
Journal of Theoretical and Applied Information Technology
31st May 2021. Vol.99. No 10
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2290

TRIP PLANNING ALGORITHM FOR GTFS DATA WITH
NOSQL STRUCTURE TO IMPROVE THE PERFORMANCE

1MUSTAFA ALZAIDI, 2ANIKO VAGNER
1 Department of Information Technology Faculty of Informatics University Of Debrecen, Hungary
2 Department of Information Technology Faculty of Informatics University Of Debrecen, Hungary

E-mail: 1 mustafa.alzaidi@inf.unideb.hu,
2 vagner.aniko@inf.unideb.hu

ABSTRACT

Nowadays, GTFS (General Transit Feed Specification) data is used by many transport agencies as a
standard format for publishing their data. Trip planning applications where a user can plan a trip between
two locations are widely used. This paper will introduce an algorithm to found all possible trip plans
between any two locations using GTFS data. The algorithm uses both stop and route level search to found
the possible transition to be made. We introduce a technique that reduces the server overhead by defining
and implementing a Redis NoSQL data structure to store all possible search results. Trip planning request at
the server will be served by querying the Redis structure instead of run the algorithm with each request. We
experiment, measure, and list the server performance using this technique with two different GTFS data
sets and compare performance with and without using it.

Keywords: GTFS, Trip Planning, Redis, NoSQL, Smart City.

1 INTRODUCTION

In 2005, Google started using the Google-Maps
web application to create a transit trip planner.
TriMet and Google in Portland formulated the
General Transit Feed Specification (GTFS) [1]. In
2007, Google published transit feed specifications
and encouraging transit agencies to use and depend
on the GTFS format to create and post transit data
on the web for public use as open sources. Later the
feed becomes the most commonly used standard for
static transit data exchange in the United States [2].
Because of its rising and popularity, the transit
industry adopted the GTFS format as a standard for
sharing their schedule data. At that time, over 170
transit agencies in the United States and Canada
generate and publish their schedules as GTFS [3].
Later, applications that use GTFS like
CarFreeAtoZ, Hopstop, and MapQuest were
created, providing on-map stops locations, bus
timetables, and trip-planners feature. The essential
part of such applications is trip-planner, where the
server searches GTFS data to found a possible route
between two locations. Considering trips, routes,
and transit between trips in stops (bus stop or
transport station), planning a trip is more
complicated than finding a path in a graph.

Finding the shortest path in a graph is a common
problem, and there are several algorithms like
Dijkstra [4], Bellman-Ford [5][6], Floyd-Warshall
[7], Johnson [8]. The algorithm may be a bi-
criterion or multi-criterion, where the criterion here
is how we consider the weight for the graph edges.
For example, if the graph represents a road
network, the road weight may be a bi-criterion by
considering the distance and the cost or maybe a
multi-criterion if we consider more factors. Many
algorithms try to solve the shortest path problem by
reducing the weight value to a single value; these
algorithms fall into categories like k-th shortest
path algorithms [6], two phases algorithms [9],
label setting algorithms [10][11][12], label
correcting algorithms[13]–[16], and others[17]–
[22]. Some research [23][24] uses a variation of
these algorithms to introduce an algorithm to find
paths in local transport networks. The algorithm's
performance is affected by the considered weight
criteria and the data structure used for the
implementation. This paper will introduce a new
algorithm as a new variation, where the
performance is enhanced by using a data structure
that reduces the time required for search the data.
The algorithm ignores the weight criteria using the
number of transitions made to evaluate results

Journal of Theoretical and Applied Information Technology
31st May 2021. Vol.99. No 10
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2291

instead of calculating and examing weight to
choose the best possible next transition every time.

In trip-planning applications, every time a user
runs a trip planner, the server runs the route
searching or trip planning algorithm, which is a
time-consuming process. This paper also proposes a
new technique to enhance the server response time
and reduce the server overhead by introducing a
Redis NoSQL data structure to store all possible
plans between any two stops, eliminating the need
to run the algorithm with every user request. As any
search request can be served using the data in the
Redis structure. We experiment with this strategy,
the GTFS data of Debrecen and Budapest cities,
from [25][26] and measure and compare the
performance with and without using Redis. The
generated data can increase the ability to analyze
the transportation service and help the city provide
better public transportation using a Smart City
paradigm[27]. We implement the algorithm and the
strategy as an open-source project using C#. The
project code is available at
https://github.com/mustafamajid/GTFS.git.

