
Journal of Theoretical and Applied Information Technology
15th January 2021. Vol.99. No 1

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

227

A FIREWALL-ADVERSARIAL TESTING APPROACH FOR
SOFTWARE DEFINED NETWORKS

 1 RAMI MALKAWI, 2 IZZAT ALSMADI, 3AHMED ALEROUD, 4PAVEL PETROV

 1 Assistant Professor, Yarmouk University, Information Systems Department, Jordan

 2Associate Professor, Texas A&M University - San Antonio, USA

3Associate Professor, Yarmouk University, Information Systems Department, Jordan
4Associate Professor, University of Economics - Varna, Varna, Bulgaria

E-mail: 1rmalkawi@yu.edu.jo, 2 izzat.Alsmadi@tamusa.edu, 3ahmed.aleroud@yu.edu.jo, 4petrov@ue-

varna.bg

ABSTRACT

Software Defined Networks (SDN) recently evolves to give more roles to software in network control and
management. It is feared that such significant roles may risk those networks in terms of reliability and
security. As a new architecture, thorough testing and evaluation should take place to ensure that those
networks are robust and reliable. In this paper, we focused on testing firewall modules built on top of SDN.
We modeled typical interactions between those modules and the network based on flow and firewall rules.
We believe that, in future, all security controls including firewalls should be deployed as software services,
created in real time, as instances and deployed without any human intervention. This paper describes also
an approach that generates synthetic attacks that can target SDNs using an Adversarial approach. It can be
used to create models that test SDNs to detect different attack variations. It is based on the most recent
OpenFlow models/algorithms and it utilizes similarity with known attack patterns to identify attacks. Such
synthesized variations of at-tack signatures are shown to attack SDNs using adversarial approaches.
Keywords: SDN, OpenFlow, Software evaluation, Model based Testing.

1. INTRODUCTION

 Software Defined Networking (SDN) splits the
control plane from the data plane and allocates the
control functions in a dedicated software-based
controller. The controller communicates with its
switches through OpenFlow algorithm. Controller
decides the fate of incoming and outgoing traffic
and inserts flow rules in switches flow tables.
Those rules are added dynamically based on current
network traffic. Rules become obsolete after idle
time is passed without being used. Rules can be
also updated frequently. Traditionally, the firewall
security applications were taking the role of
deciding the fate of network traffic. They can block
or permit traffic based on rules that are added to the
firewall table by network administrators. In that
sense SDN controller acts as the traditional
firewalls in deciding the fate of network flows.
However, the major difference is that flow table
rules in switches that controller remotely adds are
dynamic; they are added, updated or removed
dynamically based on network traffic and state. On
the other hand, firewall rules are static and they are

only updated manually through network
administrators. Investigations on how SDN
networks work show that controller itself performs
some of tasks that firewalls in traditional networks
perform. SDN controller make decisions related to
what to do with packets. SDN firewalls then need
to work as supporting modules to the controller
itself. Firewalls, software, hardware, or mixed, are
responsible for monitoring network traffic to permit
or deny this traffic based on certain criteria
specified by network administrators and exist in
policies or access control lists (ACLs). Typically,
most traditional firewall systems work in
information from layers 2-3 of the seven layers in
the OSI model (i.e. Port number, IP and MAC
addresses). Particularly, you can define firewall
rules to prevent or permit data based on: IP
addresses, Ports, or MAC addresses. Figure 1
below shows typical examples of firewall rules in
traditional networks.

Journal of Theoretical and Applied Information Technology
15th January 2021. Vol.99. No 1

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

228

Figure 1: Firewall rules, examples (traditional networks)

The figure shows main attributes that should be
specified in each firewall rule. Those include IP,
MAC and Port addresses for source and destination.
If the user selects the option (any, wild cards), then
that will be a general flag with no specific source or
destination. For example, the first firewall rule in
indicates that all traffic going from the firewall (as
an IP address) to any destination should be denied
or blocked. Service option includes protocol using
this traffic. Interface indicates the network card that
the rule will be applied on. The line below shows
another example of a textual firewall rule. The line
shows the same information in addition to specific
inbound and outbound ports. However in some
cases, without using complex technical means, the
content of the network packets which are used by
text protocols can easily be read [1].
There can be usually some other options related to
whether events should be recorded or not and some
other optional features that may vary from one
firewall vendor to another.
 In SDN, a firewall module can be added typically
as a northbound (REST) API to the controller.
REST API is a standard add-on interface for
interacting with the controller and adding
applications to the network.

Figure 2: SDN firewall rules’ example (OF 1.0)

Figure 2 shows examples of OpenFlow version 1.0
Firewall rules. OpenFlow controller has some
common functionalities with firewalls. In
particular, both make decisions on blocking or
permitting network traffic. However, the major
difference is that controller can insert rules
dynamically in response to network traffic and
state. Controller continuously evaluates current
topology by using a link discovery module. It
generates LLDP and broadcasts packets routinely to
neighboring switches. Based on response from
those switches, controller can predict current

network topology. Additionally, controller includes
also a learning switch module that learns about new
devices based on their MAC addresses. Rules are
inserted dynamically by the controller into the
switches’ flow tables.
We think that testing controller applications is a
large research open area. There are several reasons
for that. First, this is due to the large number of
currently available controllers, open or commercial.
Exact and detail functionalities may not be the
same. Security problems related to the
programming language or to the program itself can
be expected given that this is a new area or a new
way of dealing with network traffic or information.
Formal testing approaches have limitations related
to robustness and dealing with state explosion
problems. Traditional testing methodologies and
coverage aspects can be applied to the controller
program as well as any developed modules on the
controller. Second, since security is one of the
major challenges in SDNs. Researchers argue that
SDNs are vulnerable and easier to target, and
several authors proposed IDSs to protect SDNs.
However, it is challenging to identify all attacking
techniques that may target SDNs. Adversaries have
enough knowledge and motivation to attack and
bypass those systems, since most IDSs rely on
classification algorithms and it is possible to create
examples that evade those classifiers. In this paper
we also follow an approach that utilizes labeled
regular flows to analyze samples of flows generated
using SDNs, we then show how it is possible to
evade SDN-based IDSs using synthetic samples
that are created using Generative Adversarial
Networks (GAN). Third, Motivated by the new
relation between firewalls and networks, we
focused in this paper on testing SDN firewall
modules and their interactions or communications
with SDN network in general and controller in
particular. This is since as we mentioned earlier,
there are cross functionalities between what the
controller and the firewall are doing. We defined a
state based model that can best describe the nature
of interaction between SDN controller, firewall
modules and switches’ flow tables. Flow tables in
switches are the common area that both firewall
module and SDN controller’s decisions impact. Our
contribution in this regard is to envision how future
firewalls should be developed. This can be
summarized in the following:
1. Creating centralized access control: Current
firewalls typically work in L2-L3 OSI layers. In
addition, there is another type of firewalls that act
in the high layer (i.e. L7-firewals). Nonetheless,
access control decisions are approximately taken in

Journal of Theoretical and Applied Information Technology
15th January 2021. Vol.99. No 1

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

229

all network levels or layers. This causes several
problems related to conflicts or inconsistency of
access control decisions. In our model, we showed,
how based on SDN, firewalls can be developed
with a centralized access control decision.
2. Model-based development of firewalls: Despite
the fact that major functionalities of classical
network firewalls are very simple, yet many
vendors develop firewalls with different
functionalities. This makes testing firewalls in
general for conformance testing for example
complex due to the need to customize such tests for
each vendor firewalls. We should create a model
for firewalls that should reflect the main abstracts
or functionalities in firewalls where we believe that
all software firewalls can then be different instances
from such high-level firewalls.
3. Based on our firewall models, we showed how
all testing activities can be automatically created to
evaluate any instance of a firewall.
4. One of the major ambitious goals for future
firewalls is to automatic the current firewall
activities that are largely manually accomplished by
network administrators. This includes creating,
modifying, deleting, etc. firewall rules, network
topologies, etc. We showed how those tasks can be
automated in future to develop firewalls that are
completely autonomous.

