing the need to keep 
profiling the applications? 
 
A recent study [48] showed that applications that 
belong to the same pattern or share pattern 
characteristics are likely to share also the 
performance characteristics on the same data size. 
This interesting result may guide the research to 
evaluate patterns-based solutions on big data. 
Machine learning models could have more accurate 
results and the need for continuous 
training/retraining the model might be minimized 
especially that another recent study [37] narrows 
down the list of important parameters to a shorter 
list. 

3. EVALUATION  
 
In the evaluation, the authors focus on studying 
Apache Hadoop effect on memory and CPU. For 
this purpose, two different monitoring tools Cacti 
and Ganglia were used. Both monitoring tools show 
memory and CPU status while running. 
 
3.1  Experimental Setup 
 The experiment were executed on a local 
experimental on-premise HPC. It is used as a 
service private cloud geared towards scientific 
computing research. The used cloud includes two 
main parts: virtual machines, and elastic block 
storage. In this work, the authors created a cluster 
consists of three virtual machines. In these virtual 
machines, only a single CPU is used, the used 
memory size is 128 MB, and the disk space is 2 
GB. Figure 5 shows the used cluster setup. For all 
the experiments, Hadoop-0.20 version and Puppet 
installation tool for it were used. During the 
experiments, the incurred overhead in the CPU and 
memory using the monitoring tools is measured. 

 
Figure 5: The used cluster setup. The authors created a 
cluster consists of three virtual machines. In these virtual 
machines, only a single CPU was used, the used memory 
size is 128 MB, and the disk space is 2 GB. 

 

3.2  Cacti Analysis 

Cacti monitoring tool uses a pulling approach for 
accessing metrics in the cluster nodes. Precisely, to 
read the measured CPU overhead and the incurred 
memory usage metrics, polling mechanism is used. 
The polling process is organized in regular 
intervals. In this work, the  authors used the Cacti 
plugin Hadoop-Cacti-jtg, which is designed for 
graphing JMX attributes from Hadoop with Cacti. 
Figure 6: shows the scripts 
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Figure 6: Scripts for polling data from Hadoop using 
Hadoop-Cacti-jtg (i.e., Cacti plugin for graphing JMX). 
 
provided by the Hadoop-Cacti-jtg for polling data 
from Hadoop. For this purpose, the Cacti was 
configured to use these scripts to poll Hadoop data 
from the master and slave nodes. For example, to 
get the Namenode data FSNamesystemState.sh and 
NameNodeActivity.sh scripts were used [49]. 
 
In the used experiment setup, the polling process is 
applied to read the memory usage and the CPU 
overhead. For memory usage, the observed 
overhead is relatively high specially in the peak 
periods. Since the cluster is not performing any 
tasks other than Cacti monitoring tool, the incurred 
memory usage is related to the Cacti tool. Figure 15 
shows the measured memory usage for four 
different types of daemons; Cacti, Apache HTTP 
server, SNMP, and MySQL. The polling process 
time is measured in seconds. The observed reads 
show that Cacti and Apache HTTP server consumes 
amount of memory around 45% in the peak periods, 
and this is relatively high. The memory usage by 
other daemons like SNMP and MySQL around 5%  
 
which is relatively low and negligible. The 
observed CPU usage of the Cacti is 0% most of the 
time.  
 
3.3  Ganglia Analysis 
For Ganglia monitoring tool, three different 
scenarios were used to measure the CPU overhead 
and the memory usage in every node in the cluster: 
 When Apache Hadoop framework is idle (i.e., 

not doing any kind of processing or file 
read/write operations). In this experiment, the 

authors tried to capture the absolute overhead of 
Ganglia. 

 When Apache Hadoop framework executing 
Tera sort algorithm, which involves (1) 
generating the data using Teragen unit, (2) 
sorting the data using Tera sort and then (3) 
validating the sorted data. Here, the main goal is 
to capture the effect of preforming Apache 
Hadoop framework with Ganglia. 

 
The aforementioned scenarios can measure the 
effect of Apache Hadoop and its overload, also they 
show the effect of Ganglia monitoring tool when 
using to monitor Apache Hadoop framework. 
 

