
Journal of Theoretical and Applied Information Technology
31st May 2021. Vol.99. No 10
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2280

A DESIGN OF A NEW HASH FUNCTION BASED ON
CELLULAR AUTOMATA

1YOUSSEF SBAYTRI, 1 SAIIDA LAZAAR
1Mathematics, Computer Sciences and Applications Team (ERMIA) ENSA of Tangier, AbdelMaleek

Essaadi University, Morocco
E-mail: 1yusef.sbitri@gmail.com, 1slazaar@uae.ac.ma

ABSTRACT

Cryptographic hash functions play an important role in information security. They are used in several
cryptographic applications to verify the integrity and authenticity of data. The hash functions are also the
basis of blockchain technology. Many hash function constructions are inspired by boolean functions. The
proposed hash function algorithm in this paper is based on Elementary Cellular Automata (ECA) and 2-
dimensional Cellular Automata (2DCA), which are another type of boolean functions that have excellent
cryptographic properties. This algorithm has a sponge construction as such as SHA-3. The strict avalanche
criterion (SAC) and NIST statistical tests suite (STS) were used to measure the security of this algorithm.
The obtained results demonstrate that the proposed algorithm exhibit high sensitivity to input changes.

Keywords: Cryptographic hash function, Blockchain, Sponge construction, Cellular Automata,

Elementary Cellular Automata, Boolean function, NIST statistical tests suite, Avalanche Effect.

1. INTRODUCTION

Cryptographic hash functions play an
important role in modern cryptography since they
are used for several applications such as integrity
verification, message authentication, digital
signatures, password storage and key derivation,
and so on.

The fundamental idea of hash functions is

that a hash-value (digest or digital fingerprint) of a
short and fixed-length serves as a compact
representative image (fingerprint) of any given
message, the input message can be any type of data
including character strings, binary files and TCP
packets, images, etc. The hash function algorithms
can be classified into keyed-hash functions and
unkeyed-hash functions, the keyed-hash function
need a secret key of fixed-size and a variable-length
message to compute the message digest, these
special digests are called Message Authentication
Codes (MAC). However, the unkeyed hash
function accepts a variable-length message as a
single input and produce a fixed hash digest. In
general, the term hash functions refer to unkeyed
hash functions and the keyed hash functions are
referred to as MAC.

Many hash structures have been proposed,
but Merkle-Damgard construction and Sponge
construction are the main used design in all NIST
standardized hash functions. Both constructions
based on a central component called a compression
function, which consists of a series of mathematical
operations (modular addition, bitwise operations,
and boolean functions), Some compression
functions utilize a block cipher as compression
functions [1],[2], while other designs exploit the
robust one-way characteristic of some mathematical
problems, such as factorization problem [3],
discrete logarithm problem [4], Another recent
class of hash functions design is based on chaotic
maps which possess high parameter sensitivity,
random-like behavior and one-way computations
[5],[6],[7],[8],[9],[10],[11],[12], these functions use
a range of simple chaotic maps, high-dimensional
chaotic maps, and spatio-temporal chaotic systems.

The first well-known hash function was
the nominal MD2 (Message Digest 2), which was
designed by Ron Rivest in 1989 [13]. It is the basis
of all other hash functions of the MD family (MD4
[14], MD5 [15]), which are derived from Merkle-
Damgard construction (Figure 1) [16], [17].

Afterwards, several hash functions with

more security properties and with Merkle-Damgard

Journal of Theoretical and Applied Information Technology
31st May 2021. Vol.99. No 10
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2281

construction have been proposed such as SHA-1,
MD5 and SHA-2. These later revealed weaknesses,
which led them to cryptanalysis [18], [19], [20].

Figure 1: Merkle-Damgard (MD) construction.

In 2007, The National Institute of

Standards and Technology (NIST) announced the
competition of SHA-3. This competition ended in
2012, The Keccak design proposed by Bertoni et al
was selected as a novel standard of SHA-3 [21],
This algorithm was considered extremely secure
due to its resistance against different cryptanalysis
attacks. The Keccak design will be more detailed in
section 4. In 2008, S. Nakamoto revealed the
concept of blockchain [22]. Actually, this
technology has many revolutionary applications
[23]. The hash functions are very important to
ensure the availability and security of the
blockchain.