The testing of adversarial attacks is conducted
based on the following steps

1. Generation of attack examples on SDNs: it is
accomplished through feature perturbation
implemented using GAN. The results show
that GAN networks are very effective in
creating adversarial examples that can fool
machine learning detection models for SDN.

2. Synthesis of SDN intrusion detection datasets:
to the best of our knowledge, this is the first
work to synthesize adversarial examples
against GAN, which leaves the door open for
new defensive mechanism based on the level
of perturbation.

3. Evaluation: The existing GAN cyber security
models are tested based on existence or
absence of malicious features in attack
examples. However, data may also contain
suspicious or borderline features, which
cannot be classified as benign or attacks. The
experimental results proved the success of
generating adversarial models for SDN
examples using GAN. A significant number of

the generated examples evaded different
intrusion detection algorithms.

 The rest of the paper is organized as the
following: In section 2 we provide a research
background and several motivations for our work. In
section 3 we will introduce several research papers
that are relevant to the paper subject. In section 4 we
present goals and approaches for our model based
SDN testing. In section five, we conduct
experiments and their results. Paper is then
concluded with a summary in section 6.

2. RESEARCH BACKGROUND

 In OpenFlow, controllers store rules or Access
Control Lists (ACL) for all network switches.
Those rules can be sorted based on the priority
attribute where if rules contradict with each other,
the one with higher priority will be applied on the
subject flow. If no rule is matched with the current
flow, the flow is forwarded to the controller to
make a decision about. Subsequent packets in the
same flow are judged based on the decision of the
first evaluated packet. In firewalls where priority
does not exist or does not apply, conflicting rules
can be handled in different manners. For example,
some firewalls use the last matching rule option. In
some other firewalls, the first matching rule is
applied. This may however indicate a system
inconsistency related to the fact that there are many
firewall rules in the same firewall that contradict or
contain each other completely or partially. While a
firewall may not need to get rid of such cases all the
time, nonetheless, it should be able to know such
occurrences and handle them consistently.
Consequently, we believe the existing techniques
needs to emphasis on the following aspects:
- While Controllers authorize inserting rules or

flows inside switches, this should be
implemented in coordination with the firewall
module. We performed some experiments and
noticed that the controller, without a firewall
module performs certain rules and checking on
how to add or remove flows. We added and
enabled a firewall module (using Floodlight
controller) and noticed that it is not clear how
controller synchronizes its decisions with the
firewall module [2].

- Thorough testing should be conducted in this
area to make sure that added or developed
firewall modules on top of the controller are
completely consistent with the controller itself.

- SDN can be a supportive tool for network
testing. Testing and fixing errors by large
includes three main steps: The first one is to run
the program looking for problems based on a

Journal of Theoretical and Applied Information Technology
15th January 2021. Vol.99. No 1

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

230

reference (e.g. requirements, code, performance,
etc). If errors are found a debugging process
starts to find locations and causes of errors.

- Traceability analysis is used in testing to
evaluate impact or connection between a system
component with another. For example, in
software programs, testers evaluate traceability
between requirements and code to make sure
that all requirements are developed, no more
and no less. It can be also used for maintenance
or reconfiguration purposes. Traceability can be
also evaluated between test cases and code to
evaluate coverage. In OpenFlow testing, we can
develop several instances of traceability.
Traceability between source code and flow
tables is important specially if such traceability
can be evaluated at run time automatically. It
can show a direct view on the code that is
changing flow tables. This can be important for
both testing and diagnosis as well as for security
or vulnerability assessment. In addition, we may
use traceability analysis methods for rules’
merging and optimization. There are existing
research proposals for rules optimization
process particularly in traditional firewalls[3, 4].
However, OpenFlow includes new artifacts and
the dynamic nature in those artifacts makes
static optimization approaches insufficient.

3. LITERATURE REVIEW

 Many authors tried to use traditional testing
techniques to evaluate different aspects of SDN.
Software programs written in SDN can be classified
in several different categories: Controllers, APIs, or
middle-boxes and applications written on top of the
network to interact with the controller through
APIs. However, extensive testing and quality
assurance methodologies should be conducted to
evaluate how much such programs conform to SDN
or OpenFlow guidelines. From security perspective
in particular, little work has been done to test those
programs for security problems or vulnerabilities.
Natarajan et al. [5] demonstrated developing an
OpenFlow controller in cloud computing. Authors
discussed several code level issues and problems
with possible choices. For example, timeout
variables are included in the program to decide
when to drop a flow after an idle time when there is
no proper match or when traffic is in progress for a
while.
 E. Al-Shaer and Al-Haj [6], presented a tool
called FlowChecker to check possible miss-
configuration in switch flow table(s). Networks can

be modeled as BDD (Binary Decision Diagrams).
Conflicts between the different rules are checked
statically or dynamically. The tool is intended to be
used offline where the input is the content of the
flow table and the output includes possible conflicts
or miss-configurations. Different rules may
contradict or shadow each other. SAT based model
checking is used in [7] for data plane verification.
Their approach revealed several bugs in the campus
network. Real time verification can be used in
OpenFlow for: OpenFlow policies, controller or
modules’ programs, flow table rules, etc. Real time
decision making can be risky if for example a
legitimate host is falsely blocked or the opposite.
Canini et al. [8] combined symbolic execution with
model checking for OpenFlow testing. SDN
controller is modeled as a state machine. They
developed an open source tool for model-based
testing of OpenFlow applications. The challenge of
applying formal models in SDN is the applicability
of such approaches in real time scenarios. Zeng et
al. [9] focused on the automatic generation and
execution of test packets in OpenFlow networks.
Khurshid et al. [10] developed VeriFlow that aims
at verifying dynamically the correctness of the
network variants in wide and also verify some
security properties and fault tolerance. The system
is implemented to make decisions in real time and
with a very short response time. Such process can
be triggered whenever a network change in
configuration occurs. From testing perspective,
VeriFlow defines equivalent classes of traffic flows
where behavior is expected to be the same for all
members in the same class. Test cases that
represent flows are taken from each class. Classes
are extracted based on flow variables (e.g. IP
address, MAC address, etc.). Typical to most
proposed northbound APIs, VeriFlow is developed
to act between the controller and northbound
applications. It acts as a supporting module to the
controller to support and verify decisions made by
the controller before they can be enforced.

