
Journal of Theoretical and Applied Information Technology
15th January 2021. Vol.99. No 1

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

25

IN THE PROCESS OF SOFTWARE DEVELOPMENT:
AVAILABLE RESOURCES AND APPLICABLE SCENARIOS

ANAS BASSAM AL-BADAREEN1, ASHRAF MOUSA SALEH2, HAYFA. Y. ABUADDOUS3,
ODAI ENAIZAN4

1 Department of Software Engineering, Faculty of Information Technology, Aqaba University Of

Technology, Aqaba, Jordan

2Department of Software Engineering, Faculty of Computer Science and Informatics, Amman Arab

University, Jordan
3 Department of Marketing, Faculty of Business, Jadara University, Irbid, Jordan

Email: 1Anas_badareen@hotmail.com, 2athamneh_2002@yahoo.com, 2Haddose@aau.edu.jo,
3Adi_momane@yahoo.com

ABSTRACT

For many decades, the cost, time and quality are the main concern of software engineering. The main
objective of any software organization is to produce high quality software product within a shorter time and
minimum cost. Software reuse is one of the main strategies concerns about using available resources to
enhance the productivity of software development and the quality of software products. It aims at using
existing software products and components in the development of new software systems. However, various
types of software components available in different sources are used in the reuse strategy. This makes the
reuse strategy confusable and its efficiency and effectiveness debatable. Selecting unsuitable component or
scenario makes the reuse inefficient and ineffective. This study discusses the types of software components,
their sources, characteristics and applicable scenarios for developing and reusing these components. A
dataset from the literature is used to calculate and compare the cost of reuse processes. The results show
that software reuse is an efficient strategy comparing with the normal development. Although, considering
the reusability of software components required extra cost to the normal development, it could efficiently
save the cost of the development of new software system. Moreover, using existing software components in
the development of new reusable component is the most efficient strategy, which required even less than
the cost of developing normal component.

Keywords: Software Development, Software Reuse, Reuse Strategy, Software Component, CBSD, develop
for Reuse, Develop by Reuse.

1. INTRODUCTION

Software reuse is not a new concept [1]-
[3], it has been recognized as a solution to enhance
the efficiency of software development since
several decades [4]. Yet, software reuse still
recognized as an emerging discipline [5]. In most
software companies, the development of large scale
software systems is a complex, expensive, slow and
unpredictable process [6]. Modern software systems
become more large scale, complex and difficult to
be managed, which increase the cost of software
development, reduce the productivity, uncontrolled
quality and the risky in the movement to new
technology [7]-[9]. Software reuse is one of the
main strategies used to solve these problems [10].
Instead of developing large and complex software

applications from scratch, existing software
components are used [11]-[13]. These components
reduce the cost and time of software development,
and to enhance the general quality of software
products [14].
 Nowadays, the main concern of the research is to
reduce the cost and time of software development
[15]. Therefore, the reuse strategy aims at using
existing software system or part of it in the
development of new software system [16], rather
than developing it from scratch [5], [17], [18],
which saves approximately the half of software
development cost [19]. This strategy provides
several economic benefits, includes reducing the
development time and operating costs, enhancing
the time to market and quality of software system,

Journal of Theoretical and Applied Information Technology
15th January 2021. Vol.99. No 1

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

26

utilizing the development knowledge and corporate
expertise efficiently [20], [21].
 Software reuse is not limited to specific type of or
component of software system, it could be used in
different levels of software development including
the planning, requirements, analysis, design, testing
and maintenance [4], [22], [23],[24]. Where, the
reuse of source code is the most common [5], the
idea, algorithm and any document produced during
software development life cycle also reused [25].
 The reuse strategy is used in two main contexts:
developing similar software system and in releasing
new version of the same software system [4].
Developing similar software system is known as
Software Product Lines (SPL) or Domain
Engineering [26], [27], [28], and releasing new
version of the same software system is known as
Software Maintenance (SM) [29],[30], [31].
 Software reuse is a process of designing and
developing software components and using them in
the development of new software products in future.
The formal reuse process consists of two main
phases: develop-for-reuse and develop-by-reuse [7],
[32]. Develop-for-reuse is the process of producing
software components that could be used in the
development of software system in the future [33],
[34], [35]. Develop-by-reuse is the process of using
existing software component in the development of
software system [36], which includes three main
activities: selection, adaptation and integration [37].
 However, software reuse is not a simple process
of producing software system based on existing
software components. It is a decision based method
with different alternatives. The reuse decision is
made based on the type of software component, the
resource of software component, the requirement of
the new software system and mainly the cost of the
alternative.

 The paper is organized as follow: related works
presented in section two, section three presents the
elements of software reuse, section four presents the
scenarios of software reuse, section five presents
the costs of the reuse scenarios, the discussions of
the results presented in section six and section
seven conclude the work.

2. RELATED WORKS
Ravichandran & Rothenberger [38]

identified three main reuse strategies: Black-Box
Reuse (CBD) with component markets, Black-Box
Reuse (CBD) with internal components, and White-
Box Reuse with internal components. They
provided an extensive comparison among these
strategies, and developed decision tree from
component reuse.

