
Journal of Theoretical and Applied Information Technology
15th January 2021. Vol.99. No 1

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1

SECURITY REQUIREMENTS TEMPLATE-BASED
APPROACH TO IMPROVE THE WRITING OF COMPLETE

SECURITY REQUIREMENTS

1 NURIDAWATI MUSTAFA, 2 MASSILA KAMALRUDIN, 3 SAFIAH SIDEK
1Senior Lecturer, Department of Software Engineering, Faculty of Information and Communication

Technology, Universiti Teknikal Malaysia Melaka, Malaysia

2Professor, Innovative Software System and Service Group (IS3), Universiti Teknikal Malaysia Melaka,

Malaysia

3Associate Professor, Innovative Software System and Service Group (IS3), Universiti Teknikal Malaysia

Melaka, Malaysia

E-mail: 1nuridawati@utem.edu.my, 2massila@utem.edu.my, 3safiahsidek@utem.edu.my

ABSTRACT

Writing quality security requirements contributes to the success of secure software development. It has
been a common practice to include security requirements in a software system after the system is defined.
Thus, incorporating security requirements at a later stage of software development will increase the risks of
security vulnerabilities in software development. However, the process of writing security requirements is
tedious and complex. Although significant work can be found in the field of requirements elicitation, less
attention has been given for writing complete security requirements. It is still a challenge and tedious
process for requirements engineers (REs) to elicit and write complete security requirements that are derived
from natural language. This is due to their tendency to misunderstand the real needs and the security terms
used by inexperienced REs leading to incomplete security requirements. Motivated from these problems,
we have developed a prototype tool, called SecureMEReq to improve the writing of complete security
requirements. This tool provides four important key-features, which are (1) extraction of security
requirements components from client-stakeholders; (2) validation of security requirements probability
density and security requirements syntax density; (3) checking the security requirements and key-structure
components; and (4) validation of completeness prioritization. To do this, we used our pattern libraries:
SecLib and SRCLib to support the automation process of elicitation, especially in writing the security
requirements. To evaluate our approach and tool, we have conducted completeness tests to compare the
completeness of writing security requirements through the results provided by SecureMEReq and manual
writing. Our evaluation results show that our prototype tool is capable to facilitate the writing of complete
security requirements and useful in assisting the REs to elicit the security requirements.

Keywords: Tool Security Requirements, Template-Based Approach, Security Requirements Completeness,
Template-Based Density, Syntax Density

1. INTRODUCTION

Capturing complete security requirements is
crucial for the development of a secure software
because incompletely defined and poor elicited
security requirements may result in costly
development failure [1]. Further, incomplete
security requirements could lead to generating
incorrect non-functional security requirements [2].
At present, when capturing security requirements

from clients, Requirement Engineers (RE) often
uses some forms of natural language, written either
by clients or themselves. These requirements are
captured from the discussion and negotiation
between both parties; clients and the RE. However,
due to the ambiguities and complexities of natural
language [3][4] and the process of capturing, these
requirements often have incompleteness. RE also
faced problems in eliciting consistent security
compliance requirements from the clients-

Journal of Theoretical and Applied Information Technology
15th January 2021. Vol.99. No 1

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2

stakeholders as they misunderstood the real needs
and the security terms used [5].

Security requirements can be defined as a system
specification of its required security, such as the
specification towards types and levels of protection,
necessary for the data, information, and application
of the systems. It is also categorized into functional
and non-functional requirements [6]. Examples of
security requirements are authentication
requirements, authorization requirements, intrusion
detection requirements, and many others [7].

A common approach for the inclusion of security
within a software system is to identify the security
requirements after a system is defined in the
developed software. Thus, incorporating security
requirements at the later stages of a software
development increases the risks of introducing
security vulnerabilities into the software [8]. This
paper advocates [9], in which completeness
checking needs to be done at the earliest stage of
requirements engineering (RE) process, as shown in
Figure 1. This approach would minimize the
number of defects that would otherwise permeate
further phases of software development [10].

This rest of the paper is organized as follows. In
Section 2, the background and the motivations for
this work are highlighted. Next, in Section 3, the
overview of our template-based approach is
described. In Section 4, we discuss the
implementation of tool support. In Section 5, we
explain our tool validation study methodology to
evaluate the effectiveness of our approach. Then,
we explain the threats of validity. The result and
discussion of this paper is presented in Section 7.
Finally, we conclude the paper with some remarks
on our proposed approach and possible future work
for improvement.