Any hash function H should have the

following crucial properties:

 Pre-image resistance. Hash functions

should be one-way functions, which means
it’s infeasible to find a pre-image of a
digest (reverse a message digest y to
recover the original message m where
H(m) = y).

 Second-pre-image resistance. This

property means that, for a given message
m and its digest y, then it is
computationally impossible to find a
second message m′ (m = m′) with the
same message digest, i.e., H(m) = H(m′).

 Collision resistance. It means that it is

computationally impossible to find m and
m′ with m= m′ where H (m) = H (m′). A
one-way function is both pre-image and
second pre-image resistant. the collision
resistance implies the second-pre-image
resistance

The remainder of the paper is organized as
follows: Section 2 gives a brief presentation of
Cellular automata. Section 3 discusses the use of
CA as a model for hash functions. In section 4 the
Keccak hash functions structure is presented,
Section 5 explains the detailed design of the
proposed hash function algorithm. While section 6
discusses the security of our algorithm. Finally, the
conclusion is presented in section 7.

2. CELLULAR AUTOMATA

Cellular automata (CA) were primarily
proposed by Ulam and Von Neumann in 1940 to
come up with a formal framework for studying the
behaviour of complex systems [24]. They become
more exploited in several fields due to their parallel
structure, their simplicity and the wide potential
that they offer for designing complex systems [25].

A cellular automaton is a discrete
dynamical system where space, time, and the state
are discrete. It can be represented by a finite or
infinite grid of cells. Each cell in time t have a state,
at time t +1 the new state of a cell depends only on
its old state, the states of its nearby neighbours at
time t and according to a local rule. All cells on the
grid are updated synchronously.

Mathematically, a cellular automaton A
can be represented as a quadruple A = (S, N, d, f)
where S is a finite set of possible states, N is the
cellular neighbourhood, d ϵ Z⁺ is the dimension of
A, f is the local cellular interaction rule (or
transition function).

Elementary Cellular Automata (ECA) are
the simplest one-dimensional CA with only two
states {0;1}, two neighbours (left, right):
 d = 1, S = {0;1}; N = (-1;0;1) and f: S³→ S.

In ECA, the local cellular interaction rule
depends only on the nearest neighbor’s states. As a
result, the evolution of an ECA can be described by
the next generation, based on the state of the cell on
the left side, the own state of the current cell and
the state of the cell to its right. Hence, there are 8

(32) possible binary states for the 3 cells
neighboring to a given cell, Hence, there are 256

(82) possible ECA. Figure 2 shows the next
generation of a central cell according to the ECA
rule 30.

Journal of Theoretical and Applied Information Technology
31st May 2021. Vol.99. No 10
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2282

Figure 2. Next State Configuration for ECA Rules 30

In [25], [26] Wolfram has defined minimal
Boolean formulas for ECA rules, which use the
minimum possible number of logical operators

 and , , denoted NOT, AND, OR and

XOR respectively. For example, the boolean
formula for the rule-30 is r)(qp  where p, q

and r are the left neighbors, the right neighbor and
the current cell sequentially.

The two-dimensional CA (2CA) have also
the same properties as ECA, Von Neumann
neighbourhoods (a) and Moore neighborhoods (b)
(Figure 3) are the well-known neighborhoods of
2CA.

Figure 3: Example of CA Neighborhoods.

3. CA AND HASH FUNCTIONS: RELATED
 WORKS

Cellular automata have several properties
that favour their ability to produce quite complex
systems [27], [28] and [29]. Hence, these
characteristics can be used as a basis for
cryptographic algorithms design, such as cipher
algorithms, PRNGs and hash functions [30], [31],
and [32].

The idea of using CA for the hash design
was first time proposed by Damgard in [33], where
he exploited wolfram’s CA-based PRNG design
[34] to create a new compression function.