 Ramachandran [39] analyzed the reuse
guidelines and classified them into two categories:
language-oriented and domain-oriented guidelines.
Based on these guidelines, he proposed a tool
support to provide advice and generate reusable
components automatically.
 Buccella et al. [40] proposed an approach for
reusing geographical software systems. The
proposed approach was based on the analysis of the
main characteristics of the geographic domain the
Software Product Line development standards.
 Byun et al. [41] proposed dynamic reusability
metrics (DRM), and apply code visualization to
identify reusability maturity level of
method/class/class-object with
inheritance/associations on a software system.
 [2] conducted a comparison of software reuse
between software product line (SPL) and
conventional software engineering (CSE)
communities. They identified the differences and
similarities of issues and concerns in software reuse
in these two communities, and what each
community can provide to overcome the issues
identified in the other community. The results show
that software reuse has not been addressed
sufficiently and there is a lack of awareness of
software reuse. Moreover, systematic software
reuse process is an important for gaining more
technical and economic benefits than other types of
software reuse.
 Shatnawi et al. [12] proposed an approach to
identify reusable software components in object-
oriented APIs, based on the interactions between
client applications and the targeted API. The study
deals with actual clients using the API, dynamic
analysis allows to better capture the instances of
API usage
 Beibei et al. [42] discussed the relationships
between object oriented software development and
software reuse. The study shows that object
oriented method produce general, maintainable and
flexible software system, which are very important
for software reuse. This method provides also basic
technical support for reuse process.
 Lucredio et al. [43] studied the impact of Model-
Driven Engineering (MDE) on software reuse. The
study was conducted through three exploratory
studies and compared the software developed with
and without MDE. The results show that although
some costs associated with MDE, this approach
enhances and/or improved software reuse in
different situations.
 Heinemann et al. [16] conducted an empirical
study on software reuse using 20 open source java
projects. It aimed to investigate whether the open

Journal of Theoretical and Applied Information Technology
15th January 2021. Vol.99. No 1

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

27

source software reuse third party code and black-
box and white-box reuse occurred. The results of
the study show that software reuse is commonly
used in open source java software and black-box
reuse is mainly used.
 Kessel and Atkinson [37] discussed the main
issues related to the improvement support for
pragmatic reuse selection using test-driven search
engines. Moreover, [9] proposed a set of metrics in
order to address these issues and new approach for
ranking components in search results.
 Keswani et al. [44] discussed the major research
contributions in software reuse and proposed an
adoption model in software reuse. They concluded
for appropriate results, a planned and systematic
reuse is needed, although software reuse is a
difficult task especially for legacy systems, but it
provides significant improvement for quality and
productivity.
 Badampudi et al. [45] conducted a systematic
review in order to identify the factors that might
influence the decision of choosing component-
based among different origins and solutions. The
results of analyzing 24 primary studies show that
the comparisons among the component origins
mainly focused on in-house vs. COTS and COTS
vs. OSS. Based on the analysis, 11 factors affect the
decision of selecting a component origin are
identified, where the cost, time and reliability are
the main factors considered in the selection for in-
house vs. COTS.
 Sharma et al. [7] analyzed four common CBSD
models and discussed their characteristics. They
state that the process of developing component
based software system consists of two main
processes: component development and system
development. In both processes, optimal selection
of component based plays an important role, which
is not considered in the presented development
process. Therefore, a model for the optimal
selection of software component for the
development of component based software systems
was proposed.
 Nautiyal et al. [15] state that CBSE approach is
the idea of selecting appropriate components and
assembling them with well-defined software
architecture. Component selection and integration
play important role in component based software
development. Since the CBSE has rapidly grown,
there is a great need for a lifecycle model for
component based software development [46].

Therefore, they proposed a life cycle model for
component based software development called Elite
Life Cycle Model (ELCM).

 Khan et al. [47] state that time to market, cost and
product’s quality of software development are the
main factors affect the software industry. For
reducing the cost and time to market, and enhance
the quality of product, several approaches,
techniques and tools are proposed. CBSD
techniques are example of these techniques, which
aim to build software systems using existing
reusable software components. They aimed at
describing the characteristics of CBSD models
presented in the literature and widely practiced in
software industries. Based on the literature analysis,
new model for component based software
development was proposed. The proposed model
covers both component based software
development and component development phases.
The strengths and weaknesses of the proposed
model are compared with the current models.
 Basha and Moiz [48] presented a state of art of
radical change in component technology from
component engineering to domain engineering.
They concluded that the most promising branch of
CBSD is the CBD-Arch-DE. That is because it has
some desirable properties like design as orientation,
extensibility and reusability; in addition, its focal
models are good at revealing system essential.
Where, modeling a software system in a way that
can be reused is one of the software design goals.
Component based software development is a key
role in increasing the productivity of any
organization [49]. Yet, the development of domain
specific components and its impact on cost and
time is still a challenging issue.
 Tomer et al. [50] presented for applicable
scenarios for software reuse, and proposed a model
for evaluating these scenarios in terms of cost.
Seven industrial assets were used in evaluating
these scenarios and comparing them with the cost
of the normal development.
 AL-Badareen et al. [32], [33] proposed a
framework for extracting, storing and retrieving
normal and reusable components during software
development lifecycle. The study presents new
scenarios for software reuse, which are not
considered in Tomer et al. [50]. Therefore, AL-
Badareen et al. [19] proposed new model for
evaluating the cost of software reuse taking into
account the new scenarios. The proposed model
presents the probable scenario of developing and
reusing software components. According to Shirali-
Shahreza and Shirali-Shahreza [51], software reuse
reduces the time and cost of software development,
whereas finding suitable software components is
one of its main issues. They investigate the

Journal of Theoretical and Applied Information Technology
15th January 2021. Vol.99. No 1

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

28

problems of retrieving software components from
libraries and discuss their solutions.