Figure 1: Requirement Analysis And Process Flow [9]

2. BACKGROUND AND MOTIVATIONS

Requirements elicitation is one of the complex
processes as it involves many activities [11]. The
activities in requirements elicitation involve a
variety of techniques, methods, approaches, and
tools for capturing complete requirements. There
are a few works related to eliciting requirements,
such as interview [10];[12], questionnaire [13];[14]
and observation [15]. Security requirements
elicitation is the most essential activity to gain
understanding between the development team and
the business team. It also maps the information to
develop systems/applications in accordance to
business and user needs, provided by stakeholders
as high-level statements on features and
functionalities. In order to address the security
aspects, it is necessary for the business,
development and security teams to understand the
key sensitivities and business consequences caused
by risk of security flaws. Developing a software
usually follows the System Development Life Cycle
(SDLC), which is a feed forward process; hence,
any errors introduced in this phase will be spread to
the next development phases. Thus, it is important
to elicit security requirements at the very early
stages [16].

There are several works found in writing security
requirements (Refer to Table 1). However, there are
a few gaps found in the existing works, which we
categorized them as the method-related and people-
related issues in security requirements elicitation.

Table 1: Comparison of security requirements elicitation

techniques
Techniq
ue

SD
LC

V
al

id
at

io
n

Se
cu

ri
ty

R

eq
ui

re
m

en
ts

T

em
pl

at
e

T
oo

l

Secu
rity
Stan
dard

s

Validatio
n

A
na

ly
si

s

D
es

ig
n

(M=
Manual,
SA=Semi

-Auto
A=Auto)

(Y = Yes, N = No)
Multilate
ral

√ N N N N -

UML-
Based

√ N N N N -

UML-
Based
(Use-
Case
Driven)

√ Y Y Y Y SA

Goal-
Oriented

 √ Y N Y Y M

Problem
Frame

√ N N Y Y -

Risk-
Analysis

√ N N N N -

Common √ Y N N Y M

Journal of Theoretical and Applied Information Technology
15th January 2021. Vol.99. No 1

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3

Techniq
ue

SD
LC

V
al

id
at

io
n

Se
cu

ri
ty

R

eq
ui

re
m

en
ts

T

em
pl

at
e

T
oo

l

Secu
rity
Stan
dard

s

Validatio
n

A
na

ly
si

s

D
es

ig
n

(M=
Manual,
SA=Semi

-Auto
A=Auto)

(Y = Yes, N = No)
Criteria
Essential
Use Case

√
Y

N Y N A

Resource
Centric

√ N N N N -

The method-related issues include the lack of (1)
checking on security requirements completeness;
(2) security requirements templates; (3) security
standards used as reference; and (4) automated tool
for validation. Based on our study, one of the major
challenges is the adaptation of proper methods for
writing complete security requirements due to the
lack of completeness checking and security
template in previous research. Even though there
are existing security requirements templates, none
of the existing approaches are provided with density
calculations and completeness status, which are
important for determining requirements
completeness level. Besides, there are still lacking
of works that refer to security standards while
developing their security requirements templates. In
fact, the tedious writing process of security
requirements requires high skill and experience
requirements engineers to carry out the process.
This is due to insufficient resource in terms of
proper tool to support the writing security
requirements process since most of the checking
were conducted manually and without automated or
semi-automated approaches for completeness
checking. These problems lead to writing
incomplete security requirements and disruptions of
schedule and increment to project's expenditure
[17] [18] [1].

While, the people-related issues consist of (1)
inexperienced requirements engineers; (2) minimal
involvement of technical team in defining security
requirements; and (3) language barriers. We have
found that most of requirement engineers lack of
skill in terms of security related requirements due to
the lack of training. This is supported by Salini and
Kanmani (2012a), who argued that most of
requirements engineers are poorly trained in
security. In fact, those who have undergone the
training were only given an overview of security
architectural mechanisms, such as passwords and
encryption rather than the actual security
requirements [20].

The requirements engineers faced problems to
elicit security requirements from the clients-
stakeholders as there are instances of mismatch
between the real needs and the security terms used
(Houmb et. al., 2010; Banerjee et. al., 2015).
Besides, the exclusion of technical team in the
process causes the late identification of security-
related requirements that may lead to writing
incomplete security requirements. The security
requirements are often inadequately understood and
improperly specified, which is often due to the lack
of security expertise and the lack of emphasis on
security during the early stages of system
development [21]. The language barrier between
the requirement engineers and client-stakeholders is
also identified as another obstacle. Ambiguities and
complexities of natural language [3] [4] and the
tedious process of capturing lead to
misinterpretation and misunderstanding of the
security requirements as well as the difficulty to
reach mutual agreement among stakeholders, hence
resulting in writing incomplete security
requirements [22]. Based on the above issues,
requirements engineers are still facing problems
with writing incomplete security requirements
although security requirements are important in
building secure software.