However, these schemes were broken by Daemen
[35], and he successively promoted two CA-based
hash functions CellHash and SubHash [36], [37].
The two schemas were broken later by Chang [39].
In [38] J.C Jeon presented a scheme for hash
function algorithm based on linear and nonlinear
CA rules. Kuila et al. presented a hash function
based on CA and inspired by the sponge
construction [39]. This algorithm has the same
security properties as well-known hash functions
like SHA-3 [40] and SPONGENT [41]. Recently K.
Rajeshwaran et al. proposed a CA-based Hashing
algorithm (CABHA) by using CA rules 30 and 134
[42]. In [43] authors presented a scheme for a
lightweight hash function inspired by sponge
construction and based on linear and non-linear
Cellular Automata.

4. KECCAK HASH FUNCTIONS

4.1 Sponge Construction

The Keccak algorithm is a hash function family
based on sponge construction [44], [45]. The
sponge function has its own state, which is a binary
array of b-bits. Figure 4 exhibits the whole data
structure used in Keccak sponge construction.

Figure 4: State data structures used in Keccak.

The state bits are divided into two parts: the

outer part consisting of the first r bits and the inner
part of c bits, where c is called the capacity and r is
the bit rate, and with the condition b = r+c. The
sponge construction, as shown in Figure 5, has two
main phases absorbing and squeezing:

 Absorbing phase: In this phase, the
message is divided into r-bits blocks, then
a bitwise XOR is applied between the first
block and the outer part of the initial 0-

Journal of Theoretical and Applied Information Technology
31st May 2021. Vol.99. No 10
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2283

state, the whole resulting state is processed
by a permutation function f. This process
continues interlarding the bitwise-XOR
operations with the implementation of the
permutation function f for a fixed number
of rounds. When all the input blocks are
consumed, the sponge construction moves
to the squeezing phase.

 Squeezing phase: This phase aims to
generate a message digest of the desired
length. Therefore, every generated r-bit
block from the absorption phase is
extracted and it undergoes a squeezed
transformation to forms the final hash
digest. If the length of the squeezed out
bits is more than the required hash digest
length, it must be truncated to match the
needed length.

Figure 5: The sponge construction.

4.2 Keccak permutation functions

The permutation function is the main operation
used in Keccak algorithm. It is represented by
Keccak-f[b], where b ϵ {25, 50 100, 200, 400, 800,
1600} is the width of the permutation. These
permutations are successive constructions including
a series of a similar number of rounds nr, as
demonstrated in Algorithm 1. The number of the
round depends on the permutation width b and is
defined as nr = 12 + 2l, where 2l = b/25.

Each round in Algorithm 1 consists of

five steps denoted Theta(θ), Rho(ρ), Pi(π), Chi(χ)
and Iota(ι) as indicated in the equations 1 to 6.
Each operating on the state is organized as an array
of 5×5x64 (64 is the bit-size of each lane in the case
of b=1600bits).

In the equation. (1), A represents the state

array of 1600-bits and A[x, y] is a specific 64-bit
lane in that state. B[x, y], C[x] and D[x] are
transitional parameters. XOR AND and NOT
represents bitwise logical operations. r and RC are
specific constants. A more detailed description can
be found in [44], [45] and [46].

5. PROPOSED HASH FUNCTION

ALGORITHM

The proposed Hash function algorithm is

inspired by Keccak design; it consists of two
phases, Absorbing and Squeezing. In the absorbing
phase, the input message of any size n is converted
into a state of 1600-bits, while in the squeezing
phase the resulting state transformed into a message
digest of fixed size (192-bits or 256-bits). The two
phases exploit a CA-based permutation function
denoted CA_f. Table 1 shows the required
parameters of this algorithm.

Journal of Theoretical and Applied Information Technology
31st May 2021. Vol.99. No 10
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2284

Table 1: Parameters of proposed CA-based hash
Algorithm.