Kloti et al. [11] discussed OpenFlow protocol
security analysis based on Microsoft STRIDE
(Spoofing, Tampering, Repudiation, Information
Disclosure, Denial of Service, and Elevation of
Privilege) threat analysis. They conducted analysis
on evaluating security issues related to the protocol
itself. They focused on threats on the data plane
only. In reality, there is a wide range of possible
threats on the SDN network. Several attack trees
are demonstrated representing different network
security attacks and how they can be deployed
from: Vulnerability exploits intrusion to payload.

Journal of Theoretical and Applied Information Technology
15th January 2021. Vol.99. No 1

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

231

Handigol et al. [12] used traceability of packets’
history as a tool for testing and faults’ localization.
Packet history is the journey packets take from
source till destination through switches and
including different headers’ modifications. Ball et
al. [13] presented VeriCon; a formal tool to verify
SDN programs at compile time based on possible
topologies and events. This is a formal approach
that models SDN controller as a state machine and
is then used to formally prove the correctness of
software programs. Topologies are expressed in
terms of first order logic. A simple imperative
language is used to write SDN programs. Authors
defined invariants related to topology, safety, and
transition and then tried to proof the correctness of
those invariants or properties. Lebrun et al. [14]
proposed a requirement based testing for SDN
programs. They focused on data path requirements
and tried to check if SDN controller complies with
those requirements. There have been some
proposals to enhance firewall queries in both design
and evaluation. Gouda and Liu [15] and Liu [16]
proposed a rich language for more expressive
firewall rules. Authors indicated that such
expressiveness or semantic is required in both
designing and evaluating firewall rules. They
proposed Structured Firewall Query Language
(SFQL) to describe firewall policies and Firewall
Query Theorem and processing algorithm for
processing firewall rules.

Such approaches can help in developing firewall
rules and policies that have much more semantic
and expressiveness. This can help reduce the
number of firewall rules and also improve
performance in processing firewall queries. For
processing they used FDD Firewall decision
diagrams. However, authors assumed only two
attributes in each rule (source and destination
address). If authors made their evaluation (i.e.
10,000 rules mentioned in the abstract) in a full
decision tree with rules of full features, processing
time can be far more than what they have reported.
In reality, all rule attributes should be included
which may make the tree very large and complex.
This is especially true given that adding more
semantics to firewall rules mean giving them more
attributes or attributes’ values. OpenFlow 1.3
includes 40 attributes related to the flow details. We
think that using some dynamic tree structures can
help model firewalls dynamically. The tree can
dynamically grow based on the actual number of
firewall rules. Nelson et al. [17] introduced the
Margrave tool for firewall rules’ analysis to support
queries at multiple levels. They defined 9 firewall

sub-policies based on the decomposition of firewall
configurations. Their implementation is applied on
traditional firewalls. There are some significant
changes on how firewalls work in SDN which
make such concrete traditional firewall
implementation inapplicable to SDN firewalls.

Unlike signature or dictionary-based intrusion
detection techniques, anomaly and role-based
detection methods utilize complex methods and
knowledge from large historical data to detect and
protect against network intrusions. Software
Defined Networking (SDN) can help this area
through the ability enable users and their
applications to aggregate data from different
sources and also enable autonomous and real time
traffic manipulation and response. Unlike firewalls,
IDS/IPS system employ different methods of
learning techniques such as deep learning to be able
to distinguish normal from malicious traffic.

SDN offers new opportunities to security controls
such as IDS/IPS but also pose some concerns.
Opponents of SDN centralized controllers indicate
that such centralized controller can be an attractive
target to different types of intrusion attacks such as
flooding attacks [18, 19, 20]. As SDN controllers
are expected to be reactive to traffic and employ
real time traffic roles to optimize network activities
and utilization, attackers can take advantage of such
controller behavior and flood the controller with
malicious traffic. It is important for controllers to
have intelligent methods (e.g. using learning
techniques) to distinguish and deal with such
malicious behaviors. Researchers indicated the
ability of deep learning methods or approaches to
overcome some of the challenges found in NIDS
environments [21, 22, 23, 24].

Deep learning can be used in analyzing network
security since it uses statistical data to calculate any
network problems by evaluating the interrelation of
neutrals in the system [25]. Examples of deep
learning algorithms proposed in this area include
deep learning deep neural networks, auto encoders,
convolutional neural networks and recurrent neural
networks.

On the opportunity side, several papers in literature
discussed utilizing SDN to employ global and/or
centralized access controls and IDS/IPS to
centralized and unify actions to permit or deny
traffic [26, 27, 28, 29]. Being in the central of the
network, SDN controllers can receive information
from the network and system agents that can be

Journal of Theoretical and Applied Information Technology
15th January 2021. Vol.99. No 1

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

232

deployed across the network in different premises
and layers, and eventually unify and centralized
decisions on traffic travelling throughout the
network. As one of the major attack goals against
SDN, most papers evaluated deep learning
techniques in SDN-based networks focused on
flooding attacks such as Denial of Service and
Distributed Denial of Service [30, 31]. Niaz et al.
paper [30] evaluated using Stacked Autoencoders
in detecting flooding attacks in flow-based
networks. Several autoencoders are ensembled or
stacked as intermediate input-output models with
input features extracted from the incoming packets
at the flow level (e.g. number of bytes and packets
per flow, entropy, etc.). The incoming packet and
extracted features are also classified based on three
main protocols: TCP/UDP and ICMP. The hidden
layers in auto-encoders can be the simple concepts
and multiple hidden layers are used to provide
analysis depth and extract unknown knowledge or
insights [32].
Dey and Rahman in [33] proposed using recurrent
neural networks due to their ability to learn from
historical data. They utilized Long Short-term
Memory (LSTM) architecture variants such as
Gated Recurrent Unit (GRU). Deep recurrent neural
networks can have various architectures and more
layers from RNN, LSTM or GRU can be added to
their architectures. Researchers in [34] used deep
neural networks to detect intrusions in flow-based
traffic.
As an alternative to deep learning, Han et al. [35]
paper proposed using reinforcement learning in
flow-based intrusion detection. Reinforcement
learning is an outcome-based learning method that
supports models through employing several
learning cycles and through evaluating outputs of
previous cycles to improve future ones.

Traceability analysis: Traceability analysis is used
in testing to evaluate impact or connection between
a system component with another. For example, in
software programs, testers evaluate traceability
between requirements and code to make sure that
all requirements are developed, no more and no
less. It can be also used for maintenance or
reconfiguration purposes. Traceability can be also
evaluated between test cases and code to evaluate
coverage.

In OpenFlow testing, we can develop several
instances of traceability. Traceability between
source code and flow tables is important specially if
such traceability can be evaluated at run time
automatically. It can show a direct view on the code

that is changing flow tables. This can be important
for both testing and diagnosis as well as for security
or vulnerability assessment.