In this section, we also summarize the tool
comparison provided by security requirements
elicitation techniques. Based on Table 2, there are
only four tools from four techniques that provide a
tool to support the writing of security requirements.
In terms of tool validations, each tool performs
specific aspects of validation. Specifically, the
UML-Based (Use-case driven) validates
consistency, the goal-oriented technique validates
the correctness, consistency and completeness of
the security, the common criteria-based technique
validates the consistency and completeness only,
while the essential use-case validates the
correctness criteria only. All these validations are
done manually, except the UML-Based technique.
Out of these works, the goal-oriented works are
based on NIST, particularly in Secure i* method.
The UML-Based (use-case driven) is referred to
ISO/IEC 27001:2013. Meanwhile, Problem Frame
method refers to security standards, which is the
ISO/IEC 15408 in security problem frames [23].
The common criteria-based by Mellado et al. (2007)
also integrates the ISO/CC in their work.

Overall, most of tools lack of completeness
checking functionalities. Yet, all of these tools do
not provide the template for writing security
requirements that can assist requirement engineers

Journal of Theoretical and Applied Information Technology
15th January 2021. Vol.99. No 1

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4

in writing complete security requirements. Most of
the tools discussed above do not use the security
standard as their reference; hence, it can be inferred
that so far, there has been limited tools for eliciting
requirements with direct reference to security
standards. It was found that there is only one tool
that can automate the correctness checking during
the security requirements elicitation process. Hence,
it can be concluded that tools that support
automated completeness checking is still lacking.
Based on a comparison study between the manual
and template-based approach, it was found that
none of the tools have similar functionalities as the
SecureMEReq. We also found that SecureMEReq is
an automated tool that performs completeness
validation and provides security requirements
writing template based on three security standards,
namely the ISO/IEC, NIST and Common Criteria.

Table 2: Security Requirements Elicitation Techniques
and Tool Comparisons

Technique T
oo
l

Tool
Type

Tool
Validatio

n

Tem
plate

Secur
ity

Stand
ards

M
S
A

A
C
R

C
N

C
M

Multilatera
l

X X X X X X

UML-
Based

X X X X X X

UML-
Based
(Use-Case
Driven)

√ √ X √ X √ √

Goal-
Oriented

√ √ √ √ √ X √

Problem
Frame

√ X X X X √

Risk-
Analysis

X X X X X X

Common
Criteria

X √ X √ √ X √

Essential
Use Case

√ √ √ X X X X

Resource
Centric

X X X X X X

Template-
Based
(SecureME
Req)

√ √ √ √ √

CR - Correctness, CN
 - Consistency, CM

 –
Completeness, M- Manual, SA-Semi-Auto, A-Auto

3. TEMPLATE-BASED APPROACH

In relation to the gaps highlighted in Section 2,
this research aimed to propose a security
requirements template-based approach to improve
the clarity of requirements that can lead to writing

complete security requirements. This work is based
on the research question below:

“How does the template-based approach help in
writing complete security requirements?”

We proposed the overall template-based
approach as illustrated in Figure 2.

Figure 2: An Overview of Security Requirement

Template-Based Approach

The approach comprises four main steps. Step A

comprises of three processes (Process 1-3). In this
step, the security requirements components are
extracted, in which the RE elicits textual natural
language requirement from the clients/stakeholders
during requirements gathering. Then, the RE enters
the security requirements components in the tool
editor. Two aspects will be analysed from the
textual security requirements. Firstly, each
requirement is analysed using security requirements
components from SRCLib. Secondly, the business
scenario is analysed based on syntax analysis from
SecLib library. Additionally, the purpose of the
searching process from the SecLib library is to find
the associated security keywords and mechanism
using keyword matching. The function of these two
aspects is to confirm that the security requirements
follow the template and sentence structure of
security requirements.

Journal of Theoretical and Applied Information Technology
15th January 2021. Vol.99. No 1

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5

Step B performs the validation of security
requirements probability density and security
requirements syntax density in process 4 and 5.
Here, the tool calculates the density for security
requirements components and business scenario
based on our security requirements pattern library
SRCLib and SecLib. For further checking, RE can
also view the analysis for each security requirement
sentence structure.

Step C focuses on checking the security
requirements and key-structure components, and it
consists of five steps, which starts from step 6 until
11. Here, the tool displays the status of the security
requirements density, whether it has high or low
density. The subject, verb, object, security
mechanism, ambiguity words and security
properties will be displayed. Besides, the
completeness status for each requirement is
displayed. Additionally, the missing components
will be highlighted. RE will have the ability to
edit/update the input and choose the option whether
to edit/update the original input.