3. REUSE ELEMENTS

3.1 Sources of Software Components

Since, software reuse is not limited to
specific type of software component, they exist in
different sources. These components could be
acquired from five sources: new for reuse, legacy
system, product during development, repository and
external sources.
1. New for Reuse: is in-house development of

new reusable component. This component is
developed from scratch considering the
reusability characteristics, such as generality,
portability and interoperability. The main idea
of the reusable component is to perform
specific tasks with different data types in
different environments and system
architectures. This kind of software
components could be used directly in the
development of new software system,
categorized in the library to be reused in the
future (Black-Box or White-Box), and sold in
the market as Commercial Off-The-Shelf
(COTS).

2. Legacy system (Exist SW Product): is any
Open Source Software (OSS) developed in the
past, where its components are available for
mining and retrieving. This kind of software
systems could be developed in-house or
acquired from external sources, which consists
of a set of normal components. These
components could be reused directly in the
development of new software system (either
Black-Box or White-Box), adapted to produce
new reusable components or categorized in the
library. However, this kind of software
required to be analyzed and understood in
order to be able to identify and extract the
required components. Moreover, analyzing and
understanding the extracted component is
required for its categorization, adaptation and
reusing.

3. Product during Development: presented in
AL-Badareen et al. [32], [33]. The reuse
concept is considered early in the planning
phase of software development life cycle. At
the planning phase, in addition to the
requirements of the new software system, the
developers made a decision about software
components, to be categorized in the library or
to develop reusable component instead of
normal. Two type of components could be

produced during the development of software
system:

a) Normal Component: during the development
of software system, the normal components
that are developed are categorized in the
library. This process reduces the time and
effort of mining the components and avoids
the probability of missing these components.

b) Reusable Component: instead of developing
normal components to achieve the
development objectives, reusable components
are developed. At the same time, these
components are adapted to the software
system, categorized in the library and offered
in the market (COTS).

4. Library: is a repository used to categorize and
store software components or any information
related to the software system and could be
reused in the future, such as, planning,
requirements, design, source code, etc. This
information should be stored in a way that could
be found and retrieved efficiently. Moreover,
the library could enhance the understandability
of the retrieved components in order to simplify
the process of modifying and reusing them.

5. External Acquisition: Commercial off-the-
shelf (COTS) is a ready-made software
component available for sale in the market.
COTS acquisition reduces the time and efforts
of developing software components from
scratch, while internal structure and content of
the component are not available. Therefore, the
quality of the component is unknown and any
modification for adaptation is made on the
system architecture instead of modifying the
component.

3.2 Components Types

In terms of reuse, software components can
be classified into three types: normal component,
reusable component with internal content and
reusable component with market component
(COTS).

1. Normal Component (NC): is a software
component developed to perform particular
task in specific software system. This
component achieves the requirements of its
intended software system, while the reusability
characteristics are not considered. The normal
components are developed from scratch,
retrieved from legacy system or from system
during development in order to be reused
directly or categorized in the library. The

Journal of Theoretical and Applied Information Technology
15th January 2021. Vol.99. No 1

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

29

modification of the normal components can be
done to fit the requirements of the new
software system or to produce reusable
components by achieving certain level of
reusability.

2. Reusable Component with Internal Content-
Open Source Component (OSC): is a software
component satisfies the reusability
requirements and available with its internal
content, which allows a modification for
adaptation. It is in-house software component,
developed from scratch or by modifying
normal software components. This type of
components is available for reusing in new
software systems, categorized in the library
and also could be adapted to produce reusable
component with market content in order to be
sold in the market.

3. Reusable Components with Market Content-
Commercial Off-The-Shelf (COTS): is a
software component purchased from the
market, which satisfies the reusability
requirements. This type of components is
closed and its internal structure and content
are not available. Therefore, the quality of the
component is unknown and any modification
for adaptation is made on the system
architecture instead of the components itself.
Acquiring the market component saves the
time and cost of software development and it
can be categorized in the library for future
reuse.

3.3 Reuse Operations

The reuse operations are elementary
activities performs on the software components.
These activities are classified into transition and
transformation. Transition operations are related to
the movement of software components, while
transformation operations are related to producing,
modifying and reusing the components.
3.3.1 Transition operation

 Cataloging (C): categorizing and storing
software components in a library. This
process includes storing the software
component, and its details and
characteristics in a way that can be retrieved
efficiently.

 Mining (M): identifying and acquiring
software components from certain software
system (OSS). This process includes the
process of analyzing the software system
and identifying the required component.

 Catalog Acquisition (CA): identifying and
acquiring software component from the
reuse library. It is a process of searching for
a certain software component to perform
specific task.

 External Acquisition (XA): acquiring
software component from external source
(COTS component) and categorizing it in
the library.

 Copy and Paste (CP): acquiring software
component from software system, where the
source of the component is known to the
developer, which is based on the personnel
knowledge of the component and its source.