2 OVERVIEW OF GTFS DATA

Google develops General Transit Feed
Specification (GTFS) as a format to define public
transport systems data. Its main objective was to
allow public transit agencies to upload their data to
Google Transit schedules so that Google Maps
users could easily decide which bus, train, or other
vehicles to take for transport between two specific
locations. GTFS can describe the public
transportation schedules and associated geographic
information and make this information easy to
access and used standardly by users and transport
application developers.

2.1 GTFS Files and Structure

GTFS is a set of text files that contain data
about local transport trips, routes, stops, and time
table data in a CSV format. Each file represents a
database table. GTFS includes three types of tables
Required, Optionally Required, and Optional tables
[28]. This categorization gives the GTFS data the
flexibility to include more or less data according to
the agency or the application needs. The required
file must be present in all of the GTFS. The
optionally required files must be present depending
on some other GTFS data. Next, we will describe
the required files:

 agency.txt: Contains information about
the transport agencies providing the
transport service described by the GTFS

data set. The file lists information like
agency ID, agency name, URL of the
agency website. It can also optionally
show information like the URL of the
ticket pushes site for the users and contact
information like email and phone number.

 stops.txt: Contains information about
transport stops and stations like stops
name, stops ID, and the geographical
location of the stops as latitude and
longitude values. This location
information is very useful for transport
applications, especially for trip planning. It
can be used to calculate the distance
between the stops, which helps decide the
next transition or determine the walkable
distance between stops.

 routes.txt: describes the trajectories for
each trip with general and geographical
information. Each route is pass-through a
set of stops or stations. Information like
route ID, route name, and agency ID links
each route with the agency that provides
the service.

 trips.txt: describes the trip information
like trip ID, head-sign, which is the text
that appears on signs showing the
destination of the trip for riders. The file
contains a service Id field to refer to the
service that this trip belongs. Also, the file
shows the route ID of the route the trip
uses.

 stop_times.txt: In this file, the arrival and
departure times of the trip at each stop are
listed.

2.2 Understand GTFS Data

There are three main objects in the GTFS:
data routes, stops and trips. The route is a path that
is pass-through a set of stops or stations. The trip
refers to a journey made by a vehicle from an initial
stop to an end stop. We can view or read GTFS
data as one or more routes listed in the routes.txt
file. Each route has one or more trips in the trips.txt
file. Each trip visits a series of stops (stops.txt) at
specified times in a specific sequence
(stop_times.txt). Trips.txt and stoptimes.txt contain
only time of day. The calendar.txt and
calendar_dates.txt files determine which days a
given trip runs [29]. Each file has a reference to the
other related files. For example, trips.txt has
reference to routes.txt file using the route ID field
as foreigner key or reference. GTFS contains other
files like fare_rules, shapes, and feeds_info [30].
Figure 1 shows the structure and the relations

Journal of Theoretical and Applied Information Technology
31st May 2021. Vol.99. No 10
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2292

between the fields of the GTFS data file. As the
GTFS aims to exchange transit information,
specific preprocessing is needed so it can be used
for other purposes. The GTFS data set is generally
loaded into a relational database (e.g., MySQL,
PostgreSQL, Oracle), where the developer will
process the scheduling and transit data. In some
cases, a database with a particular geographical
object querying ability is used.

2.3 GTFS-Realtime

GTFS-Realtime is a standard created by Google to
enable transit agencies to provide updates about

their services in real-time. The set of data the
GTFS-realtime feed provides contains vehicle
positions, trip updates, and service alerts. Vehicle
Positions contain data about the past, but Trip
Updates contain data about the future. Typically,
one GTFS-realtime feed can contain only one type
of data out of these three types. Many governmental
and business agencies have multiple GTFS - real-
time feeds (one for vehicle positions, one for trip
updates and one for service alerts).