Sponge
State
(b)

Rate
(r)

Capacity
(c)

Hash
length

Number
of
Rounds

1600-
bits

832-
bits

768-bits 192-
bits

4

1600-
bits

576-
bits

1024-
bits

256-
bits

4

5.1 Permutation function CA_f

This function consists of successive
rounds (nr = 4). Each round calls the function
Round_CA, which uses as entry a sponge state of
size 1600-bits, the state is converted to a 3D array
of dimension 5x5x64-bit words. The main process
of the function Round_CA starts by browsing the
whole array. Next, in each iteration, a special
mechanism (in a specific iteration, two neighbours

from eight is selected, which gives 2
8A = 56

possibilities) based on the Moore Neighbours
(Figure 3 (b)) was defined to determine the left and
the right neighbors for each lane. After that, a series
of boolean functions (the boolean formula of ECA,
- as shown in Table 2- 30, 146, 22, 105, 105, 146,
22, 146, 105, 126, 22, 146 respectively) was
applied between the value of the current lane -
denoted center- and their temporary neighbor’s
lanes (left; right).

The last operation on each iteration is the

application of ECA rule 30; Algorithm 2 presents
the structure of the Round_CA function.

Table 2 describes the boolean formulas of

the ECA rules used in our algorithm. The symbols

 and , , represent NOT, AND, OR and

XOR boolean operators respectively.

Table 2: The Boolean Formula of ECA rules

ECA
rule

The Boolean formula of the ECA rule

30 right)(centerleft 

146 rightcenterright)(centerleft 
22 rightcenterrightcenterleftleft 

105 rightcenterleft 

126 rightleftcenterleft 

6. SECURITY ANALYSIS

6.1 The Avalanche effect and Strict Avalanche

Criterion

While defining a new cryptographic algorithm
it is necessary to measure whether the system
reaches a certain optimum level of security or not,
the avalanche effect and the strict avalanche
criterion are good cryptographic properties widely
used to prove the security of any cryptographic
algorithm [47], [48]. These criteria are interesting
because, statistical-based cryptanalysis such as
linear and differential cryptanalysis are related to
them [49], [50], [51].

The avalanche effect measures the percentage

of changed bits in the output message (digest in the
case of a hash function) when changing one bit in
the input message. If this percentage is equal to 0%,
this means that the hash output does not change.
When the input varies by a single bit. However, if
it’s 100%, it means that the bit is bound to reverse
on change of input by a single bit.

The strict avalanche criterion (SAC) is a
generalization of the avalanche effect [52], [53]. A
cryptographic algorithm is said to satisfy the SAC,
when a single bit change between two input

messages m and 0m produces a percentage of

changed bits around 50% in the output messages d

and 0d . The SAC test aims to measure if any

flipped bit of the input message bit affects the
digest bits as if it is a random mapping. If the SAC
is not satisfied then the probability of a successful
attack on the hash algorithm increases considerably.

To perform these tests, 1000 messages of size
64-bits and 8192-bits respectively were generated,

Journal of Theoretical and Applied Information Technology
31st May 2021. Vol.99. No 10
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2285

for each series of messages, if we considered a

generated message 0m of size n-bits, so a copy of

0m is kept unchanged, n-1 one-bit flipped

messages 1m , 2m ,..., nm are deducted from

0m , next we calculate the hash-digests of 0h , 1h ,

2h ,..., nh of messages 0m , 1m , 2m ,..., nm

respectively, the last step is the determination of

avalanche effect value between 0h and their

correspondent hash-digests 1h , 2h ,..., nh . These

steps were performed to the 1000-messages of size
64-bits and 8192-bits. The Figure 6 and 7 illustrate
the results of the SAC tests.

Figure 6: Average avalanche effect % versus one-bit-
flipped alterations to an input message of 64-bits.

Figure 7: Average avalanche effect % versus one-bit-
flipped alterations to an input message of 64-bits.

The obtained results in Figure 6 and 7

demonstrate that for both series of the message of

size 64-bits and 8192-bits the avalanche effect
values due to only one-bit flip are concentrated
around 50%, which means the proposed hash
function algorithm provides a good avalanche
effect criterion, which is one of the most important
features of secure cryptographic hash functions.

6.2 NIST Statistical Test

The statistical randomness tests are very useful

to study the security of cryptographic algorithms.
One of the well-known tools used for this purpose
is the NIST statistical test suite (STS), the STS was
developed by NIST and was used to select the AES
and SHA-3 algorithms. It consists of 15 main
statistical tests; a more detailed description of these
tests can be found in [54]. Each test generates a “p-
value” to verify the randomness of tested bit
sequences.