3.3.2 Transformation operation

 New Development (ND): developing new
software component from scratch. This
component is developed to perform
specific task with specific data type, and
within certain system architecture and
environment.

 New for Reuse (NR): developing new
reusable software component from scratch.
It is categorized in the library with its
internal structure and content, and it could
be sold in the market as COTS.

 Adaptation for Reuse (AR): modifying
software component in the library in order
to satisfy new requirements. Usually,
normal components are modified to satisfy
requirements of new software system or to
produce new reusable software
components.

 Black Box reuse with Modifying System
Architecture (BBMSA): using the reusable
component as is in the development of
new software system, while the system
architecture is modified for adaptation.
This process is performed for reusing
COTS components.

 Black Box as is (BBAI): using software
component in the development of new
software system as is without any
modifications.

 White Box (WB): modifying and reusing
software component in the development of
new software system. The modification is
for adapting the component to the new
software system.

Journal of Theoretical and Applied Information Technology
15th January 2021. Vol.99. No 1

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

30

4. SOFTWARE REUSE SCENARIOS

The reuse process is divided into two
phases: develop-for-reuse and develop-by-reuse.
Develop-for-reuse is a process of producing
software components that could be used in the
development of software systems in the future.
Develop-by-reuse is a process of using existing
software component in the development of new
software system.

4.1 Develop-for-Reuse

Develop-for-ruse concerns about preparing
any software component in order to be reused. This
includes, developing software component from
scratch (normal or reusable), modifying software
components categorized in the library, mining and
extracting software components from existing
software system (OSS), or acquiring software
component from external source (COTS). Based on
the type and source of software component, there
are six applicable scenarios for preparing software
components in order to be reused, see figure 1.

Figure 1:. Develop-for-reuse scenarios

Extract from existing software system
(OSS): In this scenario, normal software
components are extracted from open source
software OSS system. This process includes
analyzing the software system and extracting the
intended components. The extracted components
are normal components, which could be used in the
development of new software system (Black Box or
White Box), categorized in the library or modified
to produce new software components.

New for Reuse (NR): is a development of
new reusable software component from scratch. It
is a process of producing software components that
able to perform specific tasks with different data
types, and within different environments and
systems architectures. The extra cost required in
this scenario is to consider the reusability
characteristics, such as, generality, interoperability
and portability. The reusable components produced
in this scenario could be used in the development of
new software system, categorized in the library and
adapted to be sold in the market as COTS.

External Acquisition (XA): is a process of
purchasing and acquiring Commercial Off-The-
Shelf components from external sources. This kind
of components is able to work in different
environments with different systems architectures
and data types, where a modification is not allowed.

Adaptation for Reuse (AR): is a process of
modifying software component in order to satisfy
new requirements. This modification is performed
in order to use the component in the development
of new software system or to produce new reusable
component. Normally, this process is performed on
the normal components categorized in the library.

Extract during Development: presented in
[32], [33], it aims to extract and categorize software
components during the development of software
system. During the development of software
system, each component developed to perform
specific task in the new system is directly
categorized in the library. This idea helps to avoid
the probability of missing the developed
components, and reduce the cost of mining and
extracting the components. Extra effort might be
added to the development efforts in order to
produce reusable components instead of normal.

Extract Normal Component during
Development (NC): is the process of copying and
categorizing software components once they are
developed during the development of software
system.

Extract Reusable Component during
Development (Open Source Component- OSC):
is the process of producing reusable software
components instead of normal, and copy and
categorize these components in the library during
the development of software system. At early stage
of software development, the reusability is
considered in the development of some
components. The decision of developing reusable
components instead of normal is based on a high
probability of reusing them in the future or the
feasibility of offering them in the market (COTS).
Although, an extra effort required for considering
the reusability, it saves the time and effort of
software development in the future, enhance the
quality of the components and it could be worthy to
be offered in the market for selling as COTS
components.

4.2 Develop-by- Reuse (DBR)

Develop-by-reuse or component based
software (CBS) is the main idea of software reuse,
which aims to use existing software components in
the development of new software system. Two
applicable scenarios for developing software
system using existing software components: White-
Box and Black-Box. The selection of the scenario is
identified based on the type of software component

Journal of Theoretical and Applied Information Technology
15th January 2021. Vol.99. No 1

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

31

and the requirements of the new system, see figure
2.

Figure 2: Develop-by-reuse scenarios

Black-Box reuse (BB): using existing
software component in the development of new
software system as it is without any modifications.
This scenario is applicable for all types of
components if they fit the requirements of the new
system. However, the black-box reuse is
compulsory for the COTS components, where
modifying these components is not allowed.
Therefore, for adaptation, the system architecture is
modified instead of the COTS component.

White-Box reuse (WB): is the process of
modifying and using existing software component
in the development of new software system. In this
scenario, the normal and open source reusable
components (OSC) are modified to satisfy the
requirement of the new software system.