3 THE ALGORITHM

Usually, a variation of label-setting and
label-correcting algorithms, especially Dijkstra
algorithms, are used to implement trip planning
algorithms. The data structure used by the trip

planning algorithm to hold the GTFS data play a
primary role in the algorithm performance and

behaviour, as it can affect the speed and logic of
data access. A trip-planning algorithm can be
implemented at the stop level where every time the
algorithm searches for a possible next stop or at the
route level where the algorithm checks the available

route each time. This algorithm will use both the
stop level and route level search. We will consider

Figure 1:GTFS Structure

Journal of Theoretical and Applied Information Technology
31st May 2021. Vol.99. No 10
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2293

the data in Figure 2 as an example to describe the
algorithm steps. Each circle represents a stop. The
number inside the circle is the stop_id. The routes
are represented by a set of arrows denoted by
letters.

Figure 2: GTFS Routing Network Example

3.1 Preprocessing

In the preprocessing steps, we create and
fill the data structures with the GTFS data. The task
here is to make the data more understandable by
reducing the joining effort and faster and easier
access by the algorithm code. Preprocessing contain
the following steps:

3.1.1 Find the routes

The route file in the GTFS data provides
an ID for each route, but some routes may have
different stops set to visit during different trips [31].
We distinguish each route by the list of stops it
visits in a specific order. We use the stoptimes file
to extract this list for each route and create a route
data structure containing all information provided
about that route in the route file and a list of all
stops this route visit, ordered by the visiting
sequence. For example, in Figure 2, the list of stops
for route A is {7,3,8,9,10,11}. Finally, a list of
route objects will be created. The route structure
has a VISITED index variable used to indicate
whether the route is visited or not. Initially, the
VISITED variable will initialize to -1 to indicate

that no stop in this route is visited yet, and prevent
rechecking the already checked routes. For
example, if we use route B to reach stop10 and then
from that stop, the algorithm starts to check all
possible routes and put all the next stops in the
waiting list to be checked, the VISITED variable
for route A will be set to stop10. Thus only the
stops before stop10 can be checked next time using
route A, and if all the stops in the route are
checked, the VISITED will be set to zero, the index
of the first stop.

3.1.2 Create stops list

The stop data structure contains all the
static information about a stop provided by the
stops file of the GTFS data with a list of all routes
that pass through this stop. The route list can be
extracted using the route data from the previous
step. For example, in Figure 2, the route list of
stop3 is {A, C}.

3.1.3 Find distance between stops

The stops file contains the latitude and
longitude of each stop location. We use the
Haversine formula [32] to calculate each stop's
distance with all the other stops. The formula is
shown in Figure 3. If the distance between two
stops is walkable, we create a walkable route
between these stops. The walkable route uses the
same route data structure with all the fields set to
the “walk” string, and the stops list contains only

the two stops, which are linked by this walkable
distance. Walkable routes are important when the
user must change the route by walking to another
stop.

3.1.4 Trips timing data extraction

After using the algorithm to find possible
solutions, a time check is needed to validate the
routes according to the trip's timetable, considering
the time parameter provided by the user's query.
Time data is collected from the stoptimes file and

𝑎 ൌ 𝑠𝑖𝑛²ሺ𝛥𝜑/2ሻ 𝑐𝑜𝑠 𝜑1 ⋅ 𝑐𝑜𝑠 𝜑2

⋅ 𝑠𝑖𝑛²ሺ𝛥𝜆/2ሻ

𝑐 ൌ 2 ⋅ 𝑎𝑡𝑎𝑛2ሺ √𝑎, √ሺ1 െ 𝑎ሻ ሻ

𝑑 ൌ 𝑅 ⋅ 𝑐

𝑤ℎ𝑒𝑟𝑒 𝜑 𝑖𝑠 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒, 𝜆 𝑖𝑠 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒,
𝑅 𝑖𝑠 𝑒𝑎𝑟𝑡ℎ’𝑠 𝑟𝑎𝑑𝑖𝑢𝑠 ሺ𝑚𝑒𝑎𝑛 𝑟𝑎𝑑𝑖𝑢𝑠

ൌ 6,371𝑘𝑚ሻ

Figure 3: Haversine formula

Journal of Theoretical and Applied Information Technology
31st May 2021. Vol.99. No 10
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2294

calendar_date file. The stopstimes file shows the
arrival and departure times at the stops the trip
visits. Each set of trips on a specific route is
denoted as a service with a unique service_id. The
calander_dates file has two fields, start_date and
end_date, which denote the period when the service
is available. The trips file links each trip with the
route and the service it belongs. In this step, we
extract this data into a time data structure and create
a dictionary to link each route and trip with its
service id.