A significance level denoted α (α = 0.001) is

used to validate the randomness of the generated
bit-sequence, if the obtained p-value greater than α,
the bit-sequence is considered as random with a
trust-coefficient of 99.9%. Otherwise, if the p-value
< α, the sequence is considered non-random.

The main goal of this test is to ensure that the

proposed algorithm has a property that the
redundancies at the input don’t leak any
information in the output. To reach this purpose we
construct three data sets of different structures as
defined below.

 Low-density bit-sequence (LD seq): The

low-density bit-sequence is a binary
sequence of random length (between 64-
bits and 1024-bits), it is formed by one bit
equal ’1’ and the rest equal ’0’.

 High-density bit-sequence (HD seq): This
binary sequence has the same
characteristic as the low-density sequence,
except for the distribution of ’1’ and ’0’,
which is the opposite of the low-density
sequence.

 Random bit-sequence (Rand seq): The
random bit-sequence is a binary sequence
generated randomly; it contains a random
distribution between ’0’ and ’1’.

For the three types of data, 400000 bit-

sequences was prepared, which makes up a total of

Journal of Theoretical and Applied Information Technology
31st May 2021. Vol.99. No 10
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2286

1200000 bits tested in this experiment. Table 3
shows the obtained results by the NIST STS tool.
We remark that the generated p-value by the 15
tests are greater than the supposed value of α =
0.001, which means that our algorithm succeeds the
NIST statistical randomness tests.

Table3: NIST Test Results of our hash function
algorithm.

Test Name P-Value Inter-

pretation LD
seq

Rand
seq

HD
seq

Frequency Test 0.23 0.99 0.65 Pass

Frequency Test
within a Block

0.64 0.18 0.69 Pass

Run Test 0.18 0.51 0.98 Pass

Longest Run of
Ones in a Block

0.69 0.05 0.97 Pass

Binary Matrix
Rank Test

0.71 0.86 0.94 Pass

Discrete
Fourier
Transform
Test

0.55 0.89 0.21 Pass

Non-
Overlapping
Template
Matching Test

0.93 0.67 0.74 Pass

Overlapping
Template
Matching Test

0.89 0.08 0.85 Pass

Maurer’s
Universal
Statistical
test

0.83 0.89 0.76 Pass

Linear
Complexity
Test

0.07 0.18 0.65 Pass

Serial test 0.32 0.29 0.36 Pass

Approximate
Entropy Test

0.35 0.89 0.28 Pass

Cumulative Sums
Test

0.41 0.77 0.15 Pass

Random
Excursions Test

0.43 0.77 0.38 Pass

Random
Excursions
Variant Test

0.52 0.71 0.64 Pass

6.3 Resistance against Brute Force Attacks

The security of the proposed hash function
algorithm is more reliant on the internal
permutation function CA_f presented in sub-section
5.1. This function is composed of a series of non-
linear boolean functions and bit-operations, which
produces a strong dependence between the input
message bits because, in each round, a lane has a
dependency on other 56 neighbor lanes. The
application of ECA-rule 30 creates a strong reliance
between every bit and their left and right neighbors,
thence, the resistance to pre-image, 2nd pre-image
and collision attacks can be more robust.

The proposed length for the hash digest is also
important because for a hash value of size n (192-
bits; 256-bits), 2n (2192; 2256) operations are needed
to find a pre-image or a 2nd pre-image and 2n/2 (296
; 2128) operations are required to find a collision.

7. CONCLUSION

In this paper, we proposed a new cryptographic

hash function based on irreversible cellular
automata of one and two dimension. The structure
of the proposed scheme is inspired by Keccak
sponge construction. Our proposed algorithm
succeeded the SAC and NIST statistical tests; it
also demonstrated a high resistance against pre-
image and 2nd preimage collision attacks. Our
future work will be focused on strengthening our
designed hash function by conducting advanced
cryptanalysis tests.

REFERENCES

[1] Preneel B, Govaerts R, and Vandewalle J.