Finally, in D, we validate the completeness
prioritization, where the tool displays the overall
result of the security requirements completeness
level, either it is “Complete”, “Partial Complete” or
“Incomplete”. The results will help RE to give early
status on the level of completeness for their written
security requirements.

To implement our approach in Figure 2, we
developed two pattern libraries: (1) the Security
Requirements Library (SecLib) for security
requirements taxonomy and key textual tree
structure, and (2) the Security Requirements
Completeness Library (SRCLib) for security
requirements probability density, syntax density and
completeness prioritization.

To do that, we have conducted two main
processes to design the template-based approach.
We conducted analysis of requirements and semi-
structured interview with requirement engineering
experts from the industry, as illustrated in Figure 3.
The aim of these processes is to discover the
security requirements writing process practices and
to reveal any problems or issues arisen during the
writing the security requirements process in
industry.

We categorized the security requirements
knowledge into three parts: i) Basic 2) Applied 3)
Advanced. The basic knowledge is defined as a
form of foundation of security requirements such as
security requirements properties. Whereas, the
applied is the knowledge we acquire from the

analysis of requirements and security standards.
Meanwhile, the advanced specific knowledge we
acquire from the semi-structured interview with RE
practitioners.

Referring to Figure 3, firstly, we collected
business requirements and security standards. Then,
we conducted analysis of requirements activity to
elicit basic and applied security requirements
knowledge, for instances, knowledge on security
requirements properties, security requirements
taxonomy, security requirements syntax tree
structure, security requirements syntax library,
security requirements writing template and security
requirements density calculation.

Next, to acquire security requirements advanced
knowledge, we need to capture knowledge from the
experts who are involved in requirements
engineering field. Therefore, we conducted semi-
structured interview. From the semi-structured
interview, we obtained the security requirements
advanced knowledge, which are the security
requirements template components, their advanced
practices in elicitation, and early evaluation on our
automated tool. Then, we incorporated basic,
applied and advanced knowledge to structure the
generic security requirements template-based
approach.

Figure 3: Processes of Designing Template-Based
Approach

4. IMPLEMENTATION OF TOOL SUPPORT

We have developed a prototype tool, called
SecureMEReq using PHP programming language
and adopted Model-View-Controller (MVC) design
pattern and three-tier architecture. MVC design
pattern was implemented to develop a platform-
independence software application that supports
different platforms, such as mobile devices, tablets,
and different browsers on different operating
system. As shown in Figure 4, MVC pattern divides

Journal of Theoretical and Applied Information Technology
15th January 2021. Vol.99. No 1

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6

an interactive application into three components:
Model, View and Controller.

Figure 4: The MVC Design Pattern

The Model manages data and business logic of
the application, the View is responsible for
presentation of data or model and displays it to the
user through browser, and the Controller manages
the communication between the model and view.
The development of SecureMEReq was adapted
from the works of [25], [26] and the identification
of the associated security elements was based on the
definitions from the basic security services.

Figure 5 illustrates the high-level architecture of
the SecureMEReq tool that comprises three tiers;
presentation, business processing, and data
management layer. The layout is three-tier
architecture, where each layer is separated from
each other. This independency allows for better
performance, easier maintenance and more scalable
architecture [27].

Figure 5: SecureMEReq High Level Architecture

The presentation layer handles the interaction
between the users and the system. The View and
Controller exist in the presentation layer. Here, a
web client from any platform such as an iPad,
mobile phone or desktop can request to access the
SecureMEReq tool. The user interacts with the
SecureMEReq tool through the Controller
component. The Controller that contains the client-
side scripting, handles the http request processing
and business logic of the tool. It receives user input
as events and translates them into service request
for the Model or the View. When a user accesses the
SecureMEReq, the scripts in the Controller will
determine the type of browser and device used by
the user. Then, it will request the correct view from
the View component. Each view has associated
controller component. Next, the View component
will make requests from the Model to fetch the data
from business and data layer and display the
information to the user.

At the business processing layer, the Apache
server hosted the PHP implementation for the main
event handlers of SecureMEReq. This contains the
key elements for the extraction of security
requirements components from the textual
requirements, extraction of business scenario
components at the SecureMEReq’s template editor,
analysis and evaluation of the template-based
component and business scenario syntax from
pattern library and completeness prioritization
analysis.

At the data management layer, MySQL database
server contains the security requirements libraries
and density library.

As overall, our tool provides the (1) extraction of
security requirements components from client-
stakeholders; (2) validation of security requirements
probability density and security requirements
syntax density; (3) checking the security
requirements and key-structure components; and (4)
validation of completeness prioritization. Table 3
below shows the mapping between proposed
template and tool developed.

Journal of Theoretical and Applied Information Technology
15th January 2021. Vol.99. No 1

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7

Table 3: Tool and Template-based Mapping
No

.