3.1.5 Creating dictionaries

The above steps are about loading the GTFS
data into memory. All the stops, routes, and time
data are loaded into lists of stop data structure,
route data structure, and time data structure. We
increase the algorithm execution speed by use
dictionaries for the indexes of these lists. A
dictionary will map the stop ID to an integer value,
representing the index of the stops data structure in
the list. Thus, we can access a stop object in a list
of stops with the stop ID using the dictionary. That
will eliminate the need to search the list for a
specific stop and increase the execution speed as
the dictionary's mapping time is O(1) [33].

3.2 The Output Data Structure

The algorithm input is the initial stop ID and
the destination stop ID. The output is a list of all
possible trip plans where each plan may contain
one or a combination of routes. We used the word
PATH to denote a plan (a solution). Each PATH
contains a list of one or more transition made from
one stop to another using a specific route. We
denote these transitions as MOVE and the list of
MOVE in each PATH as WAY. The PATH data
structure contains attributes to denote the initial
stop, and the destination stop, with their names. The
MOVE data structure contains the start-stop ID
where this transition starts from, the end-stop ID,
the route ID used to make this transition, and other
information like service ID, the stops and the route
names. Figure 4 shows the structure of PATH and
MOVE. For example, in Figure 2, the algorithm is
used to find the possible solution from stop2 to
stop6. Solutions will be a list that contains two
PATHes. The first solution is a PATH containing
only one MOVE in the WAY list. This MOVE
describes a transition from stop2 to stop6 using
route C. The second solution is a PATH, which
contains three MOVEs in the WAY list. The first
MOVE mentions a transition from stop2 to stop3
using route C. The second MOVE mentions a
transition from stop3 to stop11 using route A, the
third MOVE is from stop11 to stop6 using route D.

3.3 Definition

 TRANSIT LIMIT (TL): A constant
number determines the limit of change
between transport trips (for example,
between two buses). This value is used to

stop the searching and prevent the
algorithm from stuck in an endless loop.
Studies show that the typical transit limit is
four transit per plan [34], as people did not
prefer to use plans with many transits, as it
causes west of time and extra cost.

 INITIAL: The initial stop where the
planning starts from.

 FINAL: The final step of (the destination).
 MOVE (S1, S2, R): Denote a possible

transfer from the stop S1 to stop S2 using
the route R.

 PATH: A list of MOVEs where for each
consecutive two MOVEs PATH[i] and
PATH [i+1], PATH[i].S2 = PATH[i+1].S1
each PATH represent a possible route
solution.

 SOLUTION LIST (SOL_LIST): A list of
PATH used to store all the possible
solutions.

 TRANS_COUNT: Counter represents the
number of transit during the travel till the
Current stop

 QUEUE ITEM(C, TRANS_COUNT,
WAY_PASSED): a data structure used to
store algorithm parameters, where

Figure 4: Path and Move Data Structure

Journal of Theoretical and Applied Information Technology
31st May 2021. Vol.99. No 10
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2295

WAY_PASSED is a PATH variable, C is
a stop currently reached starting from
INITIAL stop and going through
WAY_PASSED, TRANS_COUNT is an
integer represents a count of transit mad to
travel the WAY_PASSED.

 Queue: A Queue of Queue_Item, stored
according to the execution order

3.4 Algorithm

Figure 5 shows the pseudocode of the algorithm.

4 IMPROVE THE PERFORMANCE
USING REDIS DATABASE

Any path planning algorithm is time-consuming,
especially with extensive data. For the trip planning

applications, the server handles the overhead of
running the planning algorithm. Every time a user
requests a plan, the server must run the algorithm
and search the GTFS data. Here we proposed a

INPUT : INITIAL, FINAL

OUTPUT: SOL_LIST

Step1: Initialize QUEUE by add QUEUE_ITEM(INITIAL,0,EMPTY WAY_PASSED)

and set SOL_LIST =empty

Step 2: IF (Queue is empty) then Exit

Else

pop the first QUEUE_ITEM Q and Set Current = Q.C , WAY_PASSED =

Q.WAY_PASSED ,

TRANS_COUNT =Q.TRANS.