5. COST OF REUSE PROCESS

The decision of selecting the reuse
scenario is based on the cost of the applicable
scenarios. In each reuse process, the applicable
scenarios are identified based on the type of the
available components and their sources. In this
section, the cost of the reuse processes is discussed
based on the dataset published in [50]. The dataset
presents the cost of the basic operations for
developing seven industrial software components.
The operations are: New Development (ND), New
for Reuse (NR), Mining and Cataloging (MC),
Copy and Paste (CP), Adaptation for Reuse (AR),
Catalog Acquisition (CA), Black Box Reuse (BB)
and White Box Reuse (WB).
 As shows in figure 3, the average cost of
developing new reusable component (NR) from
scratch required approximately 34% extra cost to
the development of normal software component
(ND). This extra cost is required for considering the
reusability characteristics, such as generality,
adaptability and interoperability. However,
developing reusable component and reuse it one
time (NR+CP+CA+BB) saves around 12% of the
cost of developing normal component two times
(ND+ND), see figure 4, while the cost of acquiring
software component from the library and reusing it
(CA+BB) is 23% of the cost of developing normal
component (ND), see figure 5.

Figure 3: The cost of developing normal component vs.
reusable component

Figure 4: The cost of developing normal component
twice vs. developing and reusing reusable component

Figure 5: The cost of reusing existing component vs.
developing normal component

As shows in figure 6, developing reusable
component during the development of new
software system and reuse it one time
(NR+CP+CA+BB) saves around 7% of the cost of
developing normal component, adapting it, and
reusing it in the development of new software
system (ND+CP+AR+CA+BB).

Journal of Theoretical and Applied Information Technology
15th January 2021. Vol.99. No 1

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

32

Figure 6: The cost of new for reuse vs. adapting for
reuse

Figure 7 shows that retrieving software components
from existing software system (OSS) and
modifying it to produce reusable components
(MC+AR) equals around 50% of the cost of
developing reusable software component from
scratch (NR) and around 32% of the cost of
developing normal component from scratch (ND).

Figure 7: The cost of retrieving and adaptation for
reuse vs. normal development vs. develop for reuse

6. DISCUSSION AND IMPLICATION

Software reuse is an efficient strategy for
reducing the cost and time of software development
and enhancing the quality of software products. The
main idea of software reuse is to use any available
material related to software product in the
development process. However, the available
components have different forms and exist in
different type of sources. Therefore, the processes
of extracting, adapting and reusing these
components are different.
 Software components could be retrieved from
four types of sources: existing software system
(OSS), software during development, library and
external acquisition.
 Existing software system are open source
software systems (OSS) developed in the past and
available for mining. This kind of software systems
are developed in-house or acquired from external
sources. The main issue related to this kind of
sources is the process of analyzing and

understanding the software system in order to be
able to identify and extract the components.
Especially, in the complex and large size software
systems, the understandability is very difficult and
time-consuming task. Although, several approaches
and tools were proposed to overcome this issue,
yet, studies claim that understandability is a
challenging issue. Moreover, the understandability
and modifiability of the extracted components are
key factors for the success adaptation.
 The main idea of extracting software components
during the development of software systems is
reduce the cost of mining and the probability of
missing the components in the future. Once the
software component is developed, it will be
categorized in the library. In this process, the
process of analyzing and understanding the
software system and software component are
avoided, since the component is categorized by its
developer. Although, it adds extra efforts to the
development process, it saves a lot of time and
efforts in the reusing process. Also, this idea
overcome the issue of missing and forgetting the
components by the developers and helps to share
these components with other developers and
organizations, which increase the reuse probability.
 Reuse library is a warehouse stores and
categorizes software components in a way that
could be shared, retrieved, understood and reused
efficiently. The library design takes into account
that components will be mined, retrieved, modified
and reused by other developers and organization,
and it will be compared with other components for
similarity and suitability. Therefore, sufficient,
suitable and accurate information stored in the
library are essential in the success of any library.
 External acquisition is a process of acquiring
software components from the market, commercial-
off-the-shelf (COTS). The main benefits of the
COTS are the time and cost efficiency, while it
suffers from the unknown internal quality and
unable to modify it for adaptation. Since, the
internal content of the components are not
available, the quality of the component is unable to
be measured and therefore, the total quality of the
system is unable to be calculated. Moreover, the
developers are unable to modify the component for
adaptation, which requires modifying the system
architecture instead. This makes the adaptation
more complex, and needs more time and effort.
 The reusable software components represent any
software component that could be used in the
development of new software system, which
include: normal software component, reusable
software component and COTS components. The

Journal of Theoretical and Applied Information Technology
15th January 2021. Vol.99. No 1

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

33

normal software component is any software
component developed for specific purpose in
certain software system and available for mining
and modifying to be reused. The normal
components are available in exist software systems
or in a library. Reusable software component is any
software component considered the reusability
characteristics and able to be modified for
adaptation. This component is developed in-house
or it could be acquired from external sources.
Normally, open source software components are
available in a library for mining. The COTS
components are normally acquired from external
sources and available in a library for mining and
reusing as a Black-Box.
 Since, software components have different forms
and exist in different sources, different processes
are required to deal with them. The processes of
dealing with the software components are
distributed in two categories: transition and
transformation. Transition is a process of moving
software component from its source without any
modification. Transformation is a process of
creating and modifying software component for
producing other form component in order to satisfy
new requirements.
 Transition operation processes include: catalog,
mining, catalog acquisition, external acquisition,
and copy and paste. Catalog is a process of
classifying and storing software component in a
library. Mining is a process of retrieving software
component from existing open source software
system (OSS). External acquisition is a process of
acquiring software component from external source
(COTS). Copy and paste is a process acquiring
software components known for developers from
existing software system (OSS).
The transformation operation processes include:
New Development (ND), New for Reuse (NR),
Adaptation for Reuse (AR), Black-Box reuse as is
(BBAI), Black-Box reuse with modified system
architecture (BBMSA) and White-Box reuse (WB).
 New development is a process of producing
software component from scratch. New for reuse is
a process of producing new software component
from scratch considering the reusability
characteristics. Adaptation for reuse is a process of
modifying software component in order to satisfy
new requirements including reusability. Black-Box
reuse with modifying system architecture is the
process of using reusable component (COTS) with
modification of system architecture. Black-Box
reuse “as is” is a process of using software
component without any modification on the
component or the system architecture. White-Box