Template Tool Implementation

A. Extraction

of security

requiremen

ts

component

s

B. Validation

of Security

requiremen

ts

probability

density and

security

requiremen

ts syntax

density

C. Checking

the security

requiremen

ts and key-

structure

component

s

D. Validation

of

completene

ss

prioritizatio

n

We demonstrated the features of our tool using
the user persona as per described below:

John, a requirements engineer would like to
validate the requirements provided by the client-

stakeholder using SecureMEReq. He sits with
Lewis, who is the project manager to validate the
requirements, which he had captured earlier. As
shown in Figure 6, firstly, he starts with extraction
of security requirements components. He inserts the
requirements in the form of business scenario in the
text editor (1). Besides, he also needs to insert
several security requirements components, which
are the domain, goal, terms and definitions,
acronym, scope and target audience as in (2).

Figure 6: Extraction of Security Requirements
Components

From there, as shown in Figure 7, he clicks the
“Calculate” button to generate the density for
security requirements components and syntax
density (3). Here, John and Lewis will validate the
security requirements probability density and
security requirements syntax density. Then, John
can view the security requirements probability
density and syntax density results (4). If John is
unhappy with the result, he can edit/update the
inputs and recalculate, if needed. Besides, John and
Lewis can review the “Suggestion” and “Lexical
Density by Sentence” (5). In order to allow Lewis
to get better understanding of the requirements
structure, he then clicks the “Next” button to review
the analysis of security requirements (6).

Journal of Theoretical and Applied Information Technology
15th January 2021. Vol.99. No 1

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8

Figure 7: Validation of Security requirements probability
density and security requirements syntax density

In Figure 8, John and Lewis can check the
security requirements and key-structure
components. Here, John and Lewis can validate
each requirement density status and structure, such
as the Subject, Object, Verb, Security Mechanism,
Ambiguous Words used, Security Properties and
the completeness status for each requirement (7)(8).
They can also view the examples of each
component if needed (11). He can view the
completeness for each requirement (9) and Lewis
can decide whether to proceed with the
requirements or amend it (10). Finally, in Figure 9,
they can validate the completeness prioritization for
overall completeness (12).

Figure 8: Checking the security requirements and key-
structure components

Figure 9: Validation of completeness prioritization

5. TOOL VALIDATION

We have conducted a tool validation by making a
comparison between our tool and manual studies.
The main aim of this test was to evaluate the
capabilities of our pattern libraries in generating
complete security requirements. This completeness
test involves making comparison between the
number of complete security requirement and the
key-textual structure components, generated by
manual approach and using the SRC and SecLib
pattern libraries embedded in our tool. The
objective of this test is to compare the number of
complete security requirement and key-textual
structure components generated by manual
approach with our SRC and SecLib pattern
libraries.

The manual approach data was collected from the
result of our study, where the participants need to
extract security requirements from the business
scenario. The analysis involved in this
completeness test is comparing the complete
security requirements result from manual method
with the pattern libraries embedded in
SecureMEReq tool. Based on our tool comparisons
(Refer to Background and Motivations), the
comparison study between manual and template-
based approach was conducted. It was found that
there is no tool that supports automated
completeness checking. Therefore, the comparison
study between the manual and template-based
approach was conducted as tools with similar
functionalities provided by SecureMEReq were not
found.

5.1 Study sample/subject

This survey was conducted with 68
undergraduate students who enrolled in the course
of Software Validation and Verification. These
students were majoring in Software Development at
the Universiti Teknikal Malaysia Melaka. They
have sufficient background and knowledge to
understand about software requirements because
they have already taken the Software Engineering
and Software Requirement and Design subjects.
The participants of this survey were volunteers and
their participations were treated anonymously.
These students were reliable as participants instead

Journal of Theoretical and Applied Information Technology
15th January 2021. Vol.99. No 1

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

9

of professional software as they found that the
differences are only minor to draw conclusions
(Höst et. al., 2000). Table 4 summarizes the
demographic details of the participants.

Table 4: The Demography Details of The Survey
Participants

 Demography Information

Number of
Participants

68

Level of
Study

Undergraduate

Stage of
Study

Second year

Academic
Major

Software Development

Purpose of
Study

(1) To analyze the completeness of
extracting requirements from
business scenario

(2) To analyze the completeness of
extracting the main components
of sentence structure of security
requirements structure

(3) To compare completeness of
writing security requirements
and key-textual structure
components by manual
between our SRC and SecLib
pattern libraries.

(4) To identify the difficulties of
eliciting security requirements
manually from the business
scenario.