Step3: IF ((Current == FINAL) OR(TRANS_COUNT== TRANS_LIMIT)) then Goto Step2.

Step4: For each unvisited route Ri that pass through Current:

IF Ri.VISITED not refer to Current or any earliar stop in Ri then:

starting from Current, IF next Stops in Ri contain the Final then :

 Add MOVE(Current, FINAL, Ri) to a copy of WAY_PASSED.

 Create new PATH using the newally created WAY_PASSED

 Add PATH to SOL_LIST.

Step5: For each unvisited route Ri that pass through Current:

 For each Stop S in Ri after Current :

 Add MOVE(Current, S, Ri) to a copy of WAY_PASSED name it

NEW_WAY_PASSED.

 Add QUEUE_ITEM(S,TREANS_COUNT + 1, NEW_WAY_PASSED) to QUEUE

 Mark Ri as visited from Current by updating Ri.VISITED

Step6: Goto Step2

Figure 5:Trip planning algorithm for GTFS data

Journal of Theoretical and Applied Information Technology
31st May 2021. Vol.99. No 10
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2296

technique to increase the server performance and
reduce the overhead by search the trip plans
between all the stops of the GTFS data and store it
in a Redis database. The result will be retrieved
from the Redis server for all user search requests
without rerunning the algorithm.

4.1 Redis DataBase

Redis is an in-memory NoSql database that
offers high performance. Redis developed ANSI C
and worked in most POSIX systems [35]. Redis
stores the data as a key-value and can be used as a
massage broker or for session management. For
example, an HTML page with its resources can be
serialized as a string and stored in Redis structure to
provide faster page load. It has five data structures
Strings, Lists, Set, Hash, and Sorted Set. Many
programming languages support Redis. For each
language, there is a set of libraries and packages
that support connecting and manipulate data in the
Redis server. We used StackExchange.Redis
package in the project. This package can be
installed using the Nuget Package Manager.

4.2 Redis Structure For Trip Plans

The trip plan structure resulting from the
algorithm is a PATH data structure defined earlier;
the most informative part of the PATH data
structure is the WAY attribute, a list of MOVE

objects. The task here is to define a Redis data
structure model that stores all possible plans
between two stops (list of PATHs). Both MOVES
and PATH attributes are converted by concatenated
to a single string using a special-character string “||”
as a value separator. We experiment with two
models. The first model separated the PATH and
the MOVE list it contains, and the second model
keeps PATH and its MOVE list in a single string.

4.2.1 Model -1 HASH and LIST

This model uses the indexing concept. We
use a Hash with Key equal to both stops IDs
separated by "____". The Hash store number of
values fields equal to the number of solutions for
these two stops, the value for each field store a List
name (a reference to a Redis List) where each
element in the list represent a MOVE mad by this
Path.

4.2.2 Model-2 LIST
We use a Redis List structure to store all

possible solutions (PATH list) for any two stops.
The list Key will be the two stops IDs separated by
"___". Each value in the list represents a PATH
object. All the data stored in the Path object is
converted to string and concreted together as a
single string. Both models are illustrated in Figure
6.

After the experiment, we found that the second
model provided a faster performance. As retrieving

the hash value takes O(1) time, then for n PATH
stored in the hash will take O(n) besides O(1) for
the indexing list. While the second model needs

Figure 6: Redis models for PATH data structure

Journal of Theoretical and Applied Information Technology
31st May 2021. Vol.99. No 10
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2297

only O(1) to retrieve the solutions, and it easier for
implementation, although it needs more back-end
processing to extract the data from the string, so we
depend on it in the C# project.

4.3 Measure and compare the performance

As performance enhancement is the key point
behind using Redis, we execute the algorithm by
choosing two random stops and recording the
execution time. Then we compared that time with

the time taken to request and retrieve the solution
for the same stops from the Redis server, as we
already stored all possible solutions between any
two stops in Redis. Because GTFS data size affects
the algorithm performance, we conduct 28
experiments with the GTFS data for two cities
varying in size, Debrecen(1483 KB) and
Budapest(42128KB). The experiment results are
shown in Table 1.