reuse is a process of modifying software component
and using it in the development of new software
system.
 Software reuse is a set of processes applied on
specific type of software components exists in
specific software system. A combination of these
processes is a reuse scenario. In this study, software
reuse is considered from two sides, developed-for-
reuse and develop-by-reuse. Develop-for-reuse
considers the applicable scenarios for developing
software component that could be used in the
development of new software system in the future.
Develop-by-reuse considers the process of using
existing software component in the development of
new software system.
 The cost analysis presented the cost of the main
reuse processes comparing with the normal
development. Although, the cost of considering the
reuse early is higher than the normal scenario of
software development, it saves a lot of time and
effort in the future. The analysis showed that
reusing software component for one-time payback
the cost of considering the reusability
characteristics efficiently.
 Moreover, the analysis showed that all of the
reuse scenarios are efficient in terms of cost and
time comparing with the normal development.
Using the reuse strategy in the development of
reusable components is the most efficient scenario
in the reuse strategy, which aims at adapting
software components to produce reusable
components. However, using existing software
components in the development process suffers
from many issues related to retrieving and
modifying software components. Identifying and
choosing software components is a complex and
difficult task, especially in large scale software
systems and distributed libraries. It required
analyzing software system and identifying the
components that are suitable to the intended
requirements, and modifying the component for
adaptation. This process required understanding the
structure and the content of the software system.
For retrieving software component from distributed
libraries, more than one component could be
retrieved from different sources for specific
requirements. This required an accurate comparison
among the retrieved components in order to find the
most suitable one to work within the new system.

7. CONCLUSION

Software reuse is one of the main
strategies of reducing the time and cost of software
development and enhancing the quality of software
systems. Since, the reuse is not limited to specific

Journal of Theoretical and Applied Information Technology
15th January 2021. Vol.99. No 1

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

34

type of software components or acquired from
specific source, which it could be anything that can
be used in the development of software system in
the future retrieved from any source, different
scenarios are applicable. The reuse scenario is
identified based on the type and source of software
component. In this study, the types of software
components that could be reused in the
development of software system were identified.
Based on this, the processes that are required for
acquiring, modifying and reusing these components
were discussed and the applicable scenarios are
presented. A dataset from the literature was used to
calculate and compare the cost of reuse processes
comparing with the normal development. The
results showed that software reuse is an efficient
development strategy comparing with the normal
development. Although, considering the reusability
of the software components required extra cost, it
could save more than this cost in the development
of new software system. Moreover, using existing
software components in the development of new
reusable component is the most efficient strategy,
which required even less than the cost of
developing normal component.

REFERENCES:

 [1] Incorvaia, A. J., Davis, A. M., & Fairley, R. E,
“Case Studies In Software Reuse”, InProceedings
Fourteenth Annual International Computer
Software and Applications Conference, IEEE
Computer Society, Jan 1, 1990, pp. 301-302,

[2] Jha M, O'Brien L, “A Comparison Of Software
Reuse In Software Development Communities”,
In 2011 Malaysian Conference in Software
Engineering, IEEE, Dec 13, 2011, pp. 313-318.

[3] Trauter R, “ Design-Related Reuse Problems-An
Experience Report”, In Proceedings. Fifth
International Conference on Software Reuse
(Cat. No. 98TB100203), IEEE, Jun 5, 1998, pp.
176-183.

[4] Chernak Y, “Requirements Reuse: The State Of
The Practice”, In 2012 IEEE International
Conference on Software Science, Technology and
Engineering (SWSTE), IEEE, Jun 12, 2012, pp.
46-53.

[5] Jalender B, Govardhan A, Premchand P,
“Breaking The Boundaries For Software
Component Reuse Technology”, International
Journal of Computer Applications, Vol. 13, No.
6, Jan, 2011, pp. 37-41.

[6] Santos R, Barbosa O, Alves C, “Software
Ecosystems: Trends And Impacts On Software
Engineering”, In 2012 26th Brazilian Symposium

on Software Engineering, IEEE, Sep 23, 2012,
pp. 206-210.

[7] Sharma Ms J, Kumar A, Ms K, “A Design Based

New Reusable Software Process Model for
Component Based Development Environment”,
Procedia Computer Science, Vol. 85, Jan 1,
2016, pp. 922-8.

[8] Yu L, Chen K, Ramaswamy S, “Multiple-
Parameter Coupling Metrics For Layered
Component-Based Software”, Software Quality
Journal, Vol. 17, No. 1, Mar 1, 2009, pp. 5-24.

[9] Padhy N, Singh RP, Satapathy SC. “Software
reusability metrics estimation: algorithms,
models and optimization techniques”. Computers
& Electrical Engineering. 2018 Jul 1;69:653-68.