Traceability analysis is also important to conduct
between firewall rules and policies along with flow
tables in switches. Many papers discussed the need
to make sure that there are no conflicts between
those two artifacts. In addition we may use
traceability analysis methods for rules’ merging and
optimization. It is expected with the dynamic
insertion of rules by the controller in flow tables,
that flow tables will grow in size and include a
large number of flows that have redundancy and
conflict. The need to continuously trace flow table
rules to merge rules that can be merged or remove
rules that can be redundant is a very important
process in the current large and dynamic networks.
However, achieving such process automatically can
be a challenge especially as OpenFlow switches are
not supposed to have control or intelligence (in
original OpenFlow design). The controller or one of
its supporting modules is better to perform such
optimization process especially as optimization is
also necessary between the different network
switches. We think that this is an important
research problem given that proposed solutions
should consider scalability and overhead issues.
There are existing research proposals for rules
optimization process particularly in traditional
firewalls (e.g. [3, 4]). However, OpenFlow includes
new artifacts and the dynamic nature in those
artifacts makes static optimization approaches
insufficient.

Firewall-Rules-SQL-Like query language: One of
the problems when dealing with firewalls is that
they don’t include a rich (SQL like) process to add
or update firewall rules. For example,
administrators must enter firewall rules one by one
for a case when a range of ports should be allowed.
This is since there is no constructs to indicate a
range of ports, IP addresses, MAC addresses. The
only available one is the: wild card, or [any] which
is very open and generic and may not be helpful in
many cases. There have been some proposals to
enhance firewall queries in both design and
evaluation.

Liu and Gouda paper in [15, 16] proposed a rich
language for more expressive firewall rules.
Authors indicated that such expressiveness or
semantic is required in both designing and
evaluating firewall rules. They proposed Structured
Firewall Query Language (SFQL) to describe

Journal of Theoretical and Applied Information Technology
15th January 2021. Vol.99. No 1

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

233

firewall policies and Firewall Query Theorem and
processing algorithm for processing firewall rules.
Such approaches can help in developing firewall
rules and policies that have much more semantic
and expressiveness. This can help reduce the
number of firewall rules and also improve
performance in processing firewall queries. For
processing they used FDD Firewall decision
diagrams. However, authors assumed only two
attributes in each rule (source and destination
address). If authors made their evaluation (i.e.
10,000 rules mentioned in the abstract) in a full
decision tree with rules of full features, processing
time can be far more than what they have reported.
All rule attributes should be included which may
make the tree very large and complex. This is
especially true given that adding more semantics to
firewall rules mean giving them more attributes or
attributes’ values. OpenFlow 1.3 includes 40
attributes related to the flow details. We think that
using some dynamic tree structures can help model
firewalls dynamically. The tree can dynamically
grow based on the actual number of firewall rules.
Nelson et al. [17] introduced the Margrave tool for
firewall rules’ analysis to support queries at
multiple levels. They defined 9 firewall sub-
policies based on the decomposition of firewall
configurations. Their implementation is applied on
traditional firewalls. There are some significant
changes on how firewalls work in SDN which
make such concrete traditional firewall
implementation inapplicable to SDN firewalls.

There have been some similar works that
investigated the feasibility of fingerprinting the
controller-switch interactions by a remote
adversary, whose aim is to acquire knowledge
about specific flow rules that are installed at the
switches. This knowledge empowers the adversary
with a better understanding of the network’s
packet-forwarding logic and exposes the network to
several threats [36]. The authors in [37] recreate the
escalating competition between scans and deceptive
views on a Software Defined Network (SDN). Our
threat model presumes the defense is a deceptive
network view unique for each node on the network.
It can be configured in terms of the number of
honeypots and subnets, as well as how real nodes
are distributed across the subnets. It assumes
attacks are NMAP ping scans that can be
configured in terms of how many IP addresses are
scanned and how they are visited.

4. GOALS AND APPROACHES

 The main goal of this paper is to test SDN
based firewall modules and then try to apply

adversarial modeling. Those modules are built of
SDN or OpenFlow networks. They interact with the
network through the controller. Communication
with the controller is accomplished through the
northbound API. Here are some of the questions
that our approach will experimentally target:

- If SDN controller can decide the fate of traffic
flows similar to the main task of traditional
firewalls, do we still need firewalls in SDN?
Either firewall rules will override switches’ rules
as it is centralized as part of the controller, or
either it is expected to do more intelligent
decisions more like an IDS.

- Are there any possible conflicts that may arise
between controller and firewall decision on
traffic fate? When conflicts can occur, and which
decision dominates? How power share is going to
be distributed between them?

- Policies should be developed and enforced by the
controller on the switches and hence mature
firewalls should exist in or supporting the
controller and centralized. However,
orchestration should be made between them and
switches so that to handle conflicting cases. For
example, if a firewall rule denies entries from IP
address 192.168.0.1 and one switch permits this,
most likely packets from this IP address will be
dropped from the firewall before reaching the
specific switch to make its own decision.

- If ACLs are migrated from traditional firewall to
SDN, where should rules be migrated? To the
firewall or to the switches? Can we have stateful
migration? As typically migration will be rule by
rule. How should we best distribute rules
between the firewall and the different switches?

- If switch rules that contradict firewall rules will
not be evaluated or tested, how could this be
evaluated dynamically and continuously specially
as flow table content changes frequently?

- Should firewall insert or drop flows on the
controller behalf? Assuming that it may not be a
northbound module? Does that contradict with
the fact that control is centralized? How can
controller delegate some of its responsibilities to
firewall module?

- If controller or firewall makes judgment for
packets based on initial packets of a complete
traffic, will their not be some problems if traffic
has sub-packets to different hosts? We did
investigate this to start with PINGALL command
that will send small packets to all hosts and
noticed that if first part is denied all will be
denied as controller will write (deny all traffic)
without looking at the rest of the traffic. How
much similar problems can happen in real time?!

Journal of Theoretical and Applied Information Technology
15th January 2021. Vol.99. No 1

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

234

- Shouldn’t we have an option for some firewall
rules to exist but not activated?! Maybe we need
that sometime. In some other cases, maybe we
need timing with firewall rules where some rules
need to be activated for a certain period of time
or only in working hours, etc. How could we
implement that?

- If adversarial modeling can be used to evade
security controls in SDNs

- We first proposed a state base model to describe
firewall module interaction with SDN. The model
is intentionally made simple to serve the
following goals:

- Possible states in the model and possible
transactions are finite.

- Testing activities (i.e. test case generation,
execution and verification) should be simply and
automatic.

- Given the large number of possible input values
if we want to consider all possible values for flow
inputs, model should abstract possible inputs into
finite classes.

Table 1: Test cases for attributes firewall module,
firewall rules, and switch flow table

State Firewall
enabled?

Firewall empty? Flow table
empty ?

S1 YES YES YES

S2 YES NO NO

S3 YES NO YES

S4 YES YES NO

S5 NO YES YES

S6 NO NO NO

S7 NO NO YES

S8 NO YES NO

Here are the steps to produce the model.

- The model is based on three binary attributes:
Firewall module (enabled or disabled), firewall
rules table (empty or not) and switch flow table
(empty or not). For simplicity, we assume one
switch with one flow table. Table 1 shows the 8
possible states given the three previously
described attributes.

- We define also 10 possible events that may
cause transitions between those states (Firewall:
enable, disable, Firewall rules CRUD (i.e.
Create, Read, Update and Delete) and Flow
table rules CRUD (i.e. Create, Read, Update,
and Delete).