Table 1: Performance measurement in milliseconds

NO
Budapest Debrecen

Without Redis Using Redis Without Redis Using Redis

1 1.0381 0.08930 0.8575 0.08908

2 1.0452 0.08915 0.8587 0.08919

3 0.9909 0.08907 0.8510 0.08901

4 1.0320 0.08909 0.8946 0.08925

5 1.0551 0.08902 0.8953 0.08920

6 1.0398 0.08929 0.8720 0.08919

7 1.0492 0.08901 0.8600 0.08906

8 0.9930 0.08903 0.8795 0.08902

9 1.0418 0.08911 0.8901 0.08902

10 1.0335 0.08932 0.8684 0.08901

11 1.0071 0.08930 0.8562 0.08921

12 1.0004 0.08914 0.8786 0.08928

13 1.0255 0.08911 0.8583 0.08914

14 1.0050 0.08908 0.8625 0.08923

15 1.0268 0.08918 0.8557 0.08910

16 1.0254 0.08935 0.8540 0.08906

17 1.0515 0.08917 0.8544 0.08919

18 1.0300 0.08909 0.8763 0.08923

19 1.0476 0.08905 0.8998 0.08907

20 1.0519 0.08926 0.8849 0.08921

21 1.0005 0.08918 0.8615 0.08906

22 1.0585 0.08900 0.8785 0.08906

23 0.9961 0.08919 0.8954 0.08918

24 1.0340 0.08911 0.8865 0.08921

25 1.0253 0.08915 0.8932 0.08901

26 1.0215 0.08924 0.8815 0.08922

27 1.0317 0.08916 0.8848 0.08921

28 1.0381 0.08930 0.8575 0.08908

Average
1.0280

0.08915

0.8737

0.08914

The above results are computed using the same

hardware and computation power (CPU: Intel
Core i7-3720QM 2.6 GHz, 6MB L3 cache, RAM:

8GB, OS: WIN10 64bit), it is clear that using Redis

can produce high performance and reduce the
server overhead as the computation time will be
reduced. We can notify that, with both cities
retrieving Redis data is faster than performing a
real-time search, as shown in Figure 7. Also, we

Journal of Theoretical and Applied Information Technology
31st May 2021. Vol.99. No 10
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2298

note that the average time required to search the
Budapest data (1.0280 milliseconds) is greater than
the average time required for Debrecen (0.08915).
But using Redis, we do not have this variation as
the recorded time is 0.08915 and 0.08914 for the
two cities.

Figure 7: Execution Time Comparison (Millisecond)

5 SUMMERY

Sharing transport information is a critical
factor toward a successful transportation system in
modern and Smart Cities. Thus, the need to use a
standard format for sharing transport data is
increased. Transport agencies widely use GTFS
(General Transit Feed Specification) worldwide as
a standard format to share and publish their data.
Thus, the need to efficiently process and utilize
GTFS is increased. Trip planning is one of the most
demanded applications that use GTFS data. Such an
application can tell the user which local transport
trip or trips (e.g., bus, tram, metro) can travel
between two locations. Algorithms that find a path
in a graph are a bi-criterion or multi-criterion,
where the criterion is the number of weight for the
graph edges. We introduce a new variation of the
trip planning algorithm, which ignore the criterion
factor using transition limit to evaluate the search
and considering both stop level and route level
search. Thus, we enhance the performance by
eliminating the time required to assign and process
the arc's weight and reduce the algorithm
implementation complexity. We introduce data
structure and an implementation method that can
produce better performance.

Querying the server to run a trip planning
algorithm with each user request is time-consuming
and can cause a server overhead epically with large

cites data. We introduce a method to enhance the
server performance and reduce the server overhead
using the Redis NoSQL database structures. Redis
data structures are used to store all the trip plan
between any two GTFS stops. Thus, we can serve
user requests by querying the Redis server, which is
much faster than run a searching algorithm using
GTFS data in real-time. We propose two Redis
models. The first model uses Redis HASH and
LIST structure, where the second model uses LIST
structure only. Both models provide similar
performance but can be utilized differently by the
software developer according to the development
and the application needs.

We experiment with the server performance
and show the performance enhancement using
Budapest and Debrecen cities GTFS data. The
experiments show that this method can produce a
faster performance with nearly constant time
regardless of the data size (city size).

The generated data can also provide a
source of information for analysis and planning the
local transport system in Smart Cities.

6 ACKNOWLEDGMENT.

The work is supported by the EFOP-3.6.1-16-
2016-00022 project. The project is co-nanced by
the European Union and the European Social Fund.