(1993). Hash Functions Based on Block
Ciphers: A Synthetic Approach. In Crypto ’93,
volume 773 of LNCS, pages 368–378.
Springer-Verlag.

[2] Black J, Rogaway P, and Shrimpton T. (2002).
Black-Box Analysis of the Block-Cipher-Based
Hash-Function Constructions from PGV. In
Crypto’02, volume 2442 of LNCS, pages 320–
335. Springer-Verlag.

 [3] Lenstra, A.K.; Stam, M.; Page, D.; Discrete
logarithms variants of VSH, Proceedings
Vietcrypt 2006, LNCS 4341, 229–242,
Springer-Verlag 2006.

[4] Buchmann J and Paulus S. (1997). A One Way
Function Based on Ideal Arithmetic in Number
Fields. In Crypto ’97, volume 1294 of LNCS,
pages 385–394. Springer-Verlag.

Journal of Theoretical and Applied Information Technology
31st May 2021. Vol.99. No 10
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2287

[5]. Kanso, A., Ghebleh, M.: A fast and efficient
chaos-based keyed hash function. Commun.
Nonlinear Sci. Numer. Simul. 18(1), 109–123
(2013)

[6]. Kanso, A.,Ghebleh,M.:Astructure-based chaotic
hashing scheme. Nonlinear Dyn. 81(1–2), 27–
40 (2015)

[7]. Li, Y., Xiao, D., Deng, S.: Keyed hash function
based on a dynamic lookup table of functions.
Inform. Sci. 214(23), 56–75 (2012)

[8]. Teh, J.S., Samsudin, A., Akhavan, A.: Parallel

chaotic hash function based on the shuffle-
exchange network. Nonlinear Dyn. 81(3),
1067–1079 (2015)

[9]. Xiao, D., Liao, X., Deng, S.: Parallel keyed hash
function construction based on chaotic maps.
Phys. Lett.A 372(26), 4682–4688 (2008)

[10] M. Ahmad, S. Khurana, S. Singh, and H. D.
AlSharari, ``A simple secure hash function
scheme using multiple chaotic maps,'' 3D Res.,
vol. 8, no. 2, p. 13, Jun. 2017.

[11] M. Todorova, B. Stoyanov, K. Szczypiorski,
and K. Kordov, ``SHAH: Hash function based
on irregularly decimated chaotic map,'' 2018.

 [12] J. S. Teh, M. Alawida, and J. J. Ho, ``Unkeyed
hash function based on chaotic sponge
construction and fixed-point arithmetic,''
Nonlinear Dyn., vol. 100, pp. 713_729, Feb.
2020.

[13] Kaliski, B.: RFC 1319 - The MD2 Message-
Digest Algorithm. RSA Laboratories (April
1992).

[14] R.L. Rivest, The MD4 message digest
algorithm, in Advances in Cryptology—
CRYPTO ’90, Proceedings, eds. by A.
Menezes, S.A. Vanstone. Lecture Notes in
Computer Science, vol. 537 (Springer, Berlin,
1991), pp. 303–311.

[15] R.L. Rivest, The MD5 Message-Digest
Algorithm, April 1992. Network Working
Group, Request for Comments: 1321.

[16] R.C. Merkle, One-way hash functions and DES,
in Advances in Cryptology—CRYPTO ’89,
Proceedings, ed. by G. Brassard. Lecture Notes
in Computer Science, vol. 435 (Springer,
Berlin, 1990), pp. 428–446

[17] I. Damgard, A design principle for hash
functions, in Advances in Cryptology—
CRYPTO ’89, Proceedings, ed. by G. Brassard.
Lecture Notes in Computer Science, vol. 435
(Springer, Berlin, 1990), pp.416–427

[18] Szydlo, M.: SHA-1 collisions can be found in
263 operations. Crypto BytesTechnical
Newsletter (2005)

[19] Xiaoyun Wang, X.L., Feng, D., Yu, H.:
Collisions for hash functions MD4, MD5,
HAVAL-128 and RIPEMD. Cryptology ePrint
Archive, Report 2004/199, pp. 1–4 (2004), http:
// eprint.iacr.org/2004/ 199