 
Figure 7: CPU utilization using gmond tool (i.e., Ganglia 
monitoring daemon) [10 seconds]. 
 

 
Figure 8: CPU utilization using gmond tool (i.e., Ganglia 
monitoring daemon) [30 seconds]. 

 
Polling mechanism in Ganglia has an effect on the 
incurred overhead. To show the effect of the polling 
process, three different intervals for polling process 
were used: 10 seconds, 30 seconds, and 60 seconds. 
Throughout the analysis, Cluster_node 0 refers to 
the master node (i.e., Hadoop server node) and it 
runs gmond and gmetad daemons at the same time. 
Cluster_node 1 and Cluster_node 2 refer to the 
Hadoop slave  nodes and they run gmond daemon 
only. In Figure 3, the daemon gmond is located at 
the leafs level, were slave nodes reside there. The 
polling process at this level follows XDR over UDP 
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transmission protocol, were in case of any potential 
failure slave nodes do not react to the polling 
process. For the master node, were Hadoop server 
resides, XML over TCP transmission is included 
beside gmond daemon. 
 

 
Figure 9: CPU utilization using gmond tool (i.e., Ganglia 
monitoring daemon) [60 seconds]. 
 

 
Figure 10: CPU utilization using gmond tool (i.e., 
Ganglia monitoring daemon) [Tera sort]. 
 

 
Figure 11: Memory utilization using gmond tool (i.e., 
Ganglia monitoring daemon) [10 seconds]. 

 
For the first scenario when Apache Hadoop is idle, 
the generated CPU overhead is negligible. In all 
different polling intervals, the CPU has no 
overhead, which means the polling process does not 
cause overhead (see Figure 7 - Figure 9). The 
observed difference between the master node 
Cluster_node 0 and the slave  nodes Cluster_node 
1,  and Cluster_node 2 is almost negligible. 

 
Figure 12: Memory utilization using gmond tool (i.e., 
Ganglia monitoring daemon) [30 seconds]. 
 

 
Figure 13: Memory utilization using gmond tool (i.e., 
Ganglia monitoring daemon) [60 seconds]. 
 

 
Figure 14: Memory utilization using gmond tool (i.e., 
Ganglia monitoring daemon) [Tera sort]. 
 
As a conclusion, the Ganglia monitoring tool is 
very efficient in the first scenario (i.e., when the 
Apache Hadoop framework is idle) and using 
different polling periods. 
 
In the second scenario, when there is an application 
running (in our case Tera sort). In this Scenario, the 
Hadoop framework with MapReduce was able to 
elevate the incurred overhead in a way makes it 
negligible. The CPU deals mainly with two main 
parts, the Hadoop framework, and the Ganglia 
monitoring tool at the same time. Figure 10 shows 
the generated overhead in the CPU for each node. 
The results show that the amount of overhead is 
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slightly negligible and the Ganglia tool is a 
lightweight process in generating overhead. The 
master node Cluster_node 0 has a little more 
overhead since it is the Hadoop server node. As a 
conclusion from this experiment, the Apache 
Hadoop framework is efficient when dealing with 
the CPU. Regarding the memory utilization when 
using the Ganglia monitoring tool, the same 
experiment was repeated. Figure 11 - Figure 14 
show the memory utilization for Ganglia 
monitoring tool. The same aforementioned 
scenarios were followed. When Apache Hadoop is 
idle, the memory utilization is shown in (Figure 11 - 
Figure 13). For different polling periods the 
memory utilization in all the cluster nodes is 
negligible. Thus, the polling period has no effect on 
the memory utilization. In the second scenario, 
when using Tera sort (Figure 14), the memory 
utilization variation appears to be more than the 
scenario when Hadoop is idle. However, the 
memory utilization is still negligible in all the 
cluster nodes, making the ganglia tool as an 
efficient choice for all scenarios. 