 5.2 Study material

The study material consists of a tutorial.
Participants were given explanations of the key
concepts used throughout the tutorial. We have also
provided theoretical and example lessons on how to
extract security requirements and security
requirements sentence structure.

5.3 Study procedure

We have defined and followed a simple
procedure to carry out the evaluation. The main task
in this study was to manually extract security
requirements and key textual sentence structure
from business scenario. Prior to that, the
participants were given a short description of the
evaluation. We provided a tutorial that explains the
concepts of requirement, security requirements, key
textual sentence structure and security properties in
detail and gave an example of the process of

extracting requirements from business scenarios.
We gave them 20 minutes to understand the concept
and example as given in the tutorial. Then, the
evaluation went through the following steps:

The participants need to write down their start
time on the provided sheets. They were given an
hour to complete the task.

The participants were required to write down the
security requirements on the provided sheets. To
reduce the complexity and time taken, the subjects
only need to write down the security requirements,
key textual sentence structure and security
properties.

Once completed, the participants need to write
down the end time and call the researcher to submit
their work.

5.4 Data collection and analysis

To measure the manual effort, we calculated and
averaged the time taken of the participants to finish
the task. Then, we checked and compared each of
the security requirements written by the participants
with our security requirements extracted from the
tool to measure the completeness of their answers.
For this, we checked the completeness of the
participants’ responses with our pattern libraries.
We gave the relevant point for each response
following the completeness measurements as
described in Table 5.

Table 5: Completeness Measurement

No
.

Module Pattern
Library

Participant
Response

1. Extract
Requirements

4 4 matches =
complete
3, 2, 1 or 0
matches =
incomplete

2. Identify
Subject/Verb/Obje
ct

3 3 matches =
complete
2,1 or 0 match
= incomplete

3. Identify Security
Mechanism

1 1 match =
complete
0 match =
incomplete

4. Identify
Ambiguous Word

1 1 match =
complete
0 match =
incomplete

5. Identify Security
Properties

1 1 match =
complete
0 match =
incomplete

Journal of Theoretical and Applied Information Technology
15th January 2021. Vol.99. No 1

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

10

6. THREATS OF VALIDITY

The evaluation of the proposed tool is positioned
within the positivist realm, in which the focus is to
maintain objectivity and unbiased results. As such,
there are threats of validity related to the testing and
evaluation methods that need to be addressed and
acknowledged. There are two types of threats to
validity: (a) internal threats and (b) external threats.

Internal validity threats are experimental
procedures, treatments, or experiences of the
participants that threaten the researcher’s ability to
draw correct inferences from the data about the
population in an experiment. Nevertheless, potential
threats to external validity also must be identified
and designs created to minimize these threats.
External validity threats arise when experimenters
draw incorrect inferences from the sample data to
other persons, other settings, and past or future
situations [29].

In this section, we discuss the types of validity
taken care in each of testing and evaluation
approaches: (1) survey, (2) observation and (3)
interview. To address the sampling bias, we have
selected undergraduate students majoring in
Software Development. In general, they have the
same level of knowledge and skill in software
requirements. To address the historical effect, we
made sure that all participants conducted the
evaluations at the same time and the same place.
We provided a tutorial and tool demonstration prior
to the evaluations to ensure that the participants
were properly trained and have sufficient theoretical
knowledge. They were also not aware of the main
objective of the evaluation. With respect to maturity
effect, we informed the participants that their
response will be treated anonymously and they
were not evaluated on their performance. For this,
we provided a written informed consent forms to
each of the participants. They need to read and sign
to express their consent to participate in the study,
before they begin the evaluations.

There were two forms of threat identified in both
observation and interview approach, which are the
descriptive and interpretive validity. Descriptive
validity refers to the factual accuracy of the
descriptive information gathered from a particular
phenomenon, situation or group. To address the
descriptive validity, we used multiple observers to
collect and interpret the data. The observers were
postgraduate students who have sufficient
experience conducting observation research. The
participants were requested to do the manual
elicitation and to explore the tool. Here, we

assigned two observers in the laboratory to observe
the participants’ communication and behavior
during the session. The results from the observation
were discussed and agreed by each observer.
Similarly, for the interview, we asked the
permission to tape-recording the interview session.
This helps us to transcribe and analyze the result
from the interview.

The second type of validity is the interpretive
validity. It refers to the degree that the researcher
accurately understands the participants’ viewpoint
and thought. In order to avoid compromising
interpretive validity, we used open-ended questions
to obtain the participants’ feedback upon
completion of the task.

7. RESULTS AND DISCUSSION

Responding to RQ in Section 3, we have
conducted an evaluation. Table 6 shows the results
of comparison analysis between the manual
approach and our tool. The objective of this test was
to compare the number of complete security
requirements and key-textual structure extracted
using the manual approach and our template-based
approach pattern libraries embedded in our tool.