[20] Stevens, M.: Fast collision attack on MD5.
ePrint-2006-104, pp. 1–13 (2006), http:
//eprint.iacr.org/2006/104.pdf

[21] National Institute of Standards and Technology
(NIST). SHA-3 Winner announcement,
http://www.nis.gov/itl/csd/sha-100212.cfm

[22] Nakamoto S. (2008). Bitcoin: a peer-to-peer
electronic cash system. Accessed at
http://bitcoin.org/bitcoin.pdf

[23] Priteshkumar Prajapati, Krutarth Dave, Dr.
Parth Shah:” A Review of Recent Blockchain
Applications”, INTERNATIONAL JOURNAL
OF SCIENTIFIC and TECHNOLOGY
RESEARCH VOLUME 9, ISSUE 01,
JANUARY 2020.

[24] J. VON NEUMANN. Theory of Self-
Reproducing Automata. University of Illinois
Press, Illinois, 1966. Edited and Completed by
A. W. Burks.

[25] S. Wolfram, “A new kind of science,”
Champaign, IL: Wolfram Media, Inc., pp. 55,
2002.

 [26] The Wolfram Atlas of Simple Programs
website; http://atlas.wolfram.com/01/01/

[27] Nandi, S., B.K. Kar, and P. Pal Chaudhuri.
‘Theory and Applications of Cellular Automata
in Cryptography’. IEEE Transactions on
Computers 43, no. 12 (December 1994): 1346–
57.

[28] Wolfram, Stephen. ‘Cryptography with Cellular
Automata’. In Advances in Cryptology—
CRYPTO ’85 Proceedings, edited by Hugh C.
Williams, 429–32. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 1986.

[29] Jarkko Kari,” Theory of cellular automata: A
survey”, 0304-3975$ - see front matter © 2005
Elsevier B.V. All rights reserved. doi:
10.1016/j.tcs.2004.11.021

[30] Sbaytri, Youssef, and Saiida Lazaar. ‘A
Lightweight Cellular Automata-Based
Cryptosystem Evaluated with NIST Statistical
Tests’. In Advanced Intelligent Systems for
Sustainable Development (AI2SD’2019),
1105:21–29. Advances in Intelligent Systems

Journal of Theoretical and Applied Information Technology
31st May 2021. Vol.99. No 10
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2288

and Computing. Cham: Springer International
Publishing, 2020.

[31] Sbaytri, Youssef, Saiida Lazaar, Hafssa
Benaboud, and Said Bouchkaren. ‘A New
Secure Cellular Automata Cryptosystem for
Embedded Devices’. In Mobile, Secure, and
Programmable Networking, 11557:259–67.
Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2019.

[32] Manzoni L, Mariot L (2018) Cellular Automata
Pseudo-Random Number Generators and Their
Resistance to Asynchrony. In: Hoshi M, Seki S
(eds) Developments in Language Theory.
Springer International Publishing, Cham, pp
428–437.

[33] I. B. Damgarrd, “A Design Principle for Hash
Functions”, proceeding of Crypto’89, LNCS
435, (1989), pp. 416-442.

[34] S. Wolfram, “Random Sequence Generation by
Cellular Automata”, Advanced in Applied
Mathematics, Academic Press, Orlando, 1986,
Vol. 7, pp. 123-169.

[35] J. Daemen, R. Govaerts and J. Vandewalle, “A
Framework for the Design of One-Way Hash
Functions Including Cryptanalysis of
Damgard’s One-Way Function Based on a
Cellular Automaton”, proceeding of
Asiacrypto’91, LNCS 739, (1993), pp. 82-96.

[36] J. DAEMEN, R. GOVAERTS, J.
VANDEWALLE, A hardware design model for
cryptographic algorithms,Computer Security –
ESORICS 92. Proc. Second European
Symposium on Research in Computer Security,
LNCS 648, (1992) pp. 419–434. Springer-
Verlag.

[37] D. Chang, Preimage attacks on CellHash,
SubHash and strengthened versions of CellHash
and SubHash,IACR Cryptology ePrint Archive
2006: 412, 2006.