REFERENCES

[1] M. Catala, S. Dowling, and D. M.
Hayward, “Expanding the Google Transit
Feed Specification to Support Operations
and Planning,” 2011.

[2] J. Wong, “Leveraging the General Transit
Feed Specification for Efficient Transit
Analysis,” Transp. Res. Rec. J. Transp.
Res. Board, vol. 2338, pp. 11–19, Dec.
2013, doi: 10.3141/2338-02.

[3] J. Wong, L. Reed, K. Watkins, and R.
Hammond, “Open Transit Data: State of the
Practice and Experiences from Participating
Agencies in the United States,” 2013.

[4] E. W. Dijkstra, “A note on two problems in
connexion with graphs,” Numer. Math., vol.
1, no. 1, pp. 269–271, 1959, doi:
10.1007/BF01386390.

[5] R. Bellman, “On a routing problem,” Q.
Appl. Math., vol. 16, no. 1, pp. 87–90,
1958.

[6] J. C. Namorado Climaco and E. Queirós
Vieira Martins, “A bicriterion shortest path
algorithm,” Eur. J. Oper. Res., vol. 11, no.
4, pp. 399–404, 1982, doi:
https://doi.org/10.1016/0377-

0

0.2

0.4

0.6

0.8

1

1.2

Budapest
Without Redis

Budapest with
Redis

DebrecenWitho
ut Redis

Debrecen With
Redis

Journal of Theoretical and Applied Information Technology
31st May 2021. Vol.99. No 10
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2299

2217(82)90205-3.
[7] R. W. Floyd, “Algorithm 97: Shortest

path,” Commun. ACM, vol. 5, no. 6, p. 345,
1962, doi:
http://doi.acm.org/10.1145/367766.368168.

[8] D. B. Johnson, “Efficient Algorithms for
Shortest Paths in Sparse Networks,” J.
ACM, vol. 24, no. 1, pp. 1–13, Jan. 1977,
doi: 10.1145/321992.321993.

[9] J. Mote, I. Murthy, and D. L. Olson, “A
parametric approach to solving bicriterion
shortest path problems,” Eur. J. Oper. Res.,
vol. 53, no. 1, pp. 81–92, 1991, doi:
https://doi.org/10.1016/0377-
2217(91)90094-C.

[10] P. Hansen, “Bicriterion Path Problems BT
- Multiple Criteria Decision Making Theory
and Application,” 1980, pp. 109–127.

[11] E. Q. V. Martins, “On a multicriteria
shortest path problem,” Eur. J. Oper. Res.,
vol. 16, no. 2, pp. 236–245, 1984, doi:
https://doi.org/10.1016/0377-
2217(84)90077-8.

[12] C. Tung Tung and K. Lin Chew, “A
multicriteria Pareto-optimal path
algorithm,” Eur. J. Oper. Res., vol. 62, no.
2, pp. 203–209, 1992, doi:
https://doi.org/10.1016/0377-
2217(92)90248-8.

[13] J. Brumbaugh-Smith and D. Shier, “An
empirical investigation of some bicriterion
shortest path algorithms,” Eur. J. Oper.
Res., vol. 43, no. 2, pp. 216–224, 1989, doi:
https://doi.org/10.1016/0377-
2217(89)90215-4.

[14] H. W. Corley and I. D. Moon, “Shortest
Paths in Networks with Vector Weights,” J.
Optim. Theory Appl., vol. 46, no. 1, pp. 79–
86, May 1985, doi: 10.1007/BF00938761.

[15] H. G. Daellenbach and C. A. De Kluyver,
“Note on Multiple Objective Dynamic
Programming,” J. Oper. Res. Soc., vol. 31,
no. 7, pp. 591–594, Jul. 1980, doi:
10.1057/jors.1980.114.

[16] A. J. V Skriver and K. Andersen, “A label
correcting approach for solving bicriterion
shortest-path problems,” Comput. Oper.
Res., vol. 27, pp. 507–524, May 2000, doi:
10.1016/S0305-0548(99)00037-4.

[17] P. Dell’Olmo, M. Gentili, and A. Scozzari,
“On Finding Dissimilar Pareto-Optimal
Paths,” Eur. J. Oper. Res., vol. 162, pp. 70–
82, Apr. 2005, doi:
10.1016/j.ejor.2003.10.033.