[10] Boehm, B, “Managing software productivity
and reuse”, Computer, Vol. 32, No. 9, 1999, pp.
111-113.

[11] Frakes WB, Kang K, “Software Reuse
Research: Status And Future”, IEEE transactions
on Software Engineering, Vol. 31, No. 7, Aug 8,
2005, pp. 529-36.

[12] Shatnawi A, Seriai AD, Sahraoui H, Alshara Z,
“Reverse engineering reusable software
components from object-oriented APIs”, Journal
of Systems and Software, Vol. 131, Sep 1, 2017,
pp.442-60.

[13] Zibran MF, Eishita FZ, Roy CK, “Useful, But
Usable? Factors Affecting The Usability Of
APIs”, In 2011 18th Working Conference on
Reverse Engineering, IEEE, Oct 17, 2011, pp.
151-155.

[14] García-León RA, Flórez-Solano E, Rodríguez-
Castilla M. “Application of the procedure of the
ISO 50001: 2011 standard for energy planning in
a company ceramic sector”. DYNA. 2019
Jun;86(209):113-9.

[15] Nautiyal L, Gupta N, “Elicit-A New
Component based Software Development
Model”, International Journal of Computer
Applications, Vol. 63, No. 21, Jan 1, 2013,

[16] Heinemann L, Deissenboeck F, Gleirscher M,
Hummel B, Irlbeck M, “On the extent and nature
of software reuse in open source java projects”,
In International Conference on Software Reuse,
Springer (Berlin, Heidelberg), Jun 13, 2011, pp.
207-222.

[17] Jalender B, Govardhan A, Premchand P. A,
“Pragmatic Approach To Software Reuse”,
Journal of Theoretical & Applied Information
Technology, Vol. 14, Apr 1, 2010.

 [18] Rawwash H, Masad F, Enaizan O, Eneizan B,

Adaileh M, Saleh A, Almestarihi R, “Factors

Journal of Theoretical and Applied Information Technology
15th January 2021. Vol.99. No 1

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

35

Affecting Jordanian Electronic Banking
Services”, Management Science Letters, Vol. 10,
No. 4, 2020, pp. 915-22.

[19] Al-Badareen AB, Selamat MH, Jabar MA, Din

J, Turaev S, “An Evaluation Model For Software
Reuse Processes”. In International Conference
on Software Engineering and Computer Systems,
Springer (Berlin, Heidelberg), Jun 27, 2011, pp.
586-599.

[20] Tung YH, Chuang CJ, Shan HL, “A Framework
Of Code Reuse In Open Source Software”, In
The 16th Asia-Pacific Network Operations and
Management Symposium (APNOMS), IEEE, Sep
17, 2014, pp. 1-6.

[21] Saleh AM, Ismail R, Fabil N, Norwawi NM,
Wahid FA, “Measuring Usability: Importance
Attributes for Mobile Applications”, Advanced
Science Letters, Vol. 23, No. 5, May 1, 2017,
pp.4738-41.

[22] Hewett R, “Learning From Software Reuse
Experience”, In 2005 International Symposium
on Empirical Software Engineering, IEEE, Nov
17, 2005, pp. 10-pp.

[23] Saleh A, Ismail R, Fabil N, “Evaluating
Usability For Mobile Application: A MAUEM
Approach”, In Proceedings of the 2017
International Conference on Software and e-
Business, Dec 28, 2017, pp. 71-77.

[24] Enaizan O, Eneizan B, Almaaitah M, Al-
Radaideh AT, Saleh AM, “Effects of Privacy
And Security On The Acceptance And Usage Of
EMR: The Mediating Role Of Trust On The
Basis Of Multiple Perspectives”, Informatics in
Medicine Unlocked, Vol. 21,Oct 13,
2020,100450.

[25] Sametinger J, “Software Engineering With

Reusable Components”, Springer Science &
Business Media, Jun 19, 1997.

[26] Clements, P. and Northrop, L., “Software

Product Lines”, Addison-Wesley (Boston),
2002, pp. 226-229.

[27] Kang, K. C., Sugumaran, V., & Park, S,

“Applied Software Product Line Engineering”,
CRC press, 2009.

[28] Van der Linden FJ, Schmid K, Rommes E,

“Software Product Lines in Action: The Best
Industrial Practice In Product Line Engineering”,
Springer Science & Business Media, Jun 10,
2007.

[29] Grubb P, Takang AA, “Software Maintenance:
Concepts And Practice”, World Scientific, Jul 7,
2003.

[30] Kang KC, Lee J, Donohoe P, “Feature-Oriented
Product Line Engineering”, IEEE software, Vol.
19, No. 4, Aug 7, 2002, pp. 58-65.

[31] Pigoski, T. M. “Practical Software
Maintenance: Best Practices For Managing Your
Software Investment”, Wiley Publishing, 1996.

[32] Al-Badareen AB, Selamat MH, Jabar MA, Din
J, Turaev S, “Reusable Software Components
Framework”, InEuropean Conference of
Computer Science (ECCS 2011), Nov 30 ,2010,
pp. 126-130.

[33] AL-Badareen, A. B., Selamat, M. H., Jabar, M.
A., Din, J., & Turaev, S. “Reusable Software
Component Life Cycle”, International Journal of
Computers, Vol. 5, No. 2, 2011, pp. 191-199.