- Events cause states’ transitions. For example,
we describe impact of all events on network

state S1 as following (C on firewall is Cfw, C on
flow table is Cft and so on)
(S1->enable->S1;S1->disable->S5;S1->Cfw-

>S3;

S1->Rfw->S1;S1->Ufw->S1;S1->Dfw->S1;S1-
>Cft->S4;

S1->Rft->S1;S1->Uft->S1;S1->Dft->S1).

What can we learn from the example of events-
transitions-sequence for S1 state:

- Transition from S1 state is only possible to S3,
S4, and S5 states. Other states should not be
reachable from S1.

- We made some state transitions in italic to
indicate that there can be possible errors in those
states. Will reading, updating or deleting from
an empty table (firewall or flow) cause a null
error?

In order to reduce the state space of possible inputs
for our model and hence test cases, we made some
assumptions. We ignore any details related to the
nature of parameters in either the firewall or the flow
table rules. By considering CRUD methods (Create,
Read, Update and Delete), We assumed a
verification process that does not depend on the
actual content for added, deleted, updated or read
firewall or flow rules. We will evaluate the rules’
contents in a second layer. Hierarchical models are
used to reduce the number of possible states
vertically. For example, the event “Create” should be
further divided according to the number of variables
in the flow or firewall rule. If (Cft) refers to creating
a firewall rule in general then: Cft_IP refers to the
family of test cases to create firewall rules where the
variable that should only change is the IP address.
Figure 3 below shows the hierarchical state diagram
with three levels.

Figure 3: OpenFlow Hierarchical State Model

Journal of Theoretical and Applied Information Technology
15th January 2021. Vol.99. No 1

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

235

The first level includes the 10 events we discussed in
the first experiment. However, CRUD events are
now represented by packages of events. Each one of
those events should include: IP address, MAC
address, Port number and protocol. IP and MAC
address represent also packages as each flow
instance requires two of those; source and
destination.

Testing SDN Using Data Generated by GAN :
Recently, deep-learning adversarial models have
attracted quite an attention in Cyber Security. As
opposed to traditional techniques, GANs apply a set
of non-linear transformations on an original
malicious sample to generate an adversarial
example that evades classification models. GANs
have shown some promising results in intrusion
detection [38]. The GAN structure in this paper
consists of a Generator network, a Discriminator
network and an intrusion detector that handles both
OpenFlow and NonOpenFlow traffic. Feature
vectors of attacks against SDNs consist of the
regular features of a network traffic that are
converted into binary values of 0 and 1. A feature
vector is represented using a ternary (i.e.,
three-valued) features, where -1 describes the
malicious features, 1 describes legitimate features,
and 0 describes suspicious features. We re-encode
ternary features into two-bit binary features using
the encoding, 0 to 01, 1 to 00, and 1 to 11.
Our approach deals with suspicious features that
can be classified as borderline features. The original
feature vector contains n-ternary features in the
original encoding (i.e., n columns). With the
proposed encoding, 2n features are created. Each
feature in the original data is encoded using two
columns, each containing one binary feature. This
encoding scheme is applied to both attacks and
benign examples. The Generator creates a
perturbed version of attack examples to convert
them into adversarial examples. The Discriminator
learns to fit the intrusion detector, which is
implemented using classification algorithms to
identify Denial of Service attacks on SDNs. At each
round of the training process, the Discriminator
sends a feedback to the Generator to modify its
weights during the training process to the point
where it guarantees that the Generator creates
enough examples to evade the intrusion detector.
Intrusion examples consist of a feature vector f with
n features. Both the input vector f and a noise
vector z are fed to the generator. Using our
encoding scheme, f consists of m features where

m=2n. The features in f take the values of 0 and 1
to identify how malicious the feature is where 11
denotes a very malicious feature. The
Hyperparameter z is a vector with random entries in
the range [0, 1). The proposed structure of the
generator consists of three hidden layers, each with
120 neurons. Hidden layers are activated using
LeakyReLU. The output layer consists of 2n
neurons, two for each feature, which are all
activated using sigmoid function in order to return
outputs between 0 and 1. The Generator parameters
are updated based on the feedback from the
Discriminator. The resulting adversarial examples
are binarized using a threshold to create a
binary vector with two inputs 0 and 1. However,
for backpropagation to work non binarized vectors
are used. The perturbation done using GAN
preserves the semantics of the original data. In
attacks against SDN, it is possible to produce new
attacks by removing some features and
introducing others.

There is a need to update the weights of the
generator using the gradient information from the
discriminator. The Discriminator and intrusion
detector both take the feature vector f as an input.
The Discriminator classifies the given flow as a
benign or attack using a single output layer with a
certain level of uncertainty. Adam optimizer is used
as an optimization function. The training data for
the discriminator consists of adversarial sample
generated by the generator and the benign sample.
The ground truth labels for the discriminator are the
predictions made by the intrusion detector, not the
actual labels of the samples. Training the generator
and discriminator aims at minimizing their loss
functions which are measured differently. The
predictions of the intrusion detector are used as
labels for the discriminators. Therefore, the loss
function of the discriminator tries to minimize
classification mismatches between the
discriminator and the intrusion detector.

5. EXPERIMENTS AND ANALYSIS

 From this model presentation, we showed that
it can first help us in distributed our test cases in an
intelligent rather than random mode. Further, it can
help us point to and then focus on some areas that
may expose errors or problems. Experiment1: We
completed the specifications of all states and their
transitions and test cases are generated based on
those states’ transitions.

Table 2: states’ transitions, based on the states convention
adopted in Table 1

Journal of Theoretical and Applied Information Technology
15th January 2021. Vol.99. No 1

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

236

 S1 S2 S3 S4 S5 S6 S7 S8

S1 1,4,5,

6,8,9,

10

 3 7 2

S2 1,3,4,

5,6,7,

8,9,10

10 6 2

S3 6 7 1,3,4,

5,6,8,

9,10

 2

S4 10 3 1,4,5,

6,7,8,

9,10

 2

S5 1 2,4,5,

6,8,9,

10

 3 7

S6 1 2,3,4,

5,6,7,

8,9,10

10 6

S7 1 6 7 2,3,4,

5,6,8,

9,10

S8 1 10 3 2,4,5,

6,7,8,

9,10

To show the complete state model, we will give
numbers to the events: 1. Enable firewall, 2.
Disable Firewall, 3. Create a firewall rule, 4. Read a
firewall rule, 5. Update a firewall rule, 6. Delete a
firewall rule, 7. Create a flow table rule, 8. Read a
flow table rule, 9. Update a flow table rule 10.
Delete a flow table rule. Table 2 shows all possible
states’ transitions, based on the states convention
we adopted in Table 1.

As such, we can read the following from Table 2:

- Each state has 3 possible state transitions based
on defined events. In other word, for each state, 3
events only should case a state transition. The
rest of events should not cause a state change.

- Each state can be reached from three other states.
- Events 1 and 2 (i.e. enable/disable firewall) case 4
different states’ transitions each.

- Events 3 and 7 (Create firewall or flow table rule)
caused 2 transitions each.