The result in Table 6 shows that the mean
completeness from the manual approach was 9.8%,
in which 90.2% was the incomplete answers.
Meanwhile, the result from SecureMEReq shows
100% completeness for the extraction of security
requirements and key-textual structure with 0% for
incomplete answer.

Most of them (72%) were having difficulty to
manually extract the security requirements and key-
textual structure. Only approximately a quarter
(28%) of them could easily extract correct
requirements from the business scenario, even
though they understood the business scenario given.
From the result, most of them failed to identify the
security mechanism correctly and none of them
failed to identify the ambiguous words and security
properties correctly. These are due to the fact that
they were not familiar with security requirements
and lacked of experience handling security
requirements. They felt difficult and needed more
time to manually identify the security information
from the business scenario. As overall, they felt that
manual elicitation is time consuming and they
needed experience to do the task. From this result,
we have also found that the template-based
approach performs better than the manual approach.
Furthermore, the tool can generate complete

Journal of Theoretical and Applied Information Technology
15th January 2021. Vol.99. No 1

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

11

security requirements in just over seconds in
comparison to the manual approach, which takes an
average of 16.4 minutes to complete the tasks.

Table 6: Results from Comparison of Manual and
SecureMEReq

Task No. of Complete
Answers (%)

No. of Incomplete
Answers (%)

Man
u
al

SecureM
EReq

Man
u
al

SecureM
EReq

Extract
Requirem

ents
28 100 72 0

Identify
Subject/
Verb/
Object

12 100 88 0

Identify
Security
Mechanis

m

9 100 91 0

Identify
Ambiguo

us
Word

0 100 100 0

Identify
Security
Propertie

s

0 100 100 0

Mean 9.8 100 90.2 0

8. CONCLUSION AND FUTURE WORKS

In summary, we have presented our prototype
tool, called SecureMEReq that provides the (1)
extraction of template-based components from
client-stakeholders; (2) analysis of template-based
density from SRCLib; (3) analysis of requirements
syntax from SecLib; and (4) analysis of
completeness prioritization. Our evaluation results
show that our prototype tool was able to produce
the complete security requirements in comparison
to manual task and this answered to our research
question that aimed to evaluate the usefulness of
SecureMeReq in writing complete security
requirements. Based on evaluation conducted, the
tool was able to reduce the manual effort and the
participants agreed that this tool can facilitate the
writing of the complete security requirements. This
feature helps to accelerate the writing of security
requirements process and reduce the development
cost. For future research, we will extend the
evaluation of our tool by evaluating the efficacy of
our approach in terms of completeness. We will
conduct completeness testing to evaluate the

completeness of eliciting security requirements by
comparing manual elicitation with our prototype
tool. This is to determine the ability of our
SecureMEReq tool to produce complete security
requirements. We strongly believe that our
template-based approach is able to enhance the
clarity of requirements that leads to completeness of
writing security requirements and contribute to the
success of secure software development.

ACKNOWLEDGEMENTS

We would like to express our gratitude to the
university, UTeM and MoHE for the research
funding: PASCA-COVID19/2020/FTMK-
CACT/C00001

REFERENCES:

[1] K. Schneider, E. Knauss, S. Houmb, S.

Islam, and J. Jürjens, “Enhancing Security
Requirements Engineering by
Organizational Learning,” in Requirements
Engineering, vol. 17, no. 1, 2012, pp. 35–
56.

[2] D. G. Firesmith, “Engineering Safety And
Security Related Requirements For
Software Intensive Systems,” in 29th
International Conference on Software
Engineering (ICSE 2007), 2007, p. 169.

[3] E. Kamsties and B. Paech, “Taming
Ambiguity in Natural Language
Requirements,” in the Thirteenth
International Conference on System and
Software Engineering and their
Applications, 2000.

[4] M. Bano, “Addressing the Challenges of
Requirements Ambiguity: A Review of
Empirical Literature,” in 5th International
Workshop on Empirical Requirements
Engineering (EmpiRE 2015), 2016, pp. 21–
24.

[5] M. Kamalrudin, N. Mustafa, and S. Sidek,
“A Preliminary Study: Challenges In
Capturing Security Requirements And
Consistency Checking By Requirement
Engineers,” J. Telecommun. Electron.
Comput. Eng., vol. 10, no. (1-7), pp. 5–9,
2017.