[34] Nakano, H., Mao, Z., Periyasamy, K., & Zhe,
W., “An Empirical Study on Software Reuse”,
In 2008 International Conference on Computer
Science and Software Engineering, IEEE, Vol. 6,
December, 2008, pp. 509-512

 [35] Enaizan, O. M., Alwi, N. H., & Zaizi, N. J.,
“Privacy and Security Concern for Electronic
Medical Record Acceptance and Use: State of the
Art”, Journal of Advanced Science and
Engineering Research, Vol. 7, No. 2, 2017, pp.
23-34.

[36] Zhu, Z., “Study And Application Of Patterns In
Software Reuse”, In 2009 IITA International
Conference on Control, Automation and Systems
Engineering (case 2009), IEEE, July, 2009, pp.
550-553.

[37] Kessel, M., & Atkinson, C., “Ranking Software
Components For Pragmatic Reuse”, In 2015
IEEE/ACM 6th International Workshop on
Emerging Trends in Software Metrics, IEEE,
2015, pp. 63-66.

 [38] Ravichandran, T. and Rothenberger, M.A.,
“Software Reuse Strategies and Component
Markets”, Communications of the ACM, Vol.46,
No. 8, 2003, pp.109-114.

[39] Ramachandran, M., “Software Reuse
Guidelines”, ACM SIGSOFT Software
Engineering Notes, Vol. 30, No. 3, 2005, pp.1-8.

[40] Buccella, A., Cechich, A., Arias, M., Pol'La,
M., del Socorro Doldan, M. and Morsan, E.,
“Towards Systematic Software Reuse Of Gis:
Insights From A Case Study”, Computers &
Geosciences, 2013. Vol. 54, 2013, pp.9-20.

[41] Byun EY, Son HS, Jeon B, Kim RY.
“Reusability Strategy Based on Dynamic
Reusability Object Oriented Metrics”. Journal of
Engineering Technology. 2018 Jan;6(1):365-77.

Journal of Theoretical and Applied Information Technology
15th January 2021. Vol.99. No 1

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

36

[42] Beibei, X., Haitao, W. and Fengwang, Z.,
“Research On Software Reuse Methods Based
On The Object-Oriented Components”,
In Proceedings of 2012 2nd International
Conference on Computer Science and Network
Technology(ICCSNT), IEEE, December, 2012,
pp. 1857-1860.

[43] Lucredio, D., de Almeida, E.S. and Fortes, R.P.,
“An Investigation On The Impact Of MDE On
Software Reuse”, In 2012 Sixth Brazilian
Symposium on Software Components,
Architectures and Reuse (SBCARS), IEEE,
September 2012, pp. 101-110.

[44] Keswani, R., Joshi, S. and Jatain, A., “Software
Reuse In Practice”, In 2014 Fourth International
Conference on Advanced Computing &
Communication Technologies, IEEE, February,
2014, pp. 159-162.

[45] Badampudi, D., Wohlin, C. and Petersen, K.,

“Software Component Decision-Making: In-
House, OSS, COTS Or Outsourcing-A
Systematic Literature Review”, Journal of
Systems and Software, Vol. 121, 2016, pp.105-
124.

[46] Gusev A, Ilin D, Kolyasnikov P, Nikulchev E.
“Effective Selection of Software Components
Based on Experimental Evaluations of Quality of
Operation”. Engineering Letters. 2020 Jun
1;28(2).

[47] Khan, A. I., & Khan, U. A, “An Improved
Model for Component Based Software
Development”, Software Engineering, Vol. 2,
No. 4, 2012, pp. 138-146.

[48] Basha NM, Moiz SA. “Component based

software development: A state of art”,In IEEE-
international conference on advances in
engineering, science and management (ICAESM-
2012), Mar 30, 2012, pp. 599-604.

[49] Padhy, Neelamadhab, Rasmita Panigrahi, and
K.Neeraja.”Threshold estimation from software
metrics by using evolutionary techniques and its
proposed algorithms ,models”. Evolutionary
Intelligence .2019:1-15.

[50] Tomer A, Goldin L, Kuflik T, Kimchi E,
Schach SR, “Evaluating Software Reuse
Alternatives: A Model And Its Application To
An Industrial Case Study”, IEEE Transactions on
Software Engineering, Vol. 30, No. 9, Aug 24,
2004, , pp. 601-12.

[51] Shirali-Shahreza S, Shirali-Shahreza M, “Using

Formal Methods in Component Based Software
Development”, In Innovations and Advances in

Computer Sciences and Engineering, Springer (
Dordrecht), 2010, pp. 429-432.

Journal of Theoretical and Applied Information Technology
15th January 2021. Vol.99. No 1

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

37

Figure 1:. Develop-for-reuse scenarios

Figure 2: Develop-by-reuse scenarios

Exist SW
(OSS)

SW during
Development

New for Reuse
“NR”

Normal
Component

“NC”

Reusable
Component

“OSC”

Market
COTS

Reusable
Component

“COTS”

Adaptation for
Reuse “AR”

XA CP CP CP M & C

Reuse Library

SW System under development

CA CA CA

Adaptation for
Reuse “AR”

Reusable
Component

“COTS”

BBMSA BBAI

Reusable
Component

“OSC”

WB

Normal
Component

“NC”

Reuse Library