 
In (Figure 16 - Figure 18), a comparison between 
gmetad and gmond in Ganglia monitoring tool. The 
goal is to study the difference between the 
generated reads through using these different 
daemons. The same aforementioned scenarios when 
the Apache Hadoop is idle are followed. Each 
daemon has a different memory utilization and 
incurred CPU overhead. Using different polling 
periods (Figure 16 - Figure 18), the memory 
utilization level for both daemons is always larger 
than the incurred overhead in the CPU, however 
both of them are relatively low. As a conclusion, 
Apache Hadoop framework does not cause any 
heavy overhead in the CPU, however the memory 
utilization vary based on the used monitoring tool 
(i.e., Ganglia or Cacti) beside the Hadoop 
framework. 
 

3.4  Parameters in Ganglia and Cacti 

In the previous sections, the authors noticed that the 
monitoring tools Ganglia and Cacti each has a 
different architecture and polling strategy. The 
polling strategy has an effect on the memory 
utilization especially for Cacti were the poller is 
centralized in the Apache Hadoop server node. It is 
important to compare between the main available 
parameters in Ganglia and Cacti. Table 2 shows the 
main parameters settings in Ganglia and Cacti. 

These parameters in general capture different 
monitoring aspects like CPU status, memory status, 
network status, visualizing process, and the type of 
the used database. 
 
Table 2: Ganglia and Cacti Parameters Comparison. 

Parameter Monitoring Tool 
Ganglia Cacti 

License BSD GNU 
Default 
monitor with 
Hadoop 

Default Not 
Default 

Web 
interface 

Available Available 

Extensibility Yes Yes 
User 
Management 

No Yes 

RRD Tool Yes Yes 
JMX Yes Yes 
Hadoop data  
retrieval  
model 

Push Pull 

Hadoop alert Yes Yes 
XML based 
data transfer 

Yes No 

CPU 
monitoring 

Yes Yes 

Memory  
monitoring 

Yes Yes 

 

3.5  Parameters and Optimization 

The experiments were conducted using a virtual 
machine running on Google cloud, with 32 vCPUs 
and 256 GB of RAM. The main goal, behind the 
experiment in this section, is to show the effect of 
changing the default values of the parameters 
understudy on the overall performance. To achieve 
this goal, the common wordcount algorithm has 
been used on around a 6 GB dataset. The 
experiments show a significant improvement in the 
execution times using the same dataset but with 
different values of parameter a little far from the 
default values (see Table 3). Of course, the values 
could be different if another high specs cluster is 
used or a larger dataset is fed to the algorithm. The 
proposed values of the parameters range from the 
defaults and gradually increased till the execution 
time does not significantly change. Table 3 also 
shows that these parameters got attention in 
different studies and the range of tuned values, 
sometimes, relatively large. 
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Table 3: Parameters optimization for wordcount 
problem. 

Parameter name The 
experiment 
parameter 
value 

dfs.replication 4 
dfs.block.size 100, 128 
mapreduce.task.io.sort.mb 100-128 
mapreduce.task.io.sort.factor 200, 256 
mapreduce.map.sort.spill.percent 0.7 
mapreduce.job.reduces 16 
mapreduce.job.maps 48 
mapred.child.java.opts 512 
mapreduce.reduce.shuffle. 
parallelcopies 

8 

 
 
4.  CONCLUSION  
 
The IoT technology has become a key technology 
in several applications including smart cities 
applications. However, an extensive data 
processing is required especially for real-time 
applications. Apache Hadoop is a core component 
framework necessary for processing such data. The 
authors thoroughly investigate the Apache Hadoop 
framework through studying the factors that 
directly affects the framework performance. 
The work discusses and evaluates two crucial 
dimensions of Hadoop systems; monitoring tools 
and their impact on the performance of the Apache 
Hadoop based clusters, and the most influential 
parameters and the optimization techniques of 
Apache Hadoop based systems. The authors mainly 
discuss and evaluate two crucial aspects of Hadoop-
based systems that might be risky in the sense that 
arbitrary decisions on them could be costly and/or 
distract users from their main projects goals. When 
talking about IoT technology, Apache Hadoop is 
one of the main things we need to consider. 
Resources monitoring and parameters optimizations 
show a significant impact on the overall 
performance of Hadoop systems. The authors focus 
their study on two commonly used monitoring tools 
of the Hadoop framework; Ganglia and Cacti, in a 
distributed environment. The focus was on CPU 
and memory utilization. One important observation, 
the result revealed that changing the frequency of 
polling time has no major effect on the monitoring 
process, and both tools can send useful feedback 
about the infrastructure status while running  