[38] J.C. Jeon, —One-way hash function based on
cellular automata,IT Convergence and Security
2012 Lecture Notes in Electrical Engineering,
pp. 21–28, Nov. 2012

[39] S. Kuila, D. Saha, M. Pal, and D. R.
Chowdhury, CASH: Cellular automata based
parameterized hash, Security, Privacy, and
Applied Cryptography Engineering Lecture
Notes in Computer Science, pp. 59–75, 2014.

[40] G. Bertoni, J. Daemen, M. Peeters, and G. V.

Assche, The making of KECCAK, Cryptologia,
vol. 38, no. 1, pp. 26–60, Feb. 2014.

[41] A. Bogdanov, M. Kneˇzevi´c, G. Leander, D.
Toz, K. Varıcı, and I. Verbauwhede,
SPONGENT: A lightweight hash function,
Cryptographic Hardware and Embedded
Systems – CHES 2011 Lecture Notes in
Computer Science, pp. 312–325, 2011

[42] Rajeshwaran, Kartik, and Kakelli Anil Kumar.
‘Cellular Automata Based Hashing Algorithm
(CABHA) for Strong Cryptographic Hash
Function’. In 2019 IEEE International
Conference on Electrical, Computer and
Communication Technologies (ICECCT), 1–6.
Coimbatore, India: IEEE, 2019.

[43] Zhang, Xing, Qinbao Xu, Xiaowei Li, and
Changda Wang. ‘A Lightweight Hash Function
Based on Cellular Automata for Mobile
Network’. In 2019 15th International
Conference on Mobile Ad-Hoc and Sensor
Networks (MSN), 247–52. Shenzhen, China:
IEEE, 2019.
https://doi.org/10.1109/MSN48538.2019.00055.

[44] G. Bertoni, J. Daemen, M. Peeters, and G.
Assche, “The Keccak reference,” Submission to
NIST (Round 3), January, 2011.

[45] G. Bertoni, J. Daemen, M. Peeters, and G. Van
Assche, “Keccak sponge function family main
document,” Submission to NIST (Round 2),
2009.

[46] Pub NF, FIPS PUB (2015) 202. SHA-3
standard: permutation based hash and
extendable-output functions Federal
Information Processing Standards Publication.

[47] 33. H. Feistel, “Cryptography and computer
privacy,” Sci. Am. 228, 15-23 (1973).

[48] A. Kumar, N.amita Tiwari, “Effective
Implementation and Avalanche Effect of AES.”
2013 International Journal of Security, Privacy
and Trust Management (IJSPTM), Vol. 1, 2012,
pp 31-35

[49]. C. Blondeau and K. Nyberg, “New links
between differential and linear cryptanalysis,”
Lect. Notes Comput. Sci. 7881, 388-404 (2013).
36. V. Goyal, A. O’N

[50]. S. Gupta and S. Yadav, “Performance analysis
of cryptographic hash functions,” Int. J. Sci.
Res. 4, 2319-7064 (2015).

[51]. I. Moon, F. Yi, Y. H. Lee, and B. Javidi,
“Avalanche and bit independence
characteristics of double random phase
encoding in the fourier and fresnel domains,” J.
Opt. Soc. Am. A 31, 1104-1111 (2014).

 [52] J. C. H. CASTROA, J.M. SIERRAB, A.
SEZNECA, A. IZQUIERDOA, A.

Journal of Theoretical and Applied Information Technology
31st May 2021. Vol.99. No 10
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2289

RIBAGORDAA, The strict avalanche criterion
randomness test. Mathematics and Computers
in Simulation, 68, (2005) pp. 1–7.

[53] R. FORRE, The strict avalanche criterion:
spectral properties of booleans functions and an
extended definition. Advances in cryptology, in:
Crypto’88, Lecture Notes in Computer Science,
403, (S. GOLDWASSER, Ed.), (1990) pp. 450–
468. Springer-Verlag.

[54] L. E. Bassham et al.,” A Statistical Test Suite
for Random and Pseudorandom Number
Generators for Cryptographic Applications -
NIST” Special Publication (NIST SP) - 800-22
Rev 1a, Sep. 2010.