- Events 4, 5, 8 and 9 (read and update for firewall
and flow table rules) should cause no state
transition.

- Events 6 and 10 (Delete a firewall or flow table
rule) may cause a state transition or may not. This
is why we include each one of them twice where
the event may or may not cause a state transition.
The “delete” event will only cause a state
transition, if the deleted rule is that last one in the
firewall or flow table rule. If the rule that the event
is deleting is the last rule, this will

- Based on this model, we can check automatically
the network state before and after the event. Each
event is developed in our experiment to be a
separate test case. This model facilitates the ability
to automate the results’ verification specially as
we are not checking firewall or flow table values.
We are only checking the count to see if those
tables are empty or not. Test case generation
should basically make sure to put the network in
all 8 states. Further, test cases should verify
correct states’ transitions as predicted by the
model. 100 % coverage for this model can be
achieved using 80 test cases, 10 test case per each
state.

-
Experiment 2: From the previous experiment, we
had the following observations:

- OpenFlow networks have no direct methods to
delete or update flow rules in switches’ flow
tables. Rules are removed if they pass the idle
timeout without usage or the hard time out.
Flow rules can be also updated indirectly. For
example, if we tried to add a new flow with
similar attributes as in a flow rule we may be
able to change or replace an existing rule.

- In the first experiment, we verified automatically
the correct number of flow or firewall rules. The
binary possible states that we assumed do not
need to check the actual rules’ contents. In the
second experiment, we still have 8 possible
states. The state model represented by Tables 1
and 2 should not be changed. Events are
extended where each one of the 10 events will
have six possible alternatives. Total minimum
number of test cases to achieve 100 % coverage
is then: 8 * 10 * 6 = 480 test case. If we want to
valid and invalid inputs for each scenario, this
number will be doubled.

 Results and analysis for the two experiments
are presented. In the first experiment, 80 test
cases are generated to achieve 100 % coverage
based on the model proposed (i.e.8 state by 10
events). Based on Table 1, we described 8
possible states. We described also the impact of
events and the possible transitions from those
states.

Journal of Theoretical and Applied Information Technology
15th January 2021. Vol.99. No 1

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

237

 Based on the model described in Table 1, we
developed a test automation framework to
automate all testing activities (i.e. test cases
generation, execution and verification). Python
scripts are used to orchestrate the different testing
activities. Pre-conditions and post-conditions for
each state transition are programmed based on
the state model. For each state, pre-and post-
conditions depend on three binary decisions (If
the firewall is enabled or not, if the firewall has
rules or not and if the flow table has rules or not).
For each test case, those three conditions are
tested before executing the test case (i.e. pre-
condition) and after executing the test case (i.e.
post conditions). A successful test case is then the
test case that actual post conditions matched its
expected ones (i.e. next possible state).

6. SECURITY CONTROLS MODELING

 With the evolution of programmable networks
(e.g. SDN and NDN) the rule of software in the
control and management of networks will continue
to expand. Network security controls will also
expand in that direction. Future security controls
(e.g. firewalls, IDSs, etc.) are expected to be
software programs which can be developed just like
any other user-level or layer 7 application. Security
controls can be also offered as customized or on-
demand services where different users can get
security controls defined based on their own
contexts and domains. In this scope, it is important
to divide security control services into two
abstraction levels: A high level abstraction level
that describes the general functionalities of those
security controls that should be similar in all of its
instances. The second level can include concrete
functionalities that may not be applicable to all its
generated instances. In the software paradigm, this
is the difference between software templates or
classes and objects or instances. The model
developed for Floodlight firewall model aims to
evaluate main model functionalities. Figure 3
shows abstract firewall class including main
methods: CRUD (i.e. create, read, update or delete
a rule) and match (i.e. to match a rule with
incoming/outgoing traffic). Those are the generic
functionalities that any firewall should have.

Figure 4: Interface: Firewall

Each instance firewall should inherit from firewall
interface and define its own copy of abstract fields
and methods. Instance or concrete firewall can also
extend original implementation and includes new
features. The general logic of how firewalls make
decisions include the following constraints:

 A software firewall can act as a service. This
means that it can be installed/uninstalled or
enabled/disabled. For all features including
interface features to be enabled, firewall should
be installed. If firewall is installed but disabled,
interface services can still be accessed but will
not take effect until the firewall is enabled. For
firewall to work in its normal operations, it
should be installed and also enabled.

 Many firewall programs, as instances can exist in
the same system. A one to one relation should
exist between the instance firewall and its
controller. Such controller decides the
jurisdictions in which this firewall can work.

 Firewalls contain rules. Rules are objects that are
serialized/de-serialized to a database or a file. All
firewall rules are stored in memory when firewall
is enabled. One of the significant problems with
classical firewalls is that complete or partial
redundant rules may exist in the firewall. This
may complicate the matching process especially
when a certain traffic can be matched by many
firewall rules. The current available solutions for
such problem is either precedence (i.e. the first
matched firewall will take effect) or priority (i.e.
the rule with the highest priority will take effect).
This however may not be the user or network
administrator intention and many cases of
inconsistence decisions may arise. When all
firewall rules exist in memory, any new attempt
to add a new firewall rule should first make sure
that such rule does not contradict with an existing
rule. Similarly situations of rules’ containments

Journal of Theoretical and Applied Information Technology
15th January 2021. Vol.99. No 1

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

238

(e.g. where the new rule partially matches an
existing rule) should also be identified.

Rules_Vs_Traffic_Matching: The matching (i.e.
between firewall rules and incoming/outgoing
traffic or flow) is the core task in firewall
functionality. One a match is observed, decision in
the matching firewall rule is applied on the traffic.
There are three match scenarios; when the firewall
is enabled and there are rules in the firewall table:

- NO-Match, where the flow does not match any of
the firewall rules in the firewall table. In this
case, the flow will be permitted. In comparison
with 3.a, an enabled firewall with no rules will
drop all flows. To reverse this and permit all
flows, either disable the firewall or add one
random rule (that may not match with any flow).

- Exact-Match where the flow attributes have
matched exactly one and only one firewall rule.
The flow match can’t be with two or more rules
as those firewall rules then will be identical (or
similar based on current Floodlight firewall
implementation). We will use the current
approach used in Floodlight firewall where all
attributes should exist and match between subject
flow and matched firewall rule.

- Inclusive-Match: where the match between a
flow and firewall rules (i.e. one or more) can fall
within the no- and exact match cases. In other
words, the flow can match one or more attributes
from different firewall rules. We believe that real
network environments and firewalls include a
significant number of such cases. Typically,
those cases are not solved in a solid solution
where firewall has its best judgment of what
match should be taken. Rather, match decision is
either based on priority or based on first match
choice. As our paper focuses on testing existing
Floodlight firewall module (which completely
ignores inclusive matches), we will only identify
inclusive match occurrences without further
actions. As mentioned earlier, we accomplished
this through template flows and firewallRules
that are identified in the model by their names
only. This will be handled in future work that
focuses on how SDN based firewalls should
evolve to accommodate such open issues.