[18] E. Machuca, L. Mandow, and J. Cruz, “An

evaluation of heuristic functions for
bicriterion shortest path problems,” New
Trends Artif. Intell. Proc. EPIA’09, Jan.
2009.

[19] L. Mandow and J. L. de la Cruz, “Frontier
Search for Bicriterion Shortest Path
Problems,” in Proceedings of the 2008
Conference on ECAI 2008: 18th European
Conference on Artificial Intelligence, 2008,
pp. 480–484.

[20] L. Mandow and J. L. Pérez de la Cruz,
“Path recovery in frontier search for
multiobjective shortest path problems,” J.
Intell. Manuf., vol. 21, no. 1, pp. 89–99,
2010, doi: 10.1007/s10845-008-0169-2.

[21] R. Mart\’\i, J. Luis González Velarde, and
A. Duarte, “Heuristics for the Bi-Objective
Path Dissimilarity Problem,” Comput.
Oper. Res., vol. 36, no. 11, pp. 2905–2912,
Nov. 2009, doi: 10.1016/j.cor.2009.01.003.

[22] A. Raith and M. Ehrgott, “A comparison of
solution strategies for biobjective shortest
path problems,” Comput. Oper. Res., vol.
36, pp. 1299–1331, Apr. 2009, doi:
10.1016/j.cor.2008.02.002.

[23] J. Widuch, “A Label Correcting Algorithm
for the Bus Routing Problem,” Fundam.
Informaticae, vol. 118, pp. 305–326, Aug.
2012, doi: 10.3233/FI-2012-716.

[24] C.-L. Liu, T.-W. Pai, C.-T. Chang, and C.-
M. Hsieh, “Path-planning algorithms for
public transportation systems,” in ITSC
2001. 2001 IEEE Intelligent Transportation
Systems. Proceedings (Cat. No.01TH8585),
2001, pp. 1061–1066, doi:
10.1109/ITSC.2001.948809.

[25] “Debrecen Regional Transport
Association.” http://www.derke.hu/
(accessed Apr. 08, 2021).

[26] “BKK GTFS - OpenMobilityData.”
https://transitfeeds.com/p/bkk/42?fbclid=Iw
AR1vI63TXiBkXtLgGfptJw4LI5SDxeCU
VFlK7xsGQ45RaUwR0qSVKwlGrdo
(accessed Apr. 08, 2021).

[27] R. Velasquez, F. Rodriguez, M. Vargas
Martin, and J. Ponce, “Mapping of the
Transportation System of the City of
Aguascalientes Using GTFS Data for the
Generation of Intelligent Transportation
Based on the Smart Cities Paradigm,” 2020,
pp. 177–185.

[28] “Reference | Static Transit | Google
Developers.” [Online]. Available:
https://developers.google.com/transit/gtfs/re
ference.

Journal of Theoretical and Applied Information Technology
31st May 2021. Vol.99. No 10
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2300

[29] Q. Zervaas, The Definitive Guide to GTFS
(Consuming open public transportation
data with the General Transit Feed
Specifcation), First Edit. 2014.

[30] “General Transit Feed Specification.”
[Online]. Available:
https://gtfs.org/reference/static.

[31] A. Queiroz, V. Santos, D. Nascimento, and
C. Santos Pires, Conformity Analysis of
GTFS Routes and Bus Trajectories. 2019.

[32] C. C. Robusto, “The cosine-haversine
formula,” Am. Math. Mon., vol. 64, no. 1,
pp. 38–40, 1957.

[33] “Dictionary<TKey,TValue> Class
(System.Collections.Generic) | Microsoft
Docs.” [Online]. Available:
https://docs.microsoft.com/en-
us/dotnet/api/system.collections.generic.dic
tionary-2?view=net-5.0.

[34] S. S., X. C. Liu, and G. Zhang, “An
efficient General Transit Feed Specification
(GTFS) enabled algorithm for dynamic
transit accessibility analysis,” PLoS One,
vol. 12, p. e0185333, Oct. 2017, doi:
10.1371/journal.pone.0185333.

[35] “Introduction to Redis – Redis.”
https://redis.io/topics/introduction (accessed
Jan. 18, 2021).