[6] J. Slankas, M. Riaz, J. King, and L.
Williams, “Discovering Security
Requirements from Natural Language
Project Artifacts,” in 36th International
Conference on Software Engineering, 2014,

Journal of Theoretical and Applied Information Technology
15th January 2021. Vol.99. No 1

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

12

pp. 1–12.
[7] D. G. Firesmith, “Analyzing and Specifying

Reusable Security Requirements,” in IEEE
11th International Conference on
Requirements Engineering, RHAS 2003,
2003, pp. 507–514.

[8] M.-L. Sánchez-Gordón, R. Colomo-
Palacios, A. Sánchez, A. De Amescua
Seco, and X. Larrucea, “Towards the
Integration of Security Practices in the
Software Implementation Process of
ISO/IEC 29110: A Mapping,” in European
Conference on Software Process
Improvement (EuroSPI 2017), 2017, pp. 3–
14.

[9] G. Kotonya and I. Sommerville,
Requirements Engineering : Processes and
Techniques. J. Wiley, 1998.

[10] R. Sharma and K.K. Biswas, “Resolving
Inconsistency and Incompleteness Issues in
Software Requirements,” in Springer
Managing Requirements Knowledge, 2013,
pp. 315–332.

[11] D. Zowghi and C. Coulin, “Requirements
Elicitation: A Survey of Techniques,” in
Engineering and Managing Software
Requirements, Berlin, Heidelberg: Springer,
Berlin, Heidelberg, 2005, pp. 19–46.

[12] R. Agarwal and M. R.Tanniru, “Knowledge
acquisition using structured interviewing:
an empirical investigation,” J. Manag. Inf.
Syst., vol. 7, no. 1, pp. 123–140, 2015.

[13] W. Foddy, Constructing questions for
interviews and questionnaires. Cambridge
University Press, 1993.

[14] A. M. Hickey and A. M. Davis, “Elicitation
Technique Selection : How Do Experts Do
It ?,” in Proceedings of the 11th IEEE
International Requirements Engineering
Conference, 2003.

[15] D. Wixon and J. Ramey, Field Methods
Casebook for Software Design (1st
Edition). Wiley, 1996.

[16] M. Antonio da Silva and M. Danziger, “The
Importance Of Security Requirements
Elicitation And How To Do It,” in PMI®
Global Congress 2015, 2015, pp. 1–12.

[17] T. R. Farkhani and M. R. Razzazi,
“Examination and Classification of Security
Requirements of Software Systems,” in
IEEE The 2nd International Conference on
Information & Communication
Technologies, 2006, vol. 2, pp. 2778–2783.

[18] M. Zhivich and R. K. Cunningham, “The
Real Cost of Software Errors,” IEEE Secur.

Priv., vol. 2, no. 2, pp. 87–90, 2009.
[19] P. Salini and S. Kanmani, “Survey and

Analysis on Security Requirements
Engineering,” Comput. Electr. Eng., vol.
38, pp. 1785–1797, 2012.

[20] D. G. Firesmith, “Engineering Security
Requirements,” J. Object Technol., vol. 2,
no. 1, pp. 53–68, 2003.

[21] M. Riaz and L. Williams, “Security
Requirements Patterns: Understanding The
Science Behind The Art Of Pattern
Writing,” in IEEE 2nd International
Workshop on Requirements Patterns (RePa
2012), 2012, pp. 29–34.

[22] T. Sven, “The Trouble With Security
Requirements,” in IEEE 25th International
Requirements Engineering Conference
(RE2017), 2017, pp. 122–133.

[23] D. Hatebur, M. Heisel, and H. Schmidt,
“Security Engineering Using Problem
Frames,” in Emerging Trends in
Information and Communication Security,
2006, pp. 238–253.

[24] D. Mellado, E. Fernández-Medina, and M.
Piattini, “A Common Criteria Based
Security Requirements Engineering Process
For The Development Of Secure
Information Systems,” Comput. Stand.
Interfaces, vol. 29, no. 2, pp. 244–253,
2007.

[25] M. Kamalrudin, J. Grundy, and J. Hosking,
“Managing Consistency Between Textual
Requirements, Abstract Interactions And
Essential Use Cases,” in IEEE 34th
International Computer Software and
Applications Conference, 2010, pp. 327–
336.

[26] M. Kamalrudin, J. Grundy, and J. Hosking,
“Automated Support for Consistency
Management and Validation of
Requirements,” The University of
Auckland, 2011.

[27] Ian Sommerville, Software Engineering
(10th Edition). Pearson, 2015.

[28] M. Höst, B. Regnell, and C. Wohlin,
“Using Students as Subjects—A
Comparative Study of Students and
Professionals in Lead-Time Impact
Assessment,” in Empirical Software
Engineering, vol. 5, 2000, pp. 201–214.

[29] J. W. Creswell, Research Design
Qualitative, Quantitative and Mixed
Methods Approaches. 2013.