Each test case should include values for the 3
inputs: firewall status, flow and firewall rule. For
assertion or test verification, tester is expected also
to classify the expected output into one of the 5
possible insertions that are described earlier:

1. InsertFlowFirewallOff(1)
2. InsertFlowFirewallOnFirewallTableEmpty (2)
3. InsertFlowFirewallOnNoMatch(3)

4. InsertFlowFirewallOnExactMatch(4)
5. InsertFlowFirewallOnInclusiveMatch(5)

The model-based automatic assessment of
programmable firewalls can be used for the
following goals:

- Firewall testing activities: Test cases can be
automatically generated, executed and verified
based on the model and the actual firewall
instance.

- Firewall conformance: As future firewalls are
going to be programmable, generated or
customized by programs or systems, it is
important to ensure that such firewall instances
conform to certain standards. As such, existing
models can help in creating such standards as
well as making sure that created firewalls
conform to such standards.
- Experiment 3: Our GAN approach

aggregates flow entries exchanged
between controller and the OpenFlow
(OF) switches. The analysis of the
collected OFs emphasizes on
discovering similarity of such flows with
non-OFs using appropriate classification
techniques. We hypothesized that
sampling OFs and testing them using an
appropriate intrusion detection
mechanism can be used as a mechanism
to discover threats on SDNs. The first
sample in our experiment is taken from a
dataset of one hour of anonymized
traffic traces from a Distributed Denial-
of-Service (DDoS) attack (CAIDA
dataset [39]). This type of attack
attempts to block access to the targeted
server by consuming computing
resources on the server and by
consuming all of the network bandwidth
connecting the server to the Internet.
The second sample contains only IP
packets. Each record of the dataset
represents a packet of several fields such
as, packetSize, sourceIP, destination IP,
sourcePort, destination- Port, TCPFlags,
transport Protocol and packetType [24].
We used Open vSwitch (OVS) as an
OpenFlow switch connected to three
Linux-based hosts (the attacker, hostl,
host2, and host3). The three hosts can only
communicate through the OVS switch. We

Journal of Theoretical and Applied Information Technology
15th January 2021. Vol.99. No 1

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

239

used GENIExperimenter to create this
topology [40]. We utilized an Xen VM
with a public IP to run an OpenFlow
controller, 1 Xen VM to be the OpenFlow
switch, and 3 Xen VMs as hosts. In
general, the controller just needs to have a
public IP address, so that it can exchange
messages with the OpenFlow switch.

Table 3. Samples Used for Training and Testing.

Activity Type OF Non-OF
TCP/SYN flood 6214 3216
UDP Flood - 2512
ICMP flood 6230 3590
Total 12444 9318
TCP/SYN Benign traffic 2712 ll00
UDP benign traffic - -
ICMP benign traffic 5ll2 4100

 Total 7824 5200
 Suspicious and benign 20268 14518
 % of suspicious flows 0.61 0.64
 % of benign flows 0.38 0.35

- Results: The created instances are used to

deceive machine learning-based detectors
that are created using KNN and Random
Forest Classification Models. We used the
original OF and non-OF data with 0.3 OF
from both datasets to generate attacks. The
reported values in Table 2 represent the
success rate of identifying attacks before
and after the data is modified using GAN
by varying epoch hyperparameter and
changing the machine learning classifier.
The noise vector contains 10 dimensions.
The intrusion detection rates for
adversarial examples is between 0.07-0.53
which clearly shows how GAN can still
evade the intrusion detection techniques
that work on SDNs. In addition to evasion
IDSs, our approach can be used to
generate private datasets as proved by the
values of conditional privacy reported in
table IV.

Table 4. Results Using GAN

7. CONCLUSIONS

 In this paper, we proposed two approaches to
test the immunity of software defined networks
against specific types of attacks. Software-defined
networks are introduced to expand the rule of
software in network control and management. First,
we focused on testing firewalls modules built on top
of SDN, we then modeled interactions between
those firewall modules and the network based on
flow and firewall rules. Our approach is based on a
state base model to describe firewall module
interactions with SDN controller. We utilized a
hierarchical model to reduce the number of possible
states. This represents a significant step for
developing software-based security controls
including firewalls where those security controls are
completely autonomous; they can modify their own
rules, topology, etc. in response to the network they
are deployed in. In addition, we suggested a deep
learning-based testing technique to identify attacks
on SDNs, we show how Generative Adversarial
networks can evade those techniques. The proposed
approach synthesizes datasets, taking into
consideration the utility- information loss tradeoff.
This work can help understand how to use existing
attack patterns to discover different attacks that
target SDNs. As a future work, we plan to create
graph-based detectors for different attack types in
SDNs and target those models using adversarial
examples.

REFRENCES:
[1] Petrov, P., Malkawi, R., Shichkin, A., Dimitrov,

G. & Nacheva, R. “Security Certificates Used
in Public Web Sites of Banks in Czech
Republic, Slovakia and Hungary”. TEM
Journal, 8(4), 1224 (2019)

[2] Alsmadi, I., Munakami, M., & Dianxiang, X.
Model-Based Testing of SDN Firewalls: A Case
Study. In Trustworthy Systems and Their
Applications (TSA), 2015 Second International
Conference on, 8-9 July 2015 2015 (pp. 81-88).
doi:10.1109/TSA.2015.22.

Journal of Theoretical and Applied Information Technology
15th January 2021. Vol.99. No 1

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

240

[3] Al-Shaer, E. S., & Hamed, H. H. (2004).
Modeling and management of firewall policies.
IEEE Transactions on Network and Service
Management, 1(1), 2-10.

[4] Al-Saher, E., Hamed, H., Boutaba, R., & Hasan,
M. (2005). Conflict classification and analysis
of distributed firewall policies. IEEE Journal on
Selected Areas in Communications, 23(10),
2069-2084.

[5] Natarajan, S., Huang, X., & Wolf, T. Efficient
conflict detection in flow-based virtualized
networks. In Computing, Networking and
Communications (ICNC), 2012 International
Conference on, 2012 (pp. 690-696): IEEE

[6] Al-Shaer, E., & Al-Haj, S. FlowChecker:
Configuration analysis and verification of
federated OpenFlow infrastructures. In
Proceedings of the 3rd ACM workshop on
Assurable and usable security configuration,
2010 (pp. 37-44): ACM

[7] Mai, H., Khurshid, A., Agarwal, R., Caesar, M.,
Godfrey, P., & King, S. T. (2011). Debugging
the data plane with anteater. ACM SIGCOMM
Computer Communication Review, 41(4), 290-
301.

[8] Canini, M., Venzano, D., Peresini, P., Kostic, D.,
& Rexford, J. A NICE Way to Test OpenFlow
Applications. In NSDI, 2012 (Vol. 12, pp. 127-
140)

[9] Zeng, H., Kazemian, P., Varghese, G., &
McKeown, N. Automatic test packet generation.
In Proceedings of the 8th international
conference on Emerging networking
experiments and technologies, 2012 (pp. 241-
252): ACM

[10] Khurshid, A., Zhou, W., Caesar, M., &
Godfrey, P. (2012). Veriflow: verifying
network-wide invariants in real time. ACM
SIGCOMM Computer Communication Review,
42(4), 467-472.