Hadoop using different polling time values. This 
observation could help the administrators in setting 
up Hadoop solutions where the resources usually 
busy in Hadoop processes. 
The second dimension of the study showed that the 
Hadoop framework is sensitive for a few 
parameters, out of hundreds, where they need to be 
adjusted wisely. The authors found that previous 
works in Hadoop performance tuning can be one of 
five major approaches; the rules of thump, expert 
developers and engineers, machine learning 
Models, cost-based models, and search-based 
solutions. Some solutions may come in a hybrid 
model of the above. However, all of them need 
profiling data on different applications and 
environments. 
Results showed that monitoring tools play a major 
role in Hadoop-based solutions planning and 
maintenance. The choice of the used monitoring 
tool has an effect on the available resources (i.e., 
CPU and memory). The results also showed that 
there is a shortlist of critical parameters that 
significantly affect the overall performance. 
Future research could focus more on designing 
tools for cloud-based Hadoop solutions where data 
fusion techniques may help in collecting 
performance data from cloud resources (i.e. might 
be in different places). In terms of profiling for 
parameter optimization, the current process of 
profiling is time-consuming, especially on big data. 
One suggestion that needs further experiments is to 
cluster applications based on their design patterns 
or design characteristics. One more dimension is 
the employment of machine learning to analyze 
profiling data of different 
applications/environments to predict the best 
configuration.    Given the increasing size of daily 
data, Hadoop monitoring, and performance tuning 
are major challenges that need extensive practical 
studies on cloud infrastructure. 
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# Parameter Name Type Default 
value 

Description Examples of tuned 
values 

1 dfs.replication   HDFS 3 Block replication 2,3,4 
2 dfs.block.size   HDFS 64MB HDFS block size 128MB, 

256MB,374MB 
3 mapreduce.task.io.sort.mb  Memory 100MB The total amount of 

buffer memory to use 
while sorting files 

100MB, 220MB, 
240MB, 280MB 

4 mapreduce.task.io.sort.factor
  

Memory 10 The number of 
streams to merge at 
once while sorting 
files 

200, 300, 50, 80, 30, 
10-100 

5 mapreduce.map.sort.spill. 
percent  

Memory 0.8  The soft 
limit in the 
serialization buffer 

0.6, 0.67,  0.95 

6 io.file.buffer.size  Memory 4KB The size of the buffer 
for use in sequence 
files 

8KB, 32KB 

7 mapreduce.job.reduces CPU 1 The default number of 
reduce tasks per job 

16, 32-80, 99, 14, 1-
1000 

8 mapreduce.job .maps CPU 2 The default number of 
map tasks per job 

400, 676, 752 

9 mapred.child.java.opts Memory 200MB Memory heap size 
childfern process 

500MB, 800MB,1 
GB 

10 mapreduce.reduce.shuffle. 
parallelcopies  

CPU 5 The default number of 
parallel transfers run 
by reduce during the 
copy(shuffle) phase 

8, 10 

Figure 15: Memory Utilization. A High Memory Consumption By Cacti And Apache HTTP Server, Which Is 
Sometimes Going As High As A 45%. 

Table 4: The Most Influential Parameters In Hadoop Systems. 
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Figure 17: CPU And Memory Utilization Using Ganglia Gmetad  And Gmond Daemons For 10 Seconds Time Period. 

Figure 16: CPU And Memory Utilization Using Ganglia Gmetad  And Gmond Daemons For 60 Seconds Time Period.

Figure 18: CPU And Memory Utilization Using Ganglia Gmetad  And Gmond Daemons For 30 Seconds Time Period. 