[11] Kloti, R., Kotronis, V., & Smith, P. Openflow:
A security analysis. In Network Protocols
(ICNP), 2013 21st IEEE International
Conference on, 2013 (pp. 1-6): IEEE

[12] Handigol, N., Heller, B., Jeyakumar, V.,
Mazières, D., & McKeown, N. I know what
your packet did last hop: Using packet histories
to troubleshoot networks. 11th USENIX
Symposium on Networked Systems Design and
Implementation, 2014.

[13] Ball, T., Bjørner, N., Gember, A., Itzhaky, S.,
Karbyshev, A., Sagiv, M., et al. Vericon:
Towards verifying controller programs in
software-defined networks. In ACM SIGPLAN

Notices, 2014 (Vol. 49, pp. 282-293, Vol. 6):
ACM

 [14] Lebrun, D., Vissicchio, S., & Bonaventure, O.
Towards test-driven software defined
networking. In Network Operations and
Management Symposium (NOMS), 2014 IEEE,
2014 (pp. 1-9): IEEE

[15] Gouda, M. G., & Liu, X.-Y. A. Firewall design:
Consistency, completeness, and compactness. In
Distributed Computing Systems, 2004.
Proceedings. 24th International Conference on,
2004 (pp. 320-327): IEEE

 [16] Liu, A. X. (2009). Firewall policy verification
and troubleshooting. Computer networks,
53(16), 2800-2809.

[17] Nelson, T., Barratt, C., Dougherty, D. J., Fisler,
K., & Krishnamurthi, S. The Margrave Tool for
Firewall Analysis. In LISA, 2010

[18] Xu, T., Gao, D., Dong, P., Zhang, H., Foh, C.
H., & Chao, H. C. (2017). Defending against
new-flow attack in sdn-based internet of
things. IEEE Access, 5, 3431-3443.

[19] Tang, T. A., McLernon, D., Mhamdi, L., Zaidi,
S. A. R., & Ghogho, M. (2019). Intrusion
Detection in SDN-Based Networks: Deep
Recurrent Neural Network Approach. In Deep
Learning Applications for Cyber Security (pp.
175-195). Springer, Cham.

[20] Manso, P., Moura, J., & Serrão, C. (2019).
SDN-based intrusion detection system for early
detection and mitigation of DDoS
attacks. Information, 10(3), 106.

[21] Ugo Fiore, Francesco Palmieri, Aniello
Castiglione, and Alfredo De Santis. Network
Anomaly Detection with the Restricted
Boltzmann Machine. Neurocomput., 122:13–23,
2013.

[22] Wang, Z. (2018). Deep learning-based intrusion
detection with adversaries. IEEE Access, 6,
38367-38384.

[23] Zhang, B., Yu, Y., & Li, J. (2018, May).
Network intrusion detection based on stacked
sparse autoencoder and binary tree ensemble
method. In 2018 IEEE International Conference
on Communications Workshops (ICC
Workshops) (pp. 1-6). IEEE.

[24] Lakshminarayana, D. H., Philips, J., & Tabrizi,
N. (2019, December). A Survey of Intrusion
Detection Techniques. In 2019 18th IEEE
International Conference On Machine Learning
And Applications (ICMLA) (pp. 1122-1129).
IEEE.

Journal of Theoretical and Applied Information Technology
15th January 2021. Vol.99. No 1

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

241

[25] Dong, B., & Wang, X. (2016, June).
Comparison deep learning method to traditional
methods using for network intrusion detection.
In 2016 8th IEEE International Conference on
Communication Software and Networks
(ICCSN) (pp. 581-585). IEEE.

 [26] Tang, T. A., Mhamdi, L., McLernon, D., Zaidi,
S. A. R., & Ghogho, M. (2016, October). Deep
learning approach for network intrusion
detection in software defined networking.
In 2016 International Conference on Wireless
Networks and Mobile Communications
(WINCOM) (pp. 258-263). IEEE.

[27] Alsmadi, I. (2016). The integration of access
control levels based on SDN. International
Journal of High Performance Computing and
Networking, 9(4), 281-290.

[28] Alsmadi, I. M., & AlEroud, A. (2017). SDN-
based real-time IDS/IPS alerting system.
In Information Fusion for Cyber-Security
Analytics (pp. 297-306). Springer, Cham.

 [29] Ibrahim, J., & Gajin, S. (2017). SDN-based
intrusion detection system. Infoteh Jahorina, 16,
621-624.

 [30] Quamar Niyaz, Weiqing Sun, and Ahmad Y.
Javaid. 2017. A Deep Learning Based DDoS
Detection System in Software-Defined
Networking (SDN). ICST Transactions on
Security and Safety (2017).

[31] Qin, Y., Wei, J., & Yang, W. (2019,
September). Deep Learning Based Anomaly
Detection Scheme in Software-Defined
Networking. In 2019 20th Asia-Pacific Network
Operations and Management Symposium
(APNOMS) (pp. 1-4). IEEE.

[32] Shone, N., Ngoc, T. N., Phai, V. D., & Shi, Q.
(2018). A deep learning approach to network
intrusion detection. IEEE Transactions on
Emerging Topics in Computational
Intelligence, 2(1), 41-50.

[33] Dey, S. K., & Rahman, M. M. (2018,
September). Flow Based Anomaly Detection in
Software Defined Networking: A Deep
Learning Approach With Feature Selection
Method. In 2018 4th International Conference
on Electrical Engineering and Information &
Communication Technology (iCEEiCT) (pp.
630-635). IEEE.

 [34] Javaid, Q. Niyaz, W. Sun, and M. Alam, ‘‘A
deep learning approach for network intrusion
detection system,’’ presented at the 9th EAI Int.
Conf. Bio-inspired Inf. Commun. Technol.
(BIONETICS), New York, NY, USA, May
2016, pp. 21–26.

[35] Han, Y., Rubinstein, B. I., Abraham, T.,
Alpcan, T., De Vel, O., Erfani, S., ... &
Montague, P. (2018, October). Reinforcement
learning for autonomous defence in software-
defined networking. In International Conference
on Decision and Game Theory for Security (pp.
145-165). Springer, Cham.

[36] Cui, H., Karame, G. O., Klaedtke, F. and
Bifulco, R. "On the fingerprinting of software-
defined networks," IEEE Transactions on
Information Forensics and Security, vol. 11, no.
10, pp. 2160-2173, 2016.

[37] Kelly, J, DeLaus, M., Hemberg, E., and
O’Reilly, U.-M. "Adversarially adapting
deceptive views and reconnaissance scans on a
software defined network," in 2019 IFIP/IEEE
Symposium on Integrated Network and Service
Management (IM), 2019, pp. 49-54.

[38] Zilong, Y. Shi, and Z. Xue. " Idsgan:
Generative adversarial networks for attack gene
ration against intrusion detection." arXiv
preprint arXiv:1809.02077 (2018).

[39] The CAIDA “DDoS Attack 2007” dataset.
Available from http://www.caida.org

[40] Berman, J. S. Chase, L. Landweber, A. Nakao,
M. Ott, D. Raychaudhuri, et al., "GENI: A
federated testbed for innovative network
experiments," Computer Networks, vol. 61, pp.
5-23, 2014.

